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1Koltun and Yochum Laboratory, Department of Surgery, Division of Colon & Rectal Surgery,
Pennsylvania State University College of Medicine, Hershey, PA, United States, 2Department of
Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey,
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Background: The incidence of colorectal cancer (CRC) has been steadily

increasing in younger individuals over the past several decades for reasons that

are incompletely defined. Identifying differences in gene expression profiles, or

transcriptomes, in early-onset colorectal cancer (EOCRC, < 50 years old) patients

versus later-onset colorectal cancer (LOCRC, > 50 years old) patients is one

approach to understanding molecular and genetic features that

distinguish EOCRC.

Methods: We performed RNA-sequencing (RNA-seq) to characterize the

transcriptomes of patient-matched tumors and adjacent, uninvolved (normal)

colonic segments from EOCRC (n=21) and LOCRC (n=22) patients. The EOCRC

and LOCRC cohorts were matched for demographic and clinical characteristics.

We used The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD)

database for validation. We used a series of computational and bioinformatic

tools to identify EOCRC-specific differentially expressed genes, molecular

pathways, predicted cell populations, differential gene splicing events, and

predicted neoantigens.

Results: We identified an eight-gene signature in EOCRC comprised of ALDOB,

FBXL16, IL1RN, MSLN, RAC3, SLC38A11, WBSCR27 and WNT11, from which we

developed a score predictive of overall CRC patient survival. On the entire set of

genes identified in normal tissues and tumors, cell type deconvolution analysis

predicted a differential abundance of immune and non-immune populations in

EOCRC versus LOCRC. Gene set enrichment analysis identified increased

expression of splicing machinery in EOCRC. We further found differences in

alternative splicing (AS) events, including one within the long non-coding RNA,

HOTAIRM1. Additional analysis of AS found seven events specific to EOCRC that

encode potential neoantigens.

Conclusion: Our transcriptome analyses identified genetic and molecular

features specific to EOCRC which may inform future screening, development

of prognostic indicators, and novel drug targets.
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1 Introduction

The incidence of EOCRC in patients under the age of 50 is

increasing world-wide (1, 2). Environmental factors, such as a

Western diet and obesity, have been associated with CRC

development at an earlier age (3, 4). As many CRC screening

programs do not begin until the age of 45-50 years old (5, 6), there is

often a delay in the diagnosis of these patients (7), and cancer is not

detected until a later stage when it is associated with higher

mortality (8). Interestingly, this stage difference cannot be fully

explained by the diagnosis delay, pointing to differences in

underlying pathophysiology (8). Treatment options largely remain

the same for CRC patients of different ages (9), though EOCRC and

LOCRC are often molecularly and physiologically distinct. In

comparison to LOCRC, EOCRC tumors are more likely to have

signet ring morphology (7, 10), are more often located in the distal

colon or rectum (7), and have different mutational frequencies,

including a reduced incidence of tumors with APC mutations (11,

12). Further understanding these molecular differences between

EOCRC and LOCRC could improve early detection and treatment

for the growing population of EOCRC patients.

While mutational comparisons between young and old CRC

patients have been performed previously (11, 12), only very recent

studies have examined the transcriptional profiles of EOCRC

compared with LOCRC (13–16). These studies identified a variety

of differences between EOCRC and LOCRC, including differences

in immune signature (14, 15) and predicted immunotherapy

response (13). Other studies have found no such differences (17)

and instead found differences in DNA damage response (17) or

oxidative stress response (18). Some studies have implicated specific

genes involved in EOCRC such as ALDH1A1 (19, 20), PEG10 (21),

or ANPEP (22). Many previous EOCRC transcriptomic studies

examine differences between EOCRC and LOCRC tumor samples

(19, 21–23), leaving it unclear whether results are important for

cancer progression or artifacts of aging tissues. Other studies may

have matched control samples but do not control for patient

characteristics between EOCRCs and LOCRCs (17), allowing for

differences between patient populations, such as stage, gender,

tumor location, and histology, to drive EOCRC versus LOCRC

differences (13). The variety of genes and gene signatures identified

in previous studies may be reflective of different study populations

and designs, highlighting the need for a well-controlled study of the

EOCRC transcriptome.

Another limitation to previous EOCRC studies is the limited

analysis of post-transcriptional modifications (24). Modifications

such as alternative splicing (AS) are important contributors to CRC

(25, 26) and are known to change in response to age, environmental

stimuli (27, 28), and the microbiome (29). Although tumor-specific
Abbreviations: CRC, colorectal cancer; EOCRC, early-onset colorectal cancer;

LOCRC, later-onset colorectal cancer; TCGA COAD, the cancer genome atlas

colonic adenocarcinoma; MHC, major histocompatibility complex; K-M,

Kaplan-Meier; P-adj, adjusted P-value; MSC, mesenchymal stem cells; AS,

alternative splicing; FDR, false discovery rate; SE, skipped exon; MXE,

mutually exclusive exon; A5SS, alternative 5’ splice site; A3SS, alternative 3’

splice site; RI, retained intron.

Frontiers in Oncology 02
splicing factors and alternatively spliced transcripts show promise

as therapeutic targets and biomarkers for CRC (30, 31), AS has not

been studied in EOCRC (24). To overcome these limitations, we

propose a strategy to examine differential gene expression and

splicing in EOCRC and LOCRC tumors compared with matched

adjacent normal tissues. Other than differences in age at diagnosis,

clinical and demographic characteristics are also matched between

the EOCRC and LOCRC patient cohorts. This careful study design

allows us to identify transcripts that are differentially regulated in

EOCRC that may act as therapeutic targets and provide insight into

EOCRC pathogenesis.

