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Hepatocellular carcinoma (HCC) is the most common primary malignant liver

tumor and one of the leading causes of cancer-related deaths worldwide. The

Wnt/b-Catenin signaling pathway is a highly conserved pathway involved in

several biological processes, including the improper regulation that leads to

the tumorigenesis and progression of cancer. New studies have found that

abnormal activation of the Wnt/b-Catenin signaling pathway is a major cause

of HCC tumorigenesis, progression, and resistance to therapy. New perspectives

and approaches to treating HCC will arise from understanding this pathway. This

article offers a thorough analysis of the Wnt/b-Catenin signaling pathway’s

function and its therapeutic implications in HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent primary malignant tumor of the

liver and accounts for over 850,000 deaths from cancer-related causes globally each year (1,

2). In recent years, its morbidity and mortality have gradually increased (3). Despite

significant advancements in HCC research, the prognosis of HCC is still terrible because

the early symptoms of patients are not obvious and the disease has often progressed to the

advanced stage when diagnosed (4). Radical hepatectomy is currently the first-line

treatment for patients with HCC, but it is limited to patients with early-stage HCC who

have good liver function, small masses, and no vascular invasion. However, due to its

extremely high postoperative recurrence and metastasis rates, the 5-year survival rate of

patients is only 19% (5). Liver transplantation offers another potential therapeutic option

for patients with HCC, as it can remove the tumor while preventing the occurrence of
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postoperative liver stiffness in patients. However, when performing

liver transplantation, it is extremely important to evaluate the

patient’s stage, and the presence of extrahepatic metastases or

vascular infiltration may lead to treatment failure. Moreover, due

to the shortage of organ donors and the complexity of the

procedure, its clinical implementation remains difficult. In

addition, for some patients with intermediate to advanced HCC,

chemotherapy offers a new option. First-line chemotherapy

regimens based on sorafenib and lenvatinib are currently the

treatment of choice for patients with advanced HCC, but the

survival of most patients does not improve due to the resistance

of HCC to chemotherapy and the development of cirrhosis in

patients in the later stages of treatment. Furthermore, considering

the complexity of HCC pathogenesis, targeted therapies may

provide a more effective treatment option for HCC patients,

which can specifically target key signaling pathways dysregulated

during HCC pathogenesis through small molecules or monoclonal

antibodies to achieve the goal of inhibiting tumor cell growth and

inducing apoptosis. However, despite clinical trials of most drugs,

there are still fewer targeted drugs approved for clinical use in HCC

(6). Therefore, it is crucial to investigate the regulatory mechanisms

behind the pathogenic process of HCC to identify novel biomarkers

and therapeutic targets for the early diagnosis and treatment of

HCC patients.

A highly conserved signaling pathway, the Wnt/b-Catenin
signaling pathway, is also referred to as the typical Wnt signaling

pathway. It is essential for liver development, metabolic zonation,

and regeneration (7). It has been reported that abnormal activation

of this pathway is a major carcinogen in liver cancer, and gene

mutations encoding components of the pathway have been found in

more than 80% of liver cancer patients (8). Mutations in the

CTNNB1 gene, which encodes b-catenin, an essential constituent

of this system, have been identified in various types of tumors, with

HCC exhibiting the greatest frequency of such mutations (9).

Recent studies have demonstrated that aberrant activation of the

Wnt/b-Catenin signaling pathway is a significant contributor to the

tumorigenesis, progression, and therapy resistance of HCC.

Inhibiting this pathway holds promise as a hopeful therapeutic

approach for HCC (10). In this review, we discuss the physiological

role of the Wnt/b-Catenin signaling pathway in human liver and its

mechanism in promoting the tumorigenesis, progression, and

therapy resistance of HCC. In addition, we also explored the

potential significance of this pathway in targeted therapy of HCC.

In order to better understand the mechanism of action of this

pathway in HCC and provide new directions for HCC-

targeted treatment.
2 Overview of Wnt signaling pathway

The Wnt signaling pathway is an important signaling pathway

for maintaining homeostasis from embryonic development to

adulthood and plays a vital role in numerous biological processes

(11). Typically, the canonical and non-canonical pathways make up

the two kinds of Wnt pathways. Among them, the Wnt/b-Catenin
signaling pathway is the canonical pathway, while the non-
Frontiers in Oncology 02
canonical pathway mainly includes the Wnt/PCP (Planar cell

polarity) and Wnt/Ca2+ signaling pathways (12, 13).
2.1 Canonical Wnt/b-Catenin
signaling pathway

As an important transcription factor in the Wnt/b-Catenin
signaling pathway, stabilization and nuclear translocation of b-
Catenin mediated by Wnt ligands is a key mechanism of this

pathway (14, 15). Without Wnt ligands, b-Catenin is

phosphorylated and degraded by a complex consisting of Axin,

Glycogen synthase kinase 3b (GSK-3b), Casein kinase I (CKI) and

Adenomatous polyposis (APC). In this process, Axin serves as a

scaffold protein , with CKI and GSK-3b sequentia l ly

phosphorylating b-Catenin, and APC-mediated recognition and

eventual degradation of phosphorylated b-Catenin by the E3

ubiquitin ligase b-TrCP, which maintains the stability of

intracellular cytoplasmic levels of b-Catenin and prevents the

expression of target genes of the pathway (16–20).

Wnt ligands (Wnts) are secreted glycoproteins and there are 19

known Wnts (21). Before secretion, Wnts must be glycosylated and

palmitoylated by the endoplasmic reticulum’s Porcupine O-

acyltransferase (PORCN), a process that is essential for Wnts

secretion and function (22). Additionally, the secretion of Wnts

requires a carrier protein, Wntless, a multi-pass transmembrane

protein. Wnts need to bind Wntless and are transported to the cell

membrane for secretion via the Golgi vesicular system (23, 24).

Once secreted, Wnts bind to the transmembrane Frizzled (FZD)

receptors and coreceptors low-density lipoprotein receptor-related

proteins 5/6 (LRP5/6), recruiting cytoplasmic Disheveled (Dvl)

proteins, leading to the phosphorylation of LRP5/6 and attract

the Axin complex to the plasma membrane. Through this

mechanism, the Axin complex is unable to phosphorylate and

destroy b-Catenin, which allows it to build up in the cytoplasm

and then go into the nucleus. There, it binds to T-cell factor (TCF)/

lymphoid enhancer factor (LEF) family transcription factors and

coactivators, initiating the transcriptional expression of

downstream target genes (25–27) (Figure 1).
2.2 Non−canonical Wnt signaling pathway

In addition to the canonical Wnt/b-Catenin signaling pathway,

non-canonical Wnt pathways also play an important role, including

Wnt/PCP and Wnt/Ca2+ signaling pathways. Studies have shown

that non-canonical Wnt pathways are not only involved in the

regulation of various cellular functions but also may be involved in

the occurrence and progression of cancer when activated or

inhibited abnormally (28). In the Wnt/PCP signaling pathway,

Wnts bind to FZD receptors on the cell surface and further

activate Jun N-terminal kinases (JNKs) by recruiting Dvl to

activate the RAC and its downstream mitogen-activating protein

3 kinases (MAP3Ks) and mitogen-activated protein 2 kinases

(MAP2Ks). In addition, Dvl can also activate its downstream Ras

homolog gene-family members A (RhoA) and Rho-associated
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kinases (ROCK) through the Dvl-associated activator of

morphogenesis 1 (Daam1), where RhoA can also activate JNK.