RNA-seq is a robust tool to understand not only gene

expression but can also be used to predict cell type composition

and alternatively spliced genes. In this study, we selected a LOCRC

cohort that matched our previously published EOCRC cohort (16)

and compared transcriptomes and splicing via bulk RNA seq of

tumors and adjacent full-thickness normal colonic tissues. We

identified an eight-gene signature in EOCRC. We found several

immune-related genes were differentially expressed in EOCRC

compared with LOCRC and confirmed their correlation with age

in the TCGA COAD dataset. Gene set enrichment analysis

identified enrichment of spliceosome factors in EOCRC samples,

and we further identified differential AS events encoding tumor-

specific neoantigens, some of which were predicted to strongly bind

the major histocompatibility complex (MHC). Together, our

analysis of EOCRC versus LOCRC transcriptomes could help

inform future biomarkers and therapeutic targets for the growing

population of EOCRC patients.
2 Materials and methods

2.1 Specimen collection

Specimens were collected as previously described (16). Briefly,

patients gave informed consent prior to undergoing surgery.

Surgically resected tumors and full-thickness adjacent and

uninvolved colonic tissues (hereafter referred to as normal) were

stored in RNAlater and saved in our Carlino Family Inflammatory

Bowel and Colorectal Disease Biobank within the Department of

Surgery at the Pennsylvania State University College of Medicine.

Full-thickness tissues from the rectum, sigmoid colon, ascending

colon, descending colon, and cecum were collected, and only the

raised portion of the tumor was used for sequencing to minimize

contamination from normal cells. Microsatellite stability was

determined based on current clinical guidelines and corresponding

clinical information was collected. The Pennsylvania State University

College of Medicine Institutional Review Board approved this study

(IRB Protocol No. STUDY00021556).
2.2 RNA-sequencing and alignment

EOCRC tissue RNAs were sequenced in a previous study (16)

and an additional 22 pairs of LOCRC patient tumors and adjacent

normal tissues were likewise sequenced in the current study. Full-
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thickness tissue from surgically re-sectioned samples from

throughout the colon and rectum were collected, flash frozen and

stored in RNAlater. Total RNA extraction was performed as

follows: tissues were homogenized with TRIzol, vortexed with

chloroform, and centrifuged at 12,000 x g for 15 mins at 4°C. The

aqueous layers were mixed with 70% ethanol and RNAs were

purified further using Qiagen RNeasy Mini or Midi kits. RNA

integrity numbers were assessed and RNA-seq libraries were

prepared in the Penn State College of Medicine Genome Sciences

core (RRID : SCR_021123) using the Illumina Stranded mRNA

Prep, Ligation kit according to the manufacturer’s instructions. The

libraries were pooled and sequenced on Illumina NovaSeq 6000, to

obtain an average of 30 million, paired-end 100 bp reads. FASTQC

was used to examine data quality, and all Phred scores were over 30

with no GC bias. Reads were aligned to the ensemble hg38 reference

genome using STAR version 2.7.3 with default parameters (32).

Figure S1 summarizes quality control measures for EOCRC and

LOCRC cohorts. HTSeq was used to count aligned reads (33). The

gene expression omnibus (GEO) repository GSE196006 contains

the sequencing data from the EOCRC cohort (16), and GSE251845

contains the sequencing data from the LOCRC cohort generated in

this study.
2.3 Differential expression analysis

Differentially expressed genes were calculated with DESeq2 (34)

separately for both EOCRC and LOCRC tumors versus normal

samples. Normalization of EOCRC and LOCRC tumor and normal

samples was performed through the variance stabilizing

transformation (vst) function of the DESeq2 package. Log2 fold

change was calculated for each patient by subtracting the log2
normalized adjacent (normal) values from log2 normalized tumor

values for each gene. Gene ontology (GO) analysis was performed

as previously described (16) with the clusterprofiler and Enrichplot

packages in R (35). Gene set enrichment analysis (GSEA) was run

using GSEA version 4.1.0 with default parameters (36). Heatmaps

were created using the pheatmap function in R using unsupervised

hierarchical clustering and scaling by row unless otherwise noted.

Principal component analysis was run with the DESeq2 plotPCA

command for the top 5000 most variable genes using gene

expression data and the prcomp command in R stats package was

used for PCA of cell deconvolution and PCA of percents spliced in

results (37).

We considered genes significantly deregulated in tumors if the

adjusted P-value, P-adj< 0.05, log2 fold change (LFC) > 1

(upregulated) or LFC< -1 (downregulated), and the mean reads

were greater than 50. We considered LOCRC genes not significantly

differentially expressed when P-adj > 0.2, LFC< 0.7, and mean reads

> 50. When comparing differentially expressed genes in EOCRC

and LOCRC, we also included genes with a LFC difference in

EOCRC versus LOCRC greater than 1.5, where either the absolute

value of LFC in EOCRC was greater than in LOCRC, or EOCRC

was upregulated while LOCRC was downregulated or vice versa.

This ensures the differential gene expression was more robust in

EOCRC compared with LOCRC.
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2.4 TCGA COAD analysis

Transcriptome data were downloaded from TCGA COAD

study using the TCGAbiolinks (38) package as previously

described (16) (TCGA Research Network. Available online:

https://www.cancer.gov/tcga). As age at diagnosis is noted in days

in TCGA COAD data obtained from the TCGAbiolinks download,

we considered an age at diagnosis at or under 18,250 days

(approximately 50 years) as EOCRC, and above 18,250 days as

LOCRC. We analyzed primary tumors and solid normal tissues

with age data available and normalized the data with the DESeq2 vst

function (34). Kaplan-Meier (K-M) curves were created using

TCGA COAD primary tumor expression data downloaded from

the TCGAbiolinks package and survival information downloaded

from the UCSC Xena platform (39). The survival package (40)

(version 3.5-5) was used to generate a predictive score for COAD

survival based on tumor expression of eight genes unique to

EOCRC using a Cox proportional hazard model. A risk score was

generated as below, by multiplying the coefficients (C) from the Cox

regression by the expression (E) of each gene and taking the sum for

each tumor sample.

risk   score = C1E1 + C2E2 + C3E3 + C4E4 + C5E5 + C6E6 + C7E7

+ C8E8

Samples were separated into high and low groups based on

median risk score, where patients with scores greater than or equal

to the median score were in the high-risk group, and patients with

scores less than the median were in the low-risk group. K-M curves

for individual gene expression were similarly broken into high and

low groups based on median tumor expression of each gene. The K-

M curve p-values were calculated using the log-rank test.
2.5 Cell type deconvolution

Cell-type deconvolution was performed with XCell (41), which

predicts the proportions of 64 cell types in bulk RNA-seq samples

based on gene expression profiles characteristic of each cell. A

paired Wilcoxon test was used to compare cell scores between

tumor and matched normal samples. An unpaired Wilcoxon test

was used to compare cell scores between EOCRC and LOCRC

groups and unmatched tumor samples from the TCGA COAD

dataset. To calculate scores, we divided the sum of the lymphoid,

myeloid, or other cell types by the total sum of the cell scores for

each patient, giving the average proportion of cell scores for each

cell grouping. Boxplots were made using ggplot2 in R (42).
2.6 Consensus molecular subtyping

Consensus molecular subtyping (CMS) was performed on

tumor data using the R package CMScaller (43). Gene names

were converted from Ensembl ID to Entrez ID numbers using the

bitr command from the clusterProfiler package (35). CMScaller was

run using default parameters, with RNAseq = TRUE. Fisher’s exact
frontiersin.org
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test was used to compare CMS between different patient groupings,

either by age (EOCRC versus LOCRC), or by expression of ALDOB,

WNT11, MSLN, RAC3, IL1RN, FBXL16, WBSCR27, and SLC38A11

above (high) or below (low) the median expression.
2.7 Splicing analysis

The rMATS -turbo (44) tool was run for EOCRC and LOCRC

tumor versus normal samples. Default parameters were used in

conjunction with STAR (32) (2.7.3a), miniconda (version 3), and

python 3.8.13. Results for splice events included junction and exon

counts. The hg38 reference genome was used, and the variable-

read-length parameter was included, as reads were not trimmed

prior to analysis. rMATS2Sashimiplot was used to generate sashimi

plots of combined tumor and normal. bam files, generated with

samtools merge on all. bam files, version 1.17. To examine

significantly changed splice events, we filtered events for false

discovery rate (FDR)< 0.05 and change in percent spliced in (PSI)

> 0.1 in tumors versus normal samples. To ensure adequate read

coverage, we further filtered for events with an average coverage of

over 20 reads in tumor samples. As an independent validation, we

repeated the splicing analysis with Whippet (45), a transcript-level

approach to splicing analysis. Quantified Whippet results were

subsequently filtered for splice events with delta PSI > 0.1 in

tumors versus normal samples and calculated probability > 0.7.

We then compared the starting or ending coordinates of the splice

events identified with rMATS and Whippet analyses, keeping only

splice events that were significant in both analyses. The rMATS

value denotes exon location with a zero-based method (for example,

denoting the last base pair of an intron before the actual exon starts)

while Whippet provides one-based sites (denoting the location of

the exon start), so the number one was added to the rMATS start

coordinate to match the Whippet coordinate. The alternative 3’

splice types were described differently between the two programs,

and the ending coordinate from Whippet was matched with the

ending coordinate from rMATS. Notably, over 75% of rMATS reads

for each splicing type (skipped exon, alternative 3’ splice site,

alternative 5’ splice site, mutually exclusive exons, and retained

introns) matched to a corresponding read from Whippet,

suggesting minimal loss of information due to different naming

conventions between the two programs. EOCRC splice events were

considered uniquely differentially regulated if they were significant

in both rMATS and Whippet analyses for EOCRC tumor versus

normal and not significant in both rMATS and Whippet analyses

for LOCRC tumor versus normal.
2.8 Neoantigen prediction

We used our list of 82 significant splice events in EOCRC tumor

versus normal samples to predict tumor-specific neoantigens. We

created a bed12 file with the locations of the alternatively spliced

regions that were significantly more highly expressed in EOCRC

tumors versus normal. We also included 27 flanking nucleotides to

fit with downstream analysis. We used bedtools getfasta (46)
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command to obtain a corresponding fasta file with -s and -split

arguments to ensure results reflected the proper strand and that

results did not include intronic sequences not involved in splice

sites, respectively. These fasta sequences were translated into amino

acid sequences using EMBOSS transeq over the three forward

reading frames (47). We removed resulting amino acid sequences

with stop codons and submitted the remaining peptides to

netMHCpan 4.0 (48) to predict binding to four common HLA

subtypes (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, and HLA-

A*24:02) using a 9mer peptide length. Amino acid sequences

predicted to strongly bind any HLA type tested (top 0.5% of

results) were considered potential neoantigen targets.
2.9 Statistics

Statistical tests were performed in R version v4.1.1 (37). Paired

Wilcoxon tests were used to compare gene expression in matched

tumor and adjacent uninvolved colonic segments. Unpaired

Wilcoxon tests were used to compare gene expression in EOCRC

and LOCRC groups. Significance of p< 0.05 was used for two-tailed

statistical tests unless otherwise described. Venn diagrams of

overlapping gene lists were made using the ggvenn package in R.

Chi-square tests were used to determine clinical correlations with

EOCRC versus LOCRC and within the eight-gene signature.