This process regulates the cytoskeleton and initiates the expression

of downstream target genes to facilitate cell motility (29, 30).

In the Wnt/Ca2+ signaling pathway, the interaction of Wnts

with the FZD receptor leads to the activation of homotrimeric G

proteins, which in turn activate phospholipase C (PLC). Activation

of PLC leads to an increase in intracellular Ca2+, which inhibits the

expression of cyclic guanosine monophosphate (cGMP) and

promotes the activation of calmodulin-dependent protein kinase

II (CaMKII) or calcineurin (CalN) and protein kinase C (PKC).

Subsequently, cAMP response element binding protein (CREB) and

Nuclear factor kappa-B (NF-kB) are activated by CaMKII and PKC,

and the Nuclear factor of activated T cells (NFAT) in the cytoplasm

is activated and dephosphorylated by CalN. Finally, CREB, NF-kB,
and NFAT translocated into the nucleus and initiated the

expression of target genes downstream of the Wnt/Ca2+ signaling

pathway (13, 31, 32) (Figure 2).
3 Physiological role of the Wnt/b-
catenin signaling pathway in the liver

3.1 Liver development

During different stages of embryonic development, the Wnt/b-
catenin signaling pathway does not always promote liver

development. In the gastrula and early somite formation stages,

the endoderm along the anterior-posterior axis is divided into

foregut, midgut, and hindgut, with the liver ultimately originating

from the foregut (33). Homeobox (HHEX) gene, one of the earliest

foregut markers, can induce the production of downstream
Frontiers in Oncology 03
transcription factors HHEX and Forkhead Box A2 (FOXA2),

promoting foregut fate and future liver development (34). The

Wnt/b-catenin signaling pathway is indispensable in the initial

development of the hindgut. Wnts, Fibroblast Growth Factor 4

(FGF4), and Bone Morphogenetic Proteins (BMP) from the

adjacent midgut endoderm promote hindgut development while

also inhibiting foregut development by suppressing HHEX and

FOXA2 expression (35, 36). Thus, there is a Wnt inhibitor, secreted

FZD-related protein 5 (SFRP5), in the foregut endoderm, which

inhibits this pathway conductance, thereby maintaining foregut

features and promoting liver development (37, 38).

The activation of the Wnt/b-catenin signaling pathway is as

crucial for liver specification in later development as is the

repression of this pathway during early foregut development.

Liver specification occurs around embryonic day 8.5, triggered by

BMP signaling from mesenchymal cells of the septum transversum

and FGF from the cardiac mesoderm, under the influence of

transcription factors Hepatocyte Nuclear Factor-1b (HNF-1b),
Forkhead box A1 (FOXA1), FOXA2, and GATA Binding Protein

4 (GATA4) (23, 39, 40). Research indicates that Wnt2b is essential

for the induction of liver specialization, with reduced expression of

liver-specific genes HHEX and Prospero homeobox 1 (PROX1), as

well as transient deletion of liver specialization, observed in

zebrafish embryos lacking Wnt2bb (Wnt2b homolog) (41).

Furthermore, as liver specification occurs, liver buds consisting of

hepatoblasts begin to develop, accompanied by hepatoblast

proliferation (42). Wnts, FGF, and hepatocyte growth factor

(HGF) have been shown to be involved in this process, which can

promote the proliferation of hepatoblast by activating this pathway

(43–45). Additionally, this pathway is equally significant in

postnatal liver growth. It has been shown that mice with hepatic

b-catenin-specific deletion or suppressed Wnt/b-catenin signaling
FIGURE 1

Wnt/b-Catenin signaling pathway.
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show a notable reduction in liver weight relative to body weight (46,

47). The opposite was true in liver-specific non-mutated b-catenin-
overexpressing transgenic mice (48).
3.2 Metabolic zonation of liver

As the smallest structural unit in the liver, hepatic lobules can be

divided into three zones based on the different metabolic functions

of hepatocytes at different locations in the liver lobules: the

hepatocytes adjacent to the portal vein triad constitute Zone 1,

the hepatocytes adjacent to the central vein constitute Zone 3, and

the hepatocytes in between constitute Zone 2 (49).

Benhamouche and colleagues were the first to report the

significant function of the Wnt/b-catenin signaling pathway in

guiding liver metabolic zonation and proposed the concept of

APC as the “zonal guardian” gene of the liver. Their research

indicated high expression of APC in periportal areas without b-
catenin activation, while an absence of APC expression was found

in pericentral areas with b-catenin activation (50). This elucidates

the distinct manifestation of this pathway targets in the pericentral

areas, including Axin2, GS (Glutamine synthetase), and cytochrome

P450 enzymes (CYP2E1 and CYP1A2). Inhibition of this pathway

may lead to impairment of metabolic zonation of the liver. Recent

studies have found that either liver-specific LRP5/6 deletion or

LRP4/5 deletion results in loss of liver metabolic regions (47, 51).

Additionally, mice with liver-specific b-catenin deletion also have

liver metabolic zonation disorders and cause the liver to exhibit a

periportal phenotype overall (52). Whereas b-catenin accumulation

caused by APC-specific inactivation exhibits an overall pericentral

phenotype (50). These results indicate that the Wnt/b-catenin
signaling pathway is important for liver metabolic zonation and
Frontiers in Oncology 04
has distinct effects on the expression of genetic programs in the

periportal and pericentral regions.
3.3 Liver regeneration

Liver regeneration is crucial for maintaining liver homeostasis

and restoring the size and function of the damaged liver.

Hepatocytes, as the main contributors to liver regeneration,

mediate this process through their proliferation (53–57). Monga

and colleagues found that in a rat model subjected to partial

hepatectomy (PHx), b-catenin increased quickly in the first five

minutes and subsequently moved into the nucleus (58). Similarly,

Apet and colleagues found that b-catenin dramatically rose 1 to 6

hours after acetaminophen injection in mice with acute liver failure

produced by the drug, and then increased again 24 hours later.

Moreover, the expression of Wnt/b-catenin signaling pathway

targets GS and cyclin-D1 (Cyclin-D1) also increased during these

periods (59). These findings imply that liver regeneration may be

significantly aided by this pathway.

Subsequent experiments further confirmed the importance of

this pathway in liver regeneration. The study found that after partial

hepatectomy (PHx) in a b-catenin-specific knockout mouse model,

the liver cell proliferation of mice in the experimental group was

lower than that of the control group, and the liver weight/body

weight ratio was significantly lower than that of the control group

(60). This finding aligns with results from two other studies (46, 61).

In contrast, a transgenic mouse model overexpressing b-catenin
showed a significant increase in hepatocyte proliferation after

receiving PHx. In addition, compared with the control group,

exogenous activation of the Wnt/b-catenin signaling pathway in

mice by the Wnt-1 gene can also increase the proliferation of liver
FIGURE 2

Non−canonical Wnt signaling pathway.
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cells (62). Furthermore, recent studies have shown that

macrophages can regulate this pathway, upregulating important

metabolic functions of non-proliferating hepatocytes in the

compensatory phase of liver regeneration following acute liver

injury, thereby preserving fundamental physiological functions of

the liver (63). The above studies show that the Wnt/b-catenin
signaling pathway is essential for the regeneration of the liver.