Pearson correlation was used to assess the linear correlation of

gene expression with age in days from tumor samples from the

TCGA COAD dataset. Fisher’s exact test was used to compare

Consensus Molecular Subtypes between patient groups.
3 Results

We designed this study to specifically identify age-related

transcriptomic differences between tumors found in EOCRC and

LOCRC patients. We expanded upon our previously published

analysis of 21 patient matched EOCRC tumors and adjacent

normal colonic/rectal segments (16). Here, we identified a cohort

of 22 LOCRC patients that matched the EOCRC patients to

compare the transcriptomes of CRC patients who differ primarily

in age. We ensured that no significant differences in demographic

information or clinical characteristics were present in our cohorts,

including gender, ethnicity, body mass index, smoking history,

tumor stage, microsatellite instability status, and tumor location

(Table 1). Our approach therefore accounts for potential

confounding effects due to clinical variability.
3.1 Identifying a differentially expressed
gene signature in EOCRC

We began by comparing the transcriptomes of EOCRC and

LOCRC samples through principal component analysis (PCA) to

determine if normal tissues and tumors from different age groups

formed distinct clusters. We performed PCA on the normalized

gene expression within TCGA COAD (Figure 1A) and our dataset
frontiersin.org

https://doi.org/10.3389/fonc.2024.1365762
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Marx et al. 10.3389/fonc.2024.1365762
(Figure 1B). Both analyses showed separate clustering of normal

and tumor samples but no clustering of young and old samples.

We next aimed to identify specific differentially expressed genes

in EOCRC. Genes that were significantly deregulated in EOCRC

and either not significant in LOCRC or had a 1.5 LFC difference in

EOCRC versus LOCRC (n = 48; 22 upregulated and 26

downregulated) were considered specific to EOCRC (Figure 1C;

Supplementary Table S1). To further narrow down this list, we

performed a paired Wilcoxon test to compare tumors and adjacent

normal tissues in each cohort and identified a list of eight genes

differentially expressed in EOCRC (Figure 1D, Wilcoxon P< 0.05 in

EOCRC and Wilcoxon P > 0.25 in LOCRC, or P< 0.05 in both

EOCRC and LOCRC and the LFC were changed in opposite

directions or had a greater than 1.5 LFC difference). Most of

these eight genes have known roles in cancer, but some have not

been studied in the context of CRC (Supplementary Table S2). Next,

we performed chi-square tests to determine if any of these eight

genes were associated with clinical characteristics such as BMI, CRC

family history, gender, smoking, and metastasis. Significant results

(P< 0.05) included associations withWNT11 and FBXL16 and body

mass index (BMI), MSLN and mucinous adenocarcinoma, and

SLC38A11 and metastasis (Table 2). To further examine the

importance of the eight-gene signature in CRC, we constructed a

risk score based on a Cox proportional hazards model for the tumor

expression of the eight genes and overall survival from the TCGA

COAD dataset (Figure 1E). This model showed significant

differences in survival between those with high and low scores

(separated by median). Kaplan-Meier curves for each of the eight

genes individually found that only WNT11 and WBSCR27 had

significant relationships between expression and overall survival

(Supplementary Figure S2). Further analysis shows that separating

patients by median score acts as an independent prognostic

indicator for colorectal cancer (Supplementary Figure S3A,

Supplementary Table S3).

We next validated our gene signature using the TCGA COAD

dataset. As this dataset has limited normal samples from young

patients, we used a Pearson correlation to identify genes correlating

with age in the TCGA COAD dataset. Of the 2291 genes

significantly differentially expressed in our EOCRC samples, 268

were significantly correlated with age (Pearson, P<no><</no>

0.05). Twelve of these genes overlapped with our 48 gene-

signature, and this overlap was significant (Fisher test P = 0.0097,

odds ratio 2.585 (95% confidence interval 1.208, 5.165),

(Supplementry Figure S3B). One of these twelve genes was also

present in our identified 8-gene signature, FBXL16 (Supplementry

Figure S3C). Therefore, the TCGA COAD dataset supports that the

genes we identified have age-specific expression.

Colorectal cancer consensus molecular subtypes (CMS) provide

a useful way to stratify CRC tumors. Here, we used CMSCaller to

predict CMS based on transcriptomic data of our and TCGA

COAD datasets. We found no significant difference in CMS

subtypes between EOCRC and LOCRCs in our data

(Supplementry Figure S4A) or TCGA COAD data (Supplementry

Figure S4B), however, we did see similar trends in both datasets,

with EOCRC having slightly more CMS4 and LOCRC having more

CMS2. Hierarchical clustering based on tumor expression of our
Frontiers in Oncology frontiersin.or05
)

TABLE 1 Patient and Disease Characteristics.

Early Late p

N 21 22

Age at Operation (median [IQR])
45.50

[39.80, 47.80]
68.21

[55.65, 80.75]
<0.001

Male Gender (%) 12 (57.1) 15 (68.2) 0.665

Race (%) 0.38

Asian 1 (4.8) 0 (0.0)

Black 1 (4.8) 0 (0.0)

Other 0 (0.0) 1 (4.5)

White 19 (90.5) 21 (95.5)

BMI (median [IQR])
31.70

[25.70, 34.70]
29.00

[26.05, 32.75]
0.67

BMI Classification (%) 0.275

Normal 5 (23.8) 3 (13.6)

Obese 12 (57.1) 10 (45.5)

Overweight 4 (19.0) 9 (40.9)

Tobacco Use (%) 0.251

Current User 2 (9.5) 5 (23.8)

Ex User 6 (28.6) 8 (38.1)

Never Used 13 (61.9) 8 (38.1)

Right-sided Tumor (%) 6 (28.6) 4 (18.2) 0.656

Mucinous features (%) 3 (14.3) 3 (13.6) 1

Microsatellite Instability
Present (%)

3 (14.3) 2 (9.1) 0.956

Grade (%) 0.197

Moderate 11 (52.4) 8 (36.4)

Poor 3 (14.3) 1 (4.5)

Well 7 (33.3) 13 (59.1)

AJCC Stage At Presentation (%) 0.2

1 6 (28.6) 8 (36.4)

2 3 (14.3) 7 (31.8)

3 10 (47.6) 4 (18.2)

4 2 (9.5) 3 (13.6)

T-stage (%) 0.151

1 3 (15.0) 2 (9.1)

2 4 (20.0) 6 (27.3)

3 6 (30.0) 12 (54.5)

4 7 (35.0) 2 (9.1)