Moreover, exogenous modification aimed at stimulating this

pathway could potentially serve as a therapeutic agent to promote

liver regeneration.
4 The role of the Wnt/b-Catenin
signaling pathway in the
tumorigenesis and progression
of HCC

4.1 Wnt/b-Catenin signaling pathway and
HCC tumorigenesis

Aberrant activation of the Wnt/b-catenin signaling pathway is

one of the main driving factors in the tumorigenesis of HCC and is

widely present in HCC patients, with their relationship being well

established. Mutations in the CTNNB1 gene encoding b-catenin in

Exon3 are the most common activation mechanism of this pathway

(64). Research indicates that CTNNB1 gene mutations are present

in about 20%-40% of HCC cases, and this mutation occurs more

frequently in HCC cases related to Hepatitis C virus (HCV)

infection than in HCC cases related to Hepatitis B virus (HBV)

infection (65, 66). Second, loss of function or mutation of Axin,

GSK-3b, and APC as members of the Axin complex can likewise

activate the pathway and exert oncogenic effects. Axin1 mutations

have been reported to account for approximately 3%-16% of all

HCC cases, and Axin2 for approximately 3% (67). Additionally,

studies have revealed that the proportions of phosphorylated GSK-

3b and overexpressed b-catenin in HCC tissues are 52.2% and

56.5%, respectively, higher than in surrounding normal tissues. It is

crucial to note that none of the HCC patients who exhibited

phosphorylated GSK-3b possessed CTNNB1 gene mutations (68).

Consistently, APC serves as one of the members of the Axin

complex, and targeted inactivation of the hepatic APC gene

similarly leads to overexpression of b-catenin and promotes HCC

tumorigenesis (69). However, it’s noteworthy that in 40-60% of

HCC cases, there are no mutations in CTNNB1, Axin1, or Axin2

(65). Based on this, another variation that controls the pathway was

found in a recent genome-wide association study (GWAS) that

specifically targeted alcohol-related HCC: the WNT3A-WNT9A

gene variants are specifically linked to the occurrence of HCC in

alcoholic liver disease patients (70, 71).

In the Wnt/b-catenin signaling pathway, 19 known Wnts that

function by binding to one or more of the 10 types of FZD receptors

(72). Secreted frizzled-related proteins (SFRPs) are antagonists of

this pathway that bind Wnts, downregulate their ability to bind and

activate FZD receptors, and inhibit this pathway (73). Studies have

shown that in contrast to a normal liver, there is an upregulation of
Frontiers in Oncology 05
FZD3/6/7 and Wnt3/4/5a expression in 95% of HCC and 68% of

the surrounding tumor tissues, along with downregulation of

sFRP1/5, which accumulates progressively with tumor

advancement and the severity of fibrosis in surrounding tissues

(72). Among them, Wnt3 and FZD7 have been shown to activate

this pathway through their interaction (74). Additionally, other

studies have found that methylation of SFRP family genes is not

only widely present in HCC tissues, but also in HBV- or HCV-

related chronic hepatitis and cirrhosis tissues. It can lead to the

down-regulation of SFRPs expression, which activates this pathway

and may participate in promoting the occurrence of HCC. These

events are considered early events in the tumorigenesis of HCC

(75, 76).

In addition to the aforementioned mechanisms, activation of

the Wnt/b-catenin signaling pathway involves various other

mechanisms. It has been shown that TGF-b-dependent activation,
and Receptor tyrosine kinase (RTK) activation in fibrotic laminar

HCC are involved in this process (77, 78). However, the

mechanisms of these two types of activation remain unclear.

Epidermal Growth Factor (EGFR), a type of RTK, has been

reported to be transcriptionally upregulated or aberrantly

expressed in multiple cancers. Studies indicate that EGFR

part ic ipates in regu la t ing TCF-dependent b -ca tenin
transcriptional activity in HCC through kinase-independent

mechanisms, thereby participating in the regulation of the activity

of the pathway (79). R-spondins (RSPOs) are secreted regulators of

Wnt signaling and can enhance Wnt signaling. The RSPO2 gene

encoding RSPOs has been confirmed to be an oncogene in

colorectal cancer. Recent research has shown that RSPO2 is

highly expressed in the CTNNB1 mutation subtype of HCC and

can drive liver tumorigenesis by stimulating the activation of this

pathway (80). Additionally, research indicates that various risk

factors associated with HCC, including chronic HBV (81–85)or

HCV (86–88) infection, Alcohol abuse (89, 90), Non-Alcoholic

Fatty Liver Disease (NAFLD) (91, 92), and Aflatoxins Exposure (93,

94), can promote abnormal activation of this pathway through

multiple mechanisms. This enhancement in the proliferation of

affected hepatocytes and the overgrowth of adjacent normal

hepatocytes can facilitate the progression of HCC precancerous

lesions to HCC due to these factors.
4.2 Wnt/b-Catenin signaling pathway and
HCC progression

4.2.1 Cancer stem cells
Cancer stem cells (CSCs), also known as tumor-initiating cells

(TICs), possess self-renewal and differentiation abilities comparable

to normal stem cells, and are pivotal in the initiation, recurrence,

and metastasis of tumors (95). The Wnt/b-catenin signaling

pathway is one of the important ways to maintain the stemness

of CSCs/TICs (96). Long non-coding RNAs (LncRNAs), an

emerging regulatory factor, have been implicated in the

development of cancer (97). The study found that LncTCF7 (98),

Lnc-b-Catm (99), LncAPC (100), LncFZD6 (101), and LncTIC1

(102) exhibit high expression in HCC cells and liver CSCs/TICs.
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They contribute to the promotion of hepatic CSCs/TICs self-

renewal by activating the Wnt/b-catenin signaling pathway.

Additionally, several microRNAs (miRNAs), including miRNA-

1246 (103), miRNA-5188 (104), miRNA-452 (105), miRNA-217

(106), and miRNA-HCC2 (107), also contribute to hepatic CSC

stemness through activating this pathway. Furthermore, a

functional read-through rt-circRNA named rtcisE2 was found to

be highly expressed in liver TICs. It can also activate this pathway

and promote the self-renewal of liver TICs, initiating the occurrence

and metastasis of liver tumors (108).

Research indicates that Protein tyrosine kinase 2 (PTK2)

stimulates the accumulation of b-catenin in the nucleus of HCC

cells, thereby increasing Wnt/b-catenin signaling pathway activity,

and in this way promoting stemness of CSCs and enhancing the

tumorigenicity of HCC cells (109). Additionally, Sirtuin1 or Silent

mating–type information regulation 2 homolog-1 (SIRT1) has

likewise been shown to promote the activity of this pathway in

hepatic CSCs by maintaining the stability of b-catenin, and in this

way promotes CSC self-renewal (110). In fact, Mitogen-activated

protein kinase 1 (MAPK1/MEK1) was previously found to promote

the proliferation and self-renewal of hepatic stem cells by

maintaining the stability of the SIRT1 protein, but that study did

not investigate the mechanisms involved (111). Furthermore,

FZD10 was shown to be substantially expressed in liver cancer

CSCs by recent research. The pathway can be activated by its

overexpression, which encourages the stemness of liver cancer

CSCs and might be a new prognostic biomarker for HCC (112).