N-stage (%) 0.306

0 9 (45.0) 15 (68.2)

1 7 (35.0) 4 (18.2)

2 4 (20.0) 3 (13.6)

(Continued
g
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eight-gene signature did not appear to cluster by CMS

(Supplementry Figure S4C). To further examine the relationship

between CMS and our eight-gene signature, we stratified the data by

median tumor expression of each gene and performed Fisher’s exact

tests to determine whether high/low gene expression was associated

with CMS (Supplementary Table S4). IL1RN expression was the

only gene significantly associated with CMS in both datasets, and

lower expression of IL1RN had a higher proportion of CMS2

tumors, which is enriched for Wnt/MYC activation, and higher

IL1RN tumors had more CMS1, characteristic of immune activation

(Supplementry Figure S4D-E).
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3.2 Immune gene and cell type signatures
distinguish EOCRC and LOCRC

To categorize the differentially expressed genes, we performed

gene ontology (GO) analysis on the 48 genes unique to EOCRC and

identified enrichment of immune-related terms (Figure 2A). This

finding suggested that there may be differences in immune cell

populations in EOCRC versus LOCRC samples. To investigate this

possibility, we subjected the total set of normalized genes in all

normal and tumor samples to cell type deconvolution analysis using

the XCell program (41). PCA of predicted cell types clustered

LOCRC and EOCRC tumors separately (Figure 2B). To

understand the types of cells that differed between younger and

older patients, we averaged the scores of lymphoid, myeloid, and

other cell populations. In comparison to normal tissues, in tumors

we found lymphoid populations were increased in both age groups,

whereas myeloid cells were decreased in later-onset but not early-

onset (Figure 2C). In both groups, non-immune cell types were

unchanged in tumors versus normal tissues, but expression of these

cell markers were significantly higher in later-onset samples

(Figure 2C). Next, we identified the top five cell type differences

in EOCRC and LOCRC tumors: dendritic cells (aDC), basophils,

epithelial cells, mesenchymal stem cells (MSCs), and smooth

muscle. Genes characterizing each of these cell types, with the

exception of smooth muscle, were expressed at higher levels in

early-onset versus later-onset tumors (Figure 2D).

To attempt to validate these findings, we performed the same

XCell analysis on the TCGA COAD dataset. We found no

differences in PCA clustering (Figure 2E), or lymphoid, myeloid,
TABLE 1 Continued

Early Late p

M-stage (%) 1

0 18 (90.0) 19 (86.4)

1 2 (10.0) 3 (13.6)

Lymphovascular Invasion
Present (%)

6 (30.0) 3 (13.6) 0.219

Perineural Invasion Present (%) 6 (30.0) 1 (4.5) 0.072

Recurrence (%) 6 (28.6) 2 (9.1) 0.212

Time to Recurrence (Days)
(median [IQR])**

321.00
[177, 376.5]

282.00
[242, 322]

0.739
IQR, interquartile range; BMI, Body Mass Index; AJCC, American Joint Committee on
Cancer. Missing values omitted from calculations. **Calculated only for patients who had
a recurrence
A B C

D E

FIGURE 1

Identifying a differentially expressed gene signature in EOCRC (A) Principal component analysis (PCA) for EOCRC and LOCRC tumor and normal
samples from TCGA COAD dataset. (B) PCA of EOCRC tumors (n=21 green) and normals (n=21 coral) and LOCRC tumors (n=22 purple) and normals
(n=22 blue) top 5000 most variably expressed genes within our cohort. (C) Venn diagrams showing identification of uniquely differentially expressed
genes in EOCRC vs LOCRC (left: upregulated, uniquely upregulated in blue; right: downregulated, uniquely downregulated numbers in red).
Significance cutoffs were as follows: NS (not significant) LOCRC: adjusted p-value > 0.2, LFC< 0.7, mean counts > 50; EOCRC Up: adjusted p-value<
0.05, LFC > 1, mean counts > 50; EOCRC Down: p-value< 0.05, LFC< -1, mean counts > 50; 1.5 LFC difference is between EOCRC and LOCRC,
where the absolute value of EOCRC is greater than LOCRC or EOCRC differential expression is significantly positive and LOCRC is significantly
negatively regulated, or vice versa. (D) Boxplot of eight genes differentially expressed in EOCRC and unchanged in LOCRC by paired Wilcoxon test
*P< 0.05; **P< 0.01, ***P< 0.001 (E) Kaplan-Meier curve showing the association of the eight-gene signature survival score with overall survival.
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and non-immune populations in EOCRC versus LOCRC

(Figure 2F). However, we did find enrichment of MSCs in early-

onset versus later-onset tumors (Figure 2G). Therefore, our study

design provides support for differences in immune and stromal cell

populations in tumors and normal tissues of young and old CRC

patients that were not seen in TCGA COAD patients.
3.3 Splicing is deregulated in EOCRC

To further identify molecular and cellular pathways in our

transcriptome dataset, we employed Gene Set Enrichment Analysis
Frontiers in Oncology 07
(GSEA) using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (49) to examine our EOCRC tumors versus normal and