Tumor-associated macrophages (TAMs) are one of the primary

subtypes of tumor-infiltrating immune cells, usually classified into M1

and M2 macrophages. The former generally plays an anti-tumor role,

while the latter promotes tumor occurrence, metastasis, and

angiogenesis through cytokine secretion, leading to tumor

progression (113). Recent research found that M2 macrophages can

secrete Tumor necrosis factor-a (TNF-a) and promote Epithelial-

mesenchymal transition (EMT) of HCC and CSC stemness by

inducing the Wnt/b-catenin signaling pathway (114). Additionally,

Reactive oxygen species (ROS) overproduction has been reported to

inhibit this pathway in HCC and reduce liver CSC stemness (115, 116).

Glutaminase 1 (GLS1) is highly expressed in HCC, and GLS1

overexpression has been found to decrease ROS levels, reduce the

inhibitory effect of ROS on the pathway and enhance CSC stemness

(117). Furthermore, recent studies have discovered that Secretory

clusterin (sCLU) may promote CSC stemness by activating the AKT/

GSK3b/b-catenin axis (118). Moreover, this pathway can be activated

by Ring finger protein 1 (Ring1), which is highly expressed in HCC,

and in this way contributes to promoting the transformation of Hepatic

progenitor cells (HPC) into CSC (119). In summary, this pathway has a

crucial role in regulating CSC stemness, and more studies will be

conducted in the future to reveal the mechanisms involved in

this phenomenon.

4.2.2 Proliferation, invasion, and metastasis
of HCC

HCC cells exhibit strong capabilities in proliferation, invasion,

and metastasis, which are important factors leading to poor
Frontiers in Oncology 06
prognosis of HCC patients (120). Numerous studies have shown

that the Wnt/b-catenin signaling pathway plays an important role

in regulating HCC cell proliferation, invasion and metastasis.

Cripto-1 was found to be highly expressed in about 50% of HCC

tissues (121). It can bind to the FZD7/LRP6 receptor and DVL3 and

stabilize the expression of DVL3. In this way, it activates this

pathway, which promotes the proliferation, invasion, and

metastasis of HCC cells (122). Furthermore, the Tripartite motif

(TRIM) protein family is reported to have extensive functions in

tumor development, cell proliferation, and differentiation, although

its effects vary across different tumors. Recent research has found

that TRIM29 is downregulated in HCC tissue, potentially

enhancing the activity of this pathway to promote the

proliferation, invasion, and metastasis of HCC cells. Conversely,

overexpression of TRIM29 inhibited this effect (123). However, this

result is in stark contrast to previous studies, a discrepancy often

attributable to genetic polymorphism and tumor complexity.

Additionally, TRIM66 expression is upregulated in HCC

compared to TRIM29. It can similarly activate this pathway and

have the same effect on HCC cells (124). Similarly, overexpression

of Ataxia telangiectasia group D complementing (ATDC) and

Spindle and kinetochore-associated protein 2 (SKA2) in HCC

similarly promotes HCC cell proliferation and invasion by

activating this pathway (125, 126). Among the identified Wnts,

Wnt7b has the ability to suppress Axin complex activity, stop b-
catenin phosphorylation from being degraded, and facilitate its

nuclear translocation, all of which contribute to the activation of the

Wnt/b-catenin signaling pathway. It was found that TCP1 (also

known as CCT1 subunit), which is overexpressed in HCC, can act

as an upstream mediator of Wnt7b and increase Wnt7b expression,

thus activating this pathway and enhancing the proliferation and

metastasis of HCC cells (127). Furthermore, two deubiquitinating

enzymes, USP9X and USP28, have significant expression in HCC

and could similarly promote HCC cell proliferation by regulating

the activity of this pathway (128, 129).

P62/IMP2, an oncofetal protein, was initially reported as a

tumor-associated antigen in HCC. Research has established that

p62/IMP2 is overexpressed in HCC tissues and may improve the

invasion and metastasis capabilities of HCC by stimulating the

Wnt/b-catenin signaling pathway (130). Additionally,

Phosphatidylinositol 4-phosphate adaptor protein 2 (FAPP2) has

also been identified as a tumor-associated regulatory factor related

to tumorigenesis. It is reported to be highly expressed in HCC and

can promote the proliferation and invasion of HCC cells by

stimulating this pathway (131). SPINDOC (SPIN1 docking

protein) and KIF18B (Kinesin family member 18B) have also

been shown to be overexpressed in HCC and can similarly play a

role in promoting the proliferative, invasive, and metastatic

capacities of HCC cells through activation of this pathway (132,

133). ETS variant 4 (ETV4) is overexpressed in patients with HBV-

related HCC and can activate the pathway, which promotes the

proliferation, invasion, and metastasis of HCC cells, leading to the

progression of HBV-associated HCC (134). Moreover, matrix

metalloproteinases (MMPs) have been proven to be associated

with HCC metastasis. Studies indicate that the expression of
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FBXO17 in HCC tissues was significantly higher than that in

paracancerous tissues. It can promote HCC metastasis by down-

regulating GSK-3b to mediate the activation of this pathway and

increase the expression level of its downstream effector molecules

(including MMP-2 and MMP-9) (135).

In addition, an increasing number of studies show that

LncRNAs and miRNAs are equally involved in regulating this

process and contributing to HCC progression. Research has

discovered that LncRNA-miR194-2HG (136), LncRNA-DAW

(137), LncRNA-NRAV (138), LncRNA-DUXAP10 (139),

LncRNA-CRNDE (140), LncRNA OTUD6B-AS1 (141), and miR-

550a-5p (142) are overexpression in HCC tissue. They can activate

the Wnt/b-catenin signaling pathway to promote the proliferation,

invasion, and metastasis of HCC cells. The inhibition of these genes’

expression may represent a viable therapeutic target for HCC.

4.2.3 Epithelial-mesenchymal transition
EMT is a major factor in HCC cell invasion and metastasis and

is induced by EMT-related transcription factor (EMT-TF). Elevated

levels of vimentin and N-cadherin and decreased levels of E-

cadherin are the main features of EMT (143). Several

investigations have shown a robust connection between EMT and

the Wnt/b-catenin signaling pathway. Recent studies have found

Hepatic stellate cells (HSCs) can induce overexpression of miRNA-

1246 in HCC, which can activate this pathway by suppressing the

expression of its target gene, RORa, and in this way promote EMT

(144). The trans-activation response DNA-binding protein of 43

kDa (TDP-43), a nuclear protein, is highly expressed in HCC tissues

and activates the pathway by targeting inhibition of GSK3b
expression to induce EMT (145). NFE2L3 (Nuclear factor

erythroid 2-like 3) is a member of the CNC family of proteins

and has been shown to be highly expressed in HCC. It also can

induce EMT by activating this pathway (146). Furthermore, Rho

guanine nucleotide exchange factor 11 (ARHGEF11), which is also

overexpressed in HCC, can activate this pathway by increasing the

nuclear translocation of b-catenin, thereby inducing EMT (147).

Another study showed that the GBA1 protein, catalyzing the

conversion of glucosylceramide (GlcCer) into ganglioside, is

downregulated in HCC tissues and stimulates this signaling

pathway by mediating GlcCer reprogramming, thus promoting

EMT and enhancing the metastatic capability of HCC. Targeting

the upregulation of GBA1 could be a potential therapeutic strategy

against HCC metastasis in the future (148). Moreover, it has been

reported that cysteine-rich protein 1 (CRP-1) is extensively

expressed in various cancers, including HCC, and similarly

induces EMT in a manner that activates this pathway (149).

4.2.4 Glycolysis and angiogenesis
The proliferation, invasion, and metastasis of HCC cells is a

complex process and requires a large amount of energy

consumption, with glycolysis and angiogenesis being the main

sources of energy in this process (150). Autophagy, as a

programmed cell death mechanism, research has found that it

can promote metastasis and glycolysis of HCC by increasing the

expression of Monocarboxylate transporter 1 (MCT1) and
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activating the Wnt/b-catenin signaling pathway (151). As

previously discussed, ROS produced by mitochondrial aerobic

respiration can inhibit HCC progression by suppressing this

pathway. Neoplastic cells opt for anaerobic glycolysis as their

energy source, even when oxygen is present; this is referred to as

the “Warburg effect” (152). Activation of the Wnt/b-catenin
signaling pathway has been reported to stimulate the Warburg

effect by up-regulating pyruvate dehydrogenase kinase isozyme 1

(PDK1), which promotes glycolysis in HCC cells, thereby supplying

HCC cells with energy and enhancing HCC cell proliferation,

invasion, and metastasis. Peroxisome proliferator-activated

receptor-gamma (PPARg) co-activator-1a (PGC-1a), a tumor

suppressor, participates in cancer pathogenesis, progression, and

metabolism. Based on research findings, it has been observed that

PGC-1a inhibits the PDK1 pathway, thereby decreasing PDK1

expression and subsequently impeding the metastasis of HCC

(153). Thus, the downregulation of PGC-1a expression in HCC

may promote the Warburg effect and energize HCC progression by

stimulating this pathway activity. Additionally, a recent study

discovered that Galectin-3 is involved in HCC metastasis and

activates this pathway by inducing Phosphatidylinositol 3-kinase

(PI3K)/Akt axis-mediated degradation of GSK-3b. Finally, the b-
catenin/TCF4 transcriptional complex directly targets IGFBP3 and

waveform proteins, thereby promoting angiogenesis and EMT in

HCC (154).

4.2.5 Hypoxia
Hypoxia, a common feature of all solid tumors, results from an

imbalance between oxygen supply and consumption in proliferative

tumors. It is essential for the occurrence and progression of tumors

(155). Like most solid tumors, HCC also exhibits a hypoxic

microenvironment. Abundant evidence indicates that there is

crosstalk between hypoxia-inducible factor hypoxia-inducible

factor (HIF) and the Wnt/b-catenin signaling pathway and that it

could contribute to the development of HCC (156–158). It has been

found that hypoxia causes b-catenin to be expressed and

accumulate in HCC cell lines, which facilitates invasion and

metastasis (159). Further studies showed that crosstalk between

hypoxia and this pathway is mediated through HIF-1a (160).

However, the mechanisms involved remain unclear. BCL9, an

essential co-activator of this pathway, is discovered to be

overexpressed in HCC. It was found that hypoxia may cause

BCL9 to be overexpressed in HCC via HIF-1a, activating this

pathway and accelerating the growth, metastasis, and

angiogenesis of HCC cells (156). Furthermore, this study provides

evidence for the crosstalk between this pathway and the hypoxic

and demonstrates that the specific regulation of BCL9 by HIF-1a
may be a potential crosstalk mechanism between the two.
5 Role of Wnt/b catenin signaling
pathway in HCC therapy resistance

Overcoming multidrug resistance (MDR) poses a substantial

challenge in the management of hepatocellular carcinoma (HCC),
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among other malignancies, where it has emerged as a key obstacle.

An important factor in MDR is the overexpression of ATP-binding

cassette (ABC) transporters, which facilitates the expulsion of

antitumor drugs from cells , thereby preventing their

accumulation intracellularly and mitigating their cytotoxicity

(161). It is reported that the Wnt/b-catenin signaling pathway

can regulate tumor therapy resistance by modulating the

expression of ABC transporters (162). FZD7 as an FZD receptor,

ABC transporters (ABCB1, ABCC1, and ABCC2) can be

upregulated in HCC cells by FZD7 overexpression via this

pathway which results in increased therapy resistance in HCC.

Quercetin can reverse this effect and enhance the drug sensitivity of

HCC (163).

Additionally, a substantial amount of data indicates that this

pathway is crucial in mediating chemoresistance in hepatocellular

carcinoma. Gankyrin has been shown to be overexpressed in a

variety of cancers. In HCC, it can activate this pathway to

upregulate the expression of its target gene c-Myc, inducing

metabolic reprogramming in HCC cells, and thus promoting

HCC tumorigenesis, metastasis, and therapy resistance. Inhibiting

c-Myc expression might be an optimal treatment strategy for HCC

patients with high Gankyrin expression (164). As mentioned earlier,

PROX1 is a specific gene in liver development. Studies have found

that PROX1 is highly expressed in HCC, and it can activate this

pathway by stimulating b-catenin transcription, promoting HCC

cell proliferation and sorafenib resistance (165). Additionally,

NIMA-related kinase 2 (Nek2) and LRP8 expression were found

to be upregulated in HCC and contribute to sorafenib resistance in

HCC by the same mechanism (166, 167). Recent studies have found

that Src homolog and collagen homolog 3 (Shc3) are overexpressed

in chemotherapy-resistant HCC and similarly activate this pathway,

causing resistance to sorafenib and doxorubicin in HCC (168).

Moreover, FZD10, found to be overexpressed in liver CSCs,

activates this pathway to promote the resistance to Lenvatinib of

HCC. Targeted knockdown of FZD10 can restore the sensitivity of

lenvatinib-resistant HCC to lenvatinib (112). Furthermore, research

has demonstrated that cisplatin-resistant HCC has substantially

increased levels of miR-130a. Specifically, its overexpression inhibits

the tumor suppressor gene RUNX3, which in turn activates this

pathway and augments the HCC’s resistance to cisplatin.

Knockdown of miR-130a can reverse the resistance of HCC to

cisplatin (169). Additionally, the activation of this pathway is also

facilitated by the overexpression of Krüppel-like factor 8 (KLF8) in

HCC. This ultimately increases the chemoresistance of HCC to

sorafenib and cisplatin. Compared to control HCC cells, the

knockdown of KLF8 can significantly increase chemosensitivity

(170). DVL1, an important component of the Wnt/b-catenin
signaling pathway, stabilizes b-catenin activity and mediates Wnt

signaling. DVL1 expression was found to be overexpressed in 5-FU-

resistant HCC cells and may enhance HCC resistance to 5-FU by

activating the Wnt/b-catenin signaling pathway (171).

Due to the high expression of various drug-resistant genes,

HCC patients are often insensitive to chemotherapy. Consequently,

for HCC patients who have lost the opportunity for surgery,

radiation therapy has gradually become an important treatment

method. However, some HCC patients still show resistance to
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radiation therapy. Mesenchymal stem cells (MSCs), as a crucial

component of the tumor microenvironment, have been proven to

participate in tumor therapy resistance (172). Research has found

that Irradiated MSCs (IR-MSCs) can promote the maintenance of

CSC stemness by activating the Wnt/b-catenin signaling pathway,

leading to radiotherapy resistance in HCC (173). This suggests that

the activation of this pathway under radiotherapy conditions might

be responsible for this resistance.