LOCRC tumors versus normal samples. We found several common

oncogenic pathways enriched in both EOCRC and LOCRC,

including DNA replication, nucleotide excision repair, and

spliceosome. However, we also found several unique terms within

the EOCRC cohort, including positive enrichment of cell cycle and

negative enrichment of the insulin signaling pathway and

adipocytokine signaling (Supplementary Table S5). Given that

splicing has not been investigated in EOCRC transcriptomes, we

further evaluated genes comprising this category. Both EOCRC and

LOCRC cohorts showed significant enrichment in the KEGG
A B C D

E F G

FIGURE 2

Immune gene and cell type signatures distinguish EOCRC and LOCRC. (A) Gene ontology of 48 genes uniquely differentially expressed in EOCRC
and correlating with age in TCGA COAD dataset. (B) PCA of all cell types identified with XCell in tumors from EOCRC and LOCRC samples.
(C) Boxplot of lymphoid, myeloid, and non-immune cell population comparisons in EOCRC and LOCRC tumors samples. (D) Comparison of top 5
differences in cell type score between EOCRC and LOCRC tumors (aDC,dendritic cells; MSC, mesenchymal stem cells). (E) PCA of all cell types
identified with XCell in tumors from TCGA COAD EOCRC and LOCRC tumor samples. (F) Boxplot of lymphoid, myeloid, and non-immune cell
population comparisons in EOCRC and LOCRC tumors from TCGA COAD. (G) Boxplot of the most differently expressed cell types in EOCRC and
LOCRC tumors from the TCGA COAD dataset (HSC, hematopoietic stem cells; mv, microvascular). Wilcoxon test, *P< 0.05; **P< 0.01, ***P< 0.001.
TABLE 2 Significant clinical correlates for eight genes unique to EOCRC.

Gene Clinical Feature High n (%) Low n (%) P-value

FBXL16 Obese 14/21 (66.7) 7/22 (31.8) 0.0477

WNT11 Obese 14/21 (66.7) 7/22 (31.8) 0.0477

SLC38A11 Metastasis present 5/20 (25.0) 0/22 (0.0) 0.0432

SLC38A11 Ever Smoked 14/21 (66.7) 6/21 (28.6) 0.0306

MSLN Obese 14/21 (66.7) 7/22 (31.8) 0.0477

MSLN Mucinous 6/21 (28.6) 0/22 (0.0) 0.0237
Chi-square test was used to determine significant association with clinical features. The combined cohort of EOCRC and LOCRC patients were split into high/low groups based on differential
expression of each gene greater than the median (high) or less than or equal to the median (low). The numbers represent the number of patients positive for the clinical feature out of the number
of patients with high or low expression of that gene with available data for that clinical feature.
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Spliceosome gene set (Figure 3A, B). To further examine

RNA splicing factor expression, we next examined the

differential expression of splicing factors between tumors and

normal samples in EOCRC and LOCRC patients. We found that

EOCRC and LOCRC patients clustered separately based on

differential expression of RNA splicing genes from the GSEA

GOBP_RNA_SPLICING dataset (36) (Figure 3C). Using the

TCGA COAD dataset, we confirmed that splicing factor

expression clusters tumor and normal samples separately from

young patients (Figure 3D).

To investigate AS events in younger and older CRC patients, we

first identified splicing events that were more abundant in tumors

versus normal samples. The results of two splicing analysis

programs were merged to reduce false positive results (50).

EOCRC and LOCRC sequencing data were processed using

rMATS (44) and Whippet (45), and splice events were only

considered significant if they were identified in both rMATS

(average junction counts > 20, delta PSI > 0.1, false discovery rate

(FDR)< 0.05) and Whippet (delta PSI > 0.1, Probability > 0.7)

analyses (Figure 4A). We identified 82 significantly differentially

spliced events in EOCRC tumors versus normal (Supplementary

Table S6) and 191 in LOCRC, with 49 of these events present in

both patient cohorts (Figure 4A). Differentially spliced events in

EOCRC included 62 skipped exon events (SE), twelve mutually

exclusive exon events (MXE), and eight alternative 5’ splice site

events (A5SS) (Figure 4B). Differentially spliced events in LOCRC

included 155 SE, 24 MXE, 10 A5SS, one alternative 3’ splice site

(A3SS), and one retained intron (RI) splice event (Figure 4C).

Principal component analysis found separation of EOCRC and

LOCRC tumor and normal samples by PSI for the top 5000 most

variable splice events (Figure 4D), further supporting age-related

differences in CRC splicing.

We next constructed a volcano plot summarizing genes with

differential splice events and highlight several genes of interest

(Figure 4E). In support of our approach, we identified

significantly deregulated splicing events in tumors versus normal

samples, including pathogenic KRAS and RAC1 variants, which are

known to contribute to CRC (25). Among the 82 significant

EOCRC AS events, we filtered out those that showed significant

AS in LOCRC, leaving a list of 33 sites differentially spliced in
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EOCRC but not in LOCRC, including those in ZBTB7B, PEX26,

MAP3K8, and HOTAIRM1 (Figure 4E). Notably, no splice sites

were significantly positively regulated in EOCRC and significantly

negatively regulated in LOCRC or vice versa. These 33 genes with

splicing specific to EOCRC were enriched for markers of T-cell

regulation and cell-cell adhesion (Figure 4F). Of these genes, we

highlight the long non-coding RNA (lncRNA) HOTAIRM1

(Figure 4G), which has known roles in many cancers, including

colorectal (51). In our samples, HOTAIRM1 exhibited high exon

inclusion in EOCRC tumors, lower exon inclusion in EOCRC

normal samples, and very little exon inclusion in LOCRC tumors

or normal samples. In total, these findings support age-specific

differences in CRC splicing.
3.4 AS is a source of EOCRC-
specific neoantigens

To further explore the clinical relevance of AS in EOCRC, we

assessed the potential of our identified splice events to produce

neoantigens, or tumor-specific peptides that may get presented on

the MHC complex and become a target for immunotherapy (52).

We analyzed our list of 82 significantly differentially spliced events

in EOCRC, identified the tumor-specific nucleotide sequence with

bedtools, predicted the amino acid sequence with EMBOSS Transeq

(47), and used netMHCpan (48) to identify the potential of EOCRC

AS events to bind the MHC (Figure 5A). We identified 18 genes

with tumor-specific splice events predicted to strongly bind to the

MHC in at least one of four common HLA-A subtypes (Figure 5B).

Of these, seven splice events were specific to EOCRC tumors versus

normal. Together, these findings support diverse and clinically

relevant differences between alternative splicing in EOCRC

and LOCRC.
4 Discussion

In this study, we compared RNA sequencing of patient-matched

tumors and adjacent normal tissues from EOCRC (n = 21) and

LOCRC (n = 22) patients. Our usage of patient-matched tumor and
A B C D

FIGURE 3

Splicing is deregulated in EOCRC. (A) KEGG analysis for spliceosome genes in EOCRC tumor vs normal, normalized enrichment score (NES) 1.58,
nominal P-value 0.033. (B) KEGG analysis for spliceosome genes in LOCRC tumor vs normal, NES 1.56, P-value 0.019. (C) Heatmap of differential
expression of GOBP_RNA_SPLICING genes in EOCRC and LOCRC patients with hierarchical clustering. (D) Heatmap of normalized expression of
GOBP_RNA_SPLICING genes in normal and tumor samples from TCGA COAD EOCRC datasets with hierarchical clustering.
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normal samples gave us the unique ability to control for clinical and

demographic features, which are known to contribute to EOCRC at

an earlier age (3, 4, 53). We found several features unique to EOCRC,

including differences in oncogene expression, predicted cell types,

splicing factors and events, and predicted neoantigens.

Similar to previous studies, we did not identify large-scale

transcriptomic differences between EOCRC and LOCRC (13).
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However, in this paper, we primarily aimed to identify genes that

are differentially expressed in the tumors of EOCRC patients that are

less prevalent in LOCRCs that may serve as biomarkers or

therapeutic targets. In this study, we identified eight genes that

were significantly differentially expressed in EOCRC but relatively

unchanged in LOCRC. Of these, ALDOB, WNT11, MSLN, RAC3,

and IL1RN have known roles in CRC (54–58), FBLX16 has known
A B

FIGURE 5

AS is a source of EOCRC-specific neoantigens. (A) Workflow to predict EOCRC-specific AS transcripts that may act as neoantigens. (B) Heatmap
with PSI for tumor-enriched splice events predicted to bind the MHC I complex strongly in EOCRC normal and tumor samples.
A B C D

E F G

FIGURE 4

Alternatively spliced events in EOCRC differ from LOCRC. (A) Schematic of splice analysis strategy with splice events considered significant in rMATS
tumor vs normal *rMATS average junction counts > 20, delta PSI > 0.1, FDR< 0.05; **Whippet delta PSI > 0.1, Probability > 0.7; ***merged by start
location of splice event except A3SS which was merged by end location. (B, C) Pie chart of significant splice events identified in EOCRC (B) or
LOCRC (C), showing alternative 5’ splice sites (A5SS), mutually exclusive exons (MXE), retained intron (RI), skipped exon (SE), and alternative 3’ splice
site (A3SS) events as defined by rMATS. (D) PCA of the top 5000 most variable splice events via rMATS analysis in EOCRC and LOCRC normal and
tumor samples. (E) Volcano plot of rMATS results of EOCRC tumor versus normal differentially spliced events colored by those that were overall not
significant (gray), significant in EOCRC only (red), significant in LOCRC only (green), or significant in both (blue). (F) Gene ontology of differentially
spliced genes in EOCRC (n = 33). (G) Sashimi plot of combined EOCRC and LOCRC tumor and normal files showing HOTAIRM1.
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roles in other cancers (59, 60), and SLC38A11 and WBSCR27 are

relatively uncharacterized (61–63). All of these genes may give insight

into EOCRC pathogenesis and serve as prognostic markers or predict

different drug responses compared to LOCRC. For example, MSLN is

a target for CAR-T therapy that is currently being explored for CRC

treatments (64). Furthermore, SLC38A11 may play a role in

metabolism (61) and we identified a significant association between

SLC38A11 expression and metastasis in our cohort, suggesting it may

be of clinical relevance, especially in EOCRC patients. Combined,

these eight genes produced a risk score significantly associated with

decreased overall survival, and our data suggest that this risk score

may be an independent prognostic indicator of CRC. Other studies

have generated EOCRC risk scores based on gene expression, and

identified genes with EOCRC-specific expression however, their

identified genes do not overlap with our gene list (13, 15, 23). This

could be due to differences in sample sets and patient demographics,

as well as study design. Furthermore, we did not identify differences

in CMS between EOCRC and LOCRC samples in ours or the TCGA

COAD datasets, although a previous study found higher CMS1 in

patients under 40 years old (10). We did find that low IL1RN

expressing tumors had an increased proportion of CMS2,

characterized by canonical Wnt/b-catenin activation, and high

IL1RN tumors had an increased proportion of CMS1, characterized

by immune activation (65, 66). In addition to an eight-gene signature,

we found a total of 48 genes uniquely differentially expressed in

EOCRC versus LOCRC, 12 of which were correlated with age in the

TCGA COAD tumor transcriptomic dataset.

Our 48 genes unique to EOCRC were enriched for immune-

related GO terms, which is supported by previous transcriptomic

profiling studies of EOCRC (14, 15). Furthermore, our cell type

deconvolution identified age-related differences and is partially

supported by recent transcriptomic studies that have examined

immune cell signatures in EOCRC. One study by Lu et al. did not

find a significant difference in immune cell deconvolution between

EOCRC and LOCRC patients (13), while another study by Du et al.

did find higher overall immune cell populations in EOCRC compared

to LOCRC from a Chinese cohort (14). Immunosenescence, the

process in which immune cells become dysfunctional with age (67),

was suggested to contribute to the decrease in immune cells with

aging (14). Here, we identified increased lymphoid populations in

EOCRC and LOCRC tumors versus normal samples.We also found a

decrease in myeloid cells in LOCRC tumors but no change in EOCRC

tumors compared with normal samples. These findings further

support that there are age and tumor-specific differences in CRC

cellular profiles which should be further investigated, as immune

infiltration is a critical prognostic indicator (68). These differences in

predicted cell populations could support differences in

immunotherapy response between EOCRC and LOCRC patients.

Indeed, EOCRCs are known to have a higher mutational burden, and

thus have been suggested to be more sensitive to immunotherapies

(14). We could not confirm differences in myeloid, lymphoid, or

other populations between EOCRC and LOCRC tumors from the

TCGA COAD dataset, highlighting the novelty of our approach.