In addition, with the continual advancements in HCC

treatment modalities, immunotherapy has progressively emerged

as a pivotal therapeutic approach. However, there is considerable

variation in the response of HCC patients to immunotherapy. It is

reported that cancer immune evasion and resistance to Immune

checkpoint inhibitors (ICIs) are mediated by the Wnt/b-catenin
signaling system (174). Research has found that in HCC, the

activation of this pathway can compromise dendritic cell

recruitment and reduce T cell activity, promoting immune

evasion in HCC cells and inducing resistance to ICI drugs like

PD-1 (Programmed cell death 1) (175). In syngeneic mouse models,

using the chemically optimized RNAi trigger drug DCR-BCAT,

targeting the CTNNB1 gene encoding b-catenin, it was found that

DCR-BCAT could significantly increase T cell infiltration and

enhance tumor sensitivity to ICIs (176). Additionally, a study

using a biological nanoparticle delivery method delivered small

interfering RNA (siRNA) targeting b-catenin directly into

Extracellular vesicles (EVs), resulting in not only reduced growth

of HCC cells but also enhanced responsiveness to PD-1 treatment

(177). Combining these studies, it is possible to deduce that the

Wnt/b-catenin signaling pathway significantly influences the

immune evasion mechanism of HCC cells. Potentially, inhibiting

this pathway could improve the efficacy of HCC immunotherapy.
6 Potential role of Wnt/b catenin
signaling pathway in HCC
targeted therapy

The incidence of HCC is increasing every year, with only a small

proportion of patients eligible for surgical resection. Chemotherapy

is the leading therapeutic approach for HCC patients who do not

qualify for surgical resection. Significant advancements have been

achieved in molecular targeted therapy in recent years, and the

survival rate of HCC patients has been significantly increased

through the combination of targeted therapy and chemotherapy.

Given the important role of theWnt/b-catenin signaling pathway in

HCC tumorigenesis, progression, and therapy resistance, targeting

this pathway may be a new potential therapeutic approach for

HCC patients.

Numerous pharmaceuticals that inhibit this pathway have been

developed as a result of years of research on this pathway. These

drugs include monoclonal antibodies targeting Wnts and FZD

receptors, molecules inhibiting their secretion and interaction,

and small molecule inhibitors that stabilize the b-catenin
destruction complex and block the binding of b-catenin to

specific transcription co-activators (Table 1). Additionally,
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Glypican-3 (GPC3), a Heparan sulfate proteoglycan (HSPG) that is

overexpressed in HCC, can recruit Wnts to the cell surface and

stimulate cell proliferation. A monoclonal antibody targeting GPC3,

HS20, has been reported, which can inhibit this pathway in HCC

cells and exerts a potent antitumor effect by targeting GPC3 (189).

Furthermore, several other drugs commonly used in clinical

practice have been proven to have anti-Wnt/b-catenin signaling

pathway activity, including indomethacin, pyrvinium, sulindac,

aspirin, celecoxib, rofecoxib, peruvoside, and pirfenidone (183,

190, 191). However, whether these drugs have anti-tumor efficacy

has not yet been determined in clinical settings.

Several inhibitors or modulators of this pathway are currently in

clinical trials. CGX1321, a PORCN inhibitor, has been tested in

pha s e I c l i n i c a l t r i a l s in pa t i en t s w i th HCC and

Cholangiocarcinomas (CCA) (NCT03507998). OMP-18R5, a

novel monoclonal antibody against FZD that can target the FZD

receptor and thereby block the Wnt/b-catenin signaling pathway,

has been evaluated for efficacy and safety in a clinical trial in

relevant solid tumors (NCT01345201). In addition, OMP-54F28, an

FZD8 decoy receptor, can competitively bind to Wnts to block this

pathway, and its efficacy in combination with sorafenib was tested

in patients with advanced HCC in a phase I clinical trial

(NCT02069145). Dickkopf-1 (DKK1), a secreted regulator of the

Wnt signaling pathway, is overexpressed in a variety of cancers and

has been associated with tumor immunosuppression, and DKN-01
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can act by blocking DKK1 and in so doing enhances the innate

immune response of tumors. A clinical trial (NCT02375880)

evaluated the clinical value of DKN-01 in combination with

gemcitabine and cisplatin in the treatment of patients with biliary

tract cancer, followed by another clinical trial (NCT03645980)

evaluating the antitumor activity and safety of DKN-01 in

combination with sorafenib in patients with advanced HCC. In

addition, PRI-724, a Wnt signaling pathway inhibitor, has

demonstrated its efficacy and safety in an earlier solid tumor

clinical trial (NCT01302405), but no clinical trial has yet

evaluated its clinical value in the treatment of HCC patients.

Although several drugs have been shown to have antitumor

activity in preclinical models of HCC, most of them have not yet

entered clinical trials, and more clinical trials are still needed to

evaluate their efficacy and safety in future studies.

Diverse natural bioactive compounds derived from various

dietary sources have been found to inhibit this pathway and

demonstrate antitumor properties in HCC, according to recent

research (Table 2). Compared to conventional chemotherapy drugs,

these natural bioactive compounds have lower toxicity and are

easily obtainable through diet, making them excellent adjuvant anti-

cancer agents. However, it is still unclear if these chemicals can

efficiently reach the tumor site and exert antitumor effects because

the majority of them are derived from plants and have low

bioavailability. Moreover, the majority of naturally occurring
TABLE 1 Drugs that inhibit Wnt/b-catenin signaling pathway.

Drug Classification Intervention mechanism References

Anti-Wnt-2 monoclonal antibody Wnts
monoclonal
antibody

Targets Wnt2 and inhibits the activation of the Wnt/b-catenin signaling pathway
induced by it

(178)

OMP-18R5 FZD
monoclonal
antibody

Targeting the FZD receptor and thereby inhibiting the Wnt/b-catenin
signaling pathway

(179)

LGK-974/ETC-159/
CGX1321/RXC004

PORCN inhibitor Blocking Wnt secretion by inhibiting PORCN, thereby inhibiting the Wnt/b-catenin
signaling pathway and thus suppressing tumor cell growth

(180)

OMP-54F28 FZD8
decoy receptor

Acts as a decoy receptor for FZD8 and can inhibit the Wnt/b-catenin signaling
pathway by isolating the Wnt ligand from competitive binding to the FZD8 receptor

(181)

Salinomycin LRP5/6 inhibitor Inhibits the Wnt/b-catenin signaling pathway by preventing b-catenin from binding to
it through inhibition of LRP5/6

(182)

XAV939/G007-LK/G244-LM/RK-
287107/JW55/K-756/IWR-1/
MSC2504877/AZ1366/JW74/
NVP-TNKS656

Tankyrase
(TNKS) inhibitors

Stabilization of AXIN protein by inhibiting TANKS-mediated AXIN degradation,
which increases b-catenin destruction complex activity and b-catenin phosphorylation,
leading to inhibition of the Wnt/b-catenin signaling pathway

(183)

PKF118-310/PKF115-
584/CGP049090

b-catenin/
TCF antagonist

Inhibition of b-catenin binding to TCF decreases c-Myc, cyclinD1, and survivin, target
genes of the Wnt/b-catenin signaling pathway, thus exerting antitumor effects

(184)

PRI-724 CBP/b-
catenin antagonist

Acts by inhibiting b-catenin binding to the coactivator CAMP-response element
binding (CREB)-binding protein (CBP)

(185)

IGG-001 CBP antagonist Prevents b-catenin from acting in conjunction with CPB and inhibits tumor growth by
competitively binding CBP

(186)

IC-2 Novel derivatives
of IGG-001

Like IGG-001, IC-2 acts by inhibiting the binding of b-catenin to CPB, and in this way
inhibits hepatic CSC stemness

(187)

DKN-01 DKK1
monoclonal
antibody

Dickkopf-1 (DKK1), a regulator of the Wnt signaling pathway, is overexpressed in a
variety of cancers and has been associated with tumor immunosuppression, and DKN-
01 enhances the innate immune response of tumors by blocking the action of DDK1

(188)
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bioactive substances frequently influence additional molecular

pathways in addition to this pathway. Future research should

focus on addressing these issues.