In addition to immune cell differences, we also found

enrichment of dendritic cells, basophils, epithelial cells, and MSCs

in EOCRC versus LOCRC samples. Several of these cell types have
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been shown to have prognostic value for CRC patients (69, 70). We

identified MSC enrichment in EOCRC tumors compared with

LOCRC in both ours and the TCGA COAD cohorts. Tumor-

derived MSCs were shown to be recruited to the tumor

microenvironment and promote CRC cell stemness, angiogenesis,

and cytokine production (70). In contrast, other studies have found

that bone-marrow-derived MSCs reduce cytokines and STAT3

activation, indicating a tumor supporessive role (71). These

findings indicate that more research is needed to investigate the

role of MSCs in colorectal carcinogenesis, which may be of potential

importance to EOCRC patients.

We found enrichment of spliceosome-related genes in our

EOCRC tumor versus normal samples. This was expected, as AS

is known to play a role in CRC (25, 26). Our data found that

differential expression of splicing factors clustered EOCRC and

LOCRC patients separately. This clustering suggests different

mechanisms of post-transcriptional regulation in EOCRC and

LOCRC patients from our cohorts. Both aging and environmental

factors could contribute to alterations in splice factor expression

(27, 28). Despite this, AS has not previously been examined in

EOCRC. Our sequencing contained approximately 30 million reads

per sample without replicates, and thus, we took a conservative

approach to detect limited AS events with high coverage in our

dataset. Previous work has used PCA to examine AS-based

differences in cancer subtypes (72). Indeed, our PCA showed

separation of EOCRC and LOCRC tumor and normal samples

based on PSI, with a 5.8-6.6% variance that may be suggestive of

subtle splicing differences between EOCRC and LOCRCs. Even so,

we identified previously annotated splicing events encoding known

cancer related RAC1 (73) variants in both the EOCRC and LOCRC

cohorts. We also found a pathogenic KRAS variant that may be

regulated by APC (25) unique to the LOCRC patients. As APC is a

key regulator of CRC splicing (25), differences in APC mutational

frequency between EOCRC and LOCRC (11, 12) may contribute to

splicing differences between EOCRC and LOCRC.

We identified splice events unique to EOCRC that were enriched in

T-cell activation, indicating potential for AS mediated differences in

immune populations in EOCRC and LOCRC. Notably, we identified

EOCRC tumor-specific splicing of ZBTB7B (Th-POK), a zinc finger

transcription factor which controls T-cell differentiation into CD4+ or

CD8+ T-cells (74), and MAP3K8 (TPL2), a driver of oncogenic

inflammation (75), though the biological function of these splice

variants remains unknown. One splice variant unique to EOCRC

with a potential known function was identified in the peroxidase

biogenesis factor PEX26. We identified a decrease in exon 5

inclusion, consistent with the PEX26Dex5 isoform, which lacks a

transmembrane domain and may be more involved in early

peroxisomal biogenesis compared with the full length isoform (76).

Splicing can be affected by RNA binding proteins or external factors,

and thus, may be indicative of differences in tumor microenvironment

or surrounding microbiome. Interestingly, we identified a splicing

variant of the long non-coding RNA HOTAIRM1, which has been

shown to be alternatively spliced in the presence of lipopolysaccharide,

which is present in the cell walls of gram-negative bacteria (28). A few

studies have examined HOTAIRM1 in CRC and found it is

downregulated and has potential as a serum biomarker (51, 77),
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though the role of the alternatively spliced transcript

remains unknown.

More work is clearly needed to understand the biological causes

and effects of many of the splice isoforms identified in this study.

However, we were able to predict clinical relevance of peptides

generated from AS events as a potential source of tumor-specific

neoantigens. Here, we predicted the potential of EOCRC-specific

AS transcripts to bind to the MHC complex and identified 18

potential strong binders, seven of which were specific to EOCRC

compared with LOCRC. Splicing is an important source of future

cancer vaccine targets (31), and our study suggests that these AS

targets may be different for younger and older CRC patients. In

addition, drugs altering global splicing changes have shown promise

in CRC models (26), and our data suggests EOCRC patients may

also benefit from these treatments.

Our study is not without limitations. The samples were

collected at our institution between 2015-2021, so we have a

limited sample size and incomplete survival information for each

patient, making us unable to make judgments about prognostic

impact of the gene expression, splice events, and predicted cell type

profiles discussed here. Instead, we examined the prognostic impact

of our gene signature using the TCGA COAD dataset, which is

primarily composed of LOCRC samples, and may not necessarily

reflect the genes’ prognostic impact for EOCRC samples. We also

did not perform mutational profiling, and limited identification of

specific EOCRC differentially expressed genes precluded us from

performing network analysis that could connect samples to

previously published genetic differences. In addition, we have

limited data from non-white patients, making us unable to

address the racial and ethnic disparities that exist in CRC and

EOCRC research and clinical outcomes (78). Furthermore, we did

not evaluate our targets in animal models of EOCRC to determine

whether they are key determinants of colorectal carcinogenesis.

Therefore, future work may focus on increased sample size, deeper

sequencing to assess additional AS events, and long-term follow ups

to increase the predictive power of the dataset. Furthermore,

evaluation of the role of the genes SLC38A11 and WBSCR27, as

well as the functional roles of the alternatively spliced transcripts

identified in this study in CRC could help clarify their roles in

EOCRC progression.

In summary, this is the first transcriptomic study to our

knowledge comparing the gene expression and splicing profiles of

EOCRC and LOCRC patients with matched adjacent normal tissues

and matched demographic information to ensure that the

differences identified were tumor-specific and due to age. We

identified uniquely differentially expressed genes, cell types, and

splicing events that could help inform prognosis, treatment, and

biomarkers for the growing population of EOCRC patients.
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