In addition, some bioactive molecules have been demonstrated

to inhibit this pathway and exert anti-tumor effects (Table 3).

Several anesthetics commonly used in clinical settings have been

found to exhibit antitumor properties through the inhibition of the

Wnt/b-catenin signaling pathway. Sevoflurane (Sevo), an

inhalational anesthetic, has been demonstrated to inhibit tumor

growth of HCC (239). Mechanistic studies indicate that it can

regulate the PTEN/Akt/GSK-3b/b-catenin axis by down-regulating

miR-25-3p expression, inhibit the Wnt/b-catenin signaling

pathway, and exert anti-tumor effects (240). Like Sevo, propofol is

an intravenous anesthetic commonly used in surgery, and it

similarly inhibits this pathway, exerting an inhibitory effect on the

growth and invasion of HCC cells (241, 242).
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siRNA and antisense RNA are currently the most commonly

used genetic tools, known for their specificity and ease of operation.

They treat diseases caused by gene mutations or overexpression by

reducing the expression of target genes and have been widely used

in cancer therapy (243–245). Gene therapy based on siRNA or

antisense RNA is considered another method to inhibit the Wnt/b-
catenin signaling pathway. Studies have utilized siRNA targeting b-
catenin to explore its value in HCC treatment. siRNA-CTNNB1

targeting to reduce b-catenin expression can inhibit this pathway

and decrease the production of target genes cyclin-D1 and GS,

impairing the proliferation and survival of HCC cells (246).

Another study demonstrated that using siRNA to target b-catenin
expression could arrest tumor cells in the G0/G1 phase of the cell

cycle, thus inhibiting HCC cell proliferation (247). Furthermore, a

CTNNB1 mutant mouse HCC model induced by Phenobarbital

(PB) and Diethylnitrosamine (DEN) demonstrated that inhibiting
TABLE 2 Natural bioactive compounds that inhibit Wnt/b-catenin signaling pathway.

Name Origin Intervention mechanism References

Astaxanthin
(ASX)

Microorganisms and
marine animals

Blocking GSK-3b phosphorylation and degradation by inactivating the PI3K/Akt axis, thereby
inhibiting the Wnt/b-catenin signaling pathway and exerting inhibition of HCC cell
proliferation and induction of apoptosis

(192)

Morin Almond hulls and old fustic Inhibition of Wnt/b-catenin signaling pathway by inhibiting Mammalian Sterile 20-like Kinase
1 (Mst1) overexpression promotes apoptosis in HCC cells

(193)

6-C-(E-
Phenylethenyl)
(6-CEPN)

Tomato and citrus fruits Inhibition of the Wnt/b-catenin signaling pathway by up-regulating GSK-3b expression
induces b-catenin degradation and inhibits its nuclear translocation, attenuating HCC
cell stemness

(194)

Swertiamarin
(STM)

Gentianaceae plants Inhibition of the Wnt/b-catenin signaling pathway through down-regulation of FRAT1 exerts
an inhibitory effect on proliferation, metastasis, and invasion of HCC cells

(195)

Berberine(BBR) Herbal plants Antagonizing the Wnt/b-catenin signaling pathway by inhibiting b-catenin translation (196)

Daucosterol Plants Inhibits the Wnt/b-catenin signaling pathway by down-regulating b-catenin expression and
exerts inhibitory effects on proliferation, metastasis, and invasion of HCC cells

(197)

Daphnetin Genus Daphne Promoting apoptosis in HCC cells by inhibiting the Wnt/b-catenin signaling pathway (198)

Emodin Rheum palmatum, Polygonum
cuspidatum and
Polygonum multiflorum

Inhibition of the Wnt/b-catenin signaling pathway and inhibition of HCC cell invasion and
metastasis by inducing b-catenin degradation

(199)

Curcumin Curcuma Inhibition of HCC invasion and EMT by regulating the TET1/Wnt/b-catenin
signaling pathway

(200)

Gynura
divaricata

The aerial part of G.
divaricate/hepatitis grass

Inhibition of hepatic CSCs growth and prolongation of the antitumor statute of limitations of
cisplatin through inhibition of the Wnt/b-catenin signaling pathway

(201)

Broussochalcone
A (BCA)

Broussonetia papyrifera Inhibition of the Wnt/b-catenin signaling pathway by promoting phosphorylation/ubiquitin-
dependent degradation of b-catenin reduces HCC cell viability

(202)

Strophanthidin Strophanthus kombe Anti-tumor activity through inhibition of MAPK, PI1K/AKT/mTOR and Wnt/b-catenin
signaling pathways

(203)

Dendrobium
candidum
extract (DCE)

Dendrobium Blocking the Wnt/b-catenin signaling pathway by decreasing b-catenin levels and regulating
its downstream target genes inhibits HCC cell proliferation and induces apoptosis

(204)

Alpha-
linolenic acid

Vegetable oil Suppression of Wnt/b-catenin signaling pathway and inhibition of HCC cell growth by up-
regulation of FXR expression

(205)

Tetrandrine Stephania tetrandra S. Moore Regulation of HCC cell metastasis by inhibiting Wnt/b-catenin signaling pathway activity and
decreasing Metastatic tumor antigen 1 (MTA1) expression

(206)

Polysaccharides Hemerocallis citrina Baroni HCC cell cycle arrest and apoptosis through inhibition of the Wnt/b-catenin pathway (207)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1367364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2024.1367364
TABLE 3 Bioactive molecules inhibiting Wnt/b-catenin signaling pathway.

Name Classification Intervention mechanism References

MiR-143HG Long non-
coding RNAs

MiR-143HG mediates elevated APC expression by inhibiting miR-155 expression, which
promotes b-catenin phosphorylation degradation, inhibits the Wnt/b-catenin signaling
pathway, and suppresses HCC cell proliferation and metastasis

(208)

MiR-300 MicroRNA MiR-300 inhibits the Wnt/b-catenin signaling pathway and suppresses HCC cell growth by
down-regulating the expression level of its target gene CREPT

(209)

MiR-320a MicroRNA MiR-320a can directly target b-catenin and inhibit the Wnt/b-catenin signaling pathway by
down-regulating the expression of b-catenin and its target genes to inhibit HCC
cell proliferation

(210)

TRIM29/TRIM36 Tripartite motif
family
(TRIM) proteins

Both inhibit the enhancement, invasion, and metastasis of HCC cells by suppressing the Wnt/
b-catenin signaling pathway

(123, 211)

PGC-1a Coactivator PGC-1a inhibits the Warburg effect by suppressing the WNT/b-catenin/PDK1 axis, thereby
suppressing HCC cell invasion and metastasis

(153)

C12orf75 DNA Downregulation of the C12orf75 gene inhibits metastasis and invasion of HCC cells by
suppressing the Wnt/b-catenin signaling pathway

(212)

LIM Homeobox-
2(LHX2)

Transcriptional
factor

LHX2 mediates the breakdown of the b-catenin/TCF4 complex and induces the expression of
multiple Wnt inhibitors, leading to a Wnt/b-catenin signaling pathway that inhibits HCC
cell growth

(213)

LHX6 Transcriptional
factor

LHX6 inhibits Wnt/b-catenin and P53 signaling pathways induced by Microcystin-LR in
HCC to suppress proliferation, invasion, and metastasis of HCC cells

(214)

SOX11 Transcriptional
factor

SOX11 prevents TCF4 from binding to b-catenin by increasing its phosphorylation, leading to
a decrease in the activity of the Wnt/b-catenin signaling pathway, which inhibits the growth
of HCC cells and induces apoptosis

(215)

Cepharanthine
hydrochloride(CH)

Compound CH can inhibit HCC cell proliferation and invasion and induce apoptosis by inhibiting Wnt/
b-catenin signaling

(216)

Large tumor
suppressor kinase
2 (LATS2)

Suppressor protein LATS2 upregulates DRP1 expression through the Wnt/b-catenin signaling pathway, leading to
increased mitochondrial fragmentation and thus promoting HCC cell death

(217)

FH535/FH535-N Inhibitor FH535 and its derivative FH535-N exert antitumor effects by inhibiting autophagic flux in
HCC cells through regulating the Wnt/b-catenin signaling pathway, and the combination with
sorafenib can increase efficacy

(218–220)

Klotho Tumor
suppressor gene

Klotho overexpression inhibits HCC progression and induces apoptosis by negatively
regulating the Wnt/b-catenin signaling pathway

(221)

S-
Adenosylmethionine
(SAMe)

Amino acid SAMe and its metabolite methylthioadenosine (MTA) can inhibit the Wnt/b-catenin signaling
pathway in HCC through several mechanisms

(222)

H2S Compound H2S inhibits H2O2-induced HCC proliferation and metastasis by modulating the Wnt/b-
catenin signaling pathway

(223)

MiR-329-3p MicroRNA MiR-329-3p inhibits the proliferation and metastasis of HCC cells by suppressing USP2-
mediated activation of the Wnt/b-Catenin pathway

(224)

MiR-639 MicroRNA MiR-639 inhibits the proliferation and metastasis of human hepatocellular carcinoma cells by
down-regulating the KAT7/Wnt/b-catenin signaling pathway

(225)

MiR-212 MicroRNA MiR-212 inhibits HCC cell growth through the Wnt/b-catenin signaling pathway (226)

Combretastatin A-1
phosphate (CA1P)

Inhibitor CA1P inhibits the Wnt/b-catenin signaling pathway and exerts antitumor activity by inducing
AKT inactivation, leading to GSK-3b activation

(227)

Trans-chalcone (TC) Compound TC mediates cellular autophagy and induces HCC cell death through p53 up-regulation and
b-collagen down-regulation

(228)

HYD-PEP06 Polypeptide HYD-PEP06 inhibits HCC metastasis, EMT, and CSC stemness by suppressing the activation
of PI3K/AKT and Wnt/b-catenin signaling pathways.

(229)

Homoharringtonine
(HHT)

Compound HHT inhibits the proliferation and metastasis of HCC cells by inducing EphB4 inhibition that
promotes phosphorylation and loss of b-linker proteins

(230)

(Continued)
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b-catenin expression with locked nucleic acid (LNA) antisense

oligonucleotides resulted in decreased HCC cell proliferation and

increased apoptosis. In contrast, this effect was not observed in a

rodent HCC model lacking CTNNB1 (248).

Existing studies have shown the importance of targetingWnt/b-
catenin signaling pathway transduction in the treatment of HCC,

and a large number of preclinical studies have provided sufficient

evidence for this. Various therapeutic strategies targeting this

pathway have been developed. Nevertheless, due to the complex

function of this pathway in the human body, these inhibitors exert

anti-tumor activity while also inhibiting the Wnt/b-catenin
signaling pathway in other normal tissues, resulting in toxic

effects on normal tissues. This has severely limited the

development of current therapeutic strategies targeting

this pathway.
7 Conclusions and prospects

The role of the Wnt/b-catenin signaling pathway in the

tumorigenesis, progression, and therapy resistance of HCC is

indisputable. Targeting this pathway is an attractive target in

HCC treatment. Increasingly studies have proven that drug or

molecular targeting can block this pathway, which ultimately

reduces tumor growth and improves therapeutic efficacy. With

the increasing research on the Wnt/b-catenin signaling pathway,

various inhibitors have been developed that can target this pathway.

Unfortunately, owing to the toxicology of these inhibitors, there

aren’t any authorized medications for the clinical therapy of HCC at

this time.
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In conclusion, targeting the Wnt/b-catenin signaling pathway

still remains a significant challenge. Future studies should further

deepen our understanding of the regulatory mechanisms of this

pathway in HCC and guide the development of new HCC-targeted

therapeutic strategies. Additionally, the development of specific

targeted drugs that can selectively inhibit this pathway in tumor

tissues remains a focus of future research.
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TABLE 3 Continued

Name Classification Intervention mechanism References

Secalonic acid-
F(SAF)

Mycotoxin SAF can inhibit HCC progression by targeting MARCH 1 and regulating the PI3K/AKT/b-
catenin signaling pathway

(231)

Prohibitin1 (PHB1) Mitochondrial
chaperone protein

PHB1 acts as a negative regulator of the Wnt/b-catenin signaling pathway and exerts
antitumor effects by inhibiting the Wnt/b-catenin signaling pathway

(232)

Cellular retinol
binding protein-1
(CRBP-1)

Protein CRBP-1 suppresses CSC stemness by inhibiting the Wnt/b-catenin signaling pathway (233)

Astrotactin
1 (ASTN1)

Protein ASTN1 can inhibit the metastatic and invasive ability of HCC by suppressing the Wnt/b-
catenin signaling pathway

(234)

P7 trans-regulated
protein 3 (P7TP3)

Protein P5TP7 regulates HCC proliferation, invasion, metastasis, adhesion, and cell cycle progression
through the Wnt/b-catenin signaling pathway, thereby inhibiting HCC

(235)

Aquaporin 9 (AQP9) Protein AQP9 overexpression reduces b-catenin levels in HCC cells and inhibits HCC cell growth and
metastasis via the Wnt/b-catenin signaling pathway

(236)

DDX5 RNA Helicase DDX5 is a negative regulator of the Wnt/b-catenin signaling pathway in HBV-associated
HCC and is lowly expressed in HBV-associated HCC. miR17-92/miR106b-25 restored the
expression level of DDX5 in HBV-associated HCC

(237)

Glutathione S-
transferase Zeta 1-1
(GSTZ1-1)

Transferase GSTZ1-1 may act as a tumor suppressor by inhibiting Wnt/b-catenin signaling pathway
activity in HCC cells

(238)
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