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Xingtai, China
Objective: To explore the value of the features of lymph nodes (LNs) with a short-

axis diameter ≥6 mm in predicting lymph node metastasis (LNM) in advanced

gastric adenocarcinoma (GAC) based on dual-energy CT (DECT) radiomics.

Materials and methods: Data of patients with GAC who underwent radical

gastrectomy and LN dissection were retrospectively analyzed. To ensure the

correspondence between imaging and pathology, metastatic LNs were only

selected from patients with pN3, nonmetastatic LNs were selected from patients

with pN0, and the short-axis diameters of the enrolled LNs were all ≥6 mm. The

traditional features of LNs were recorded, including short-axis diameter, long-

axis diameter, long-to-short-axis ratio, position, shape, density, edge, and the

degree of enhancement; univariate and multivariate logistic regression analyses

were used to establish a clinical model. Radiomics features at the maximum level

of LNs were extracted in venous phase equivalent 120 kV linear fusion images and

iodine maps. Intraclass correlation coefficients and the Boruta algorithm were

used to screen significant features, and random forest was used to build a

radiomics model. To construct a combined model, we included the traditional

features with statistical significance in univariate analysis and radiomics scores

(Rad-score) in multivariate logistic regression analysis. Receiver operating curve

(ROC) curves and the DeLong test were used to evaluate and compare the

diagnostic performance of the models. Decision curve analysis (DCA) was used

to evaluate the clinical benefits of the models.

Results: This study included 114 metastatic LNs from 36 pN3 cases and 65

nonmetastatic LNs from 28 pN0 cases. The samples were divided into a training

set (n=125) and a validation set (n=54) at a ratio of 7:3. Long-axis diameter and LN

shape were independent predictors of LNM and were used to establish the

clinical model; 27 screened radiomics features were used to build the radiomics
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model. LN shape and Rad-score were independent predictors of LNM and were

used to construct the combined model. Both the radiomics model (area under

the curve [AUC] of 0.986 and 0.984) and the combined model (AUC of 0.970 and

0.977) outperformed the clinical model (AUC of 0.772 and 0.820) in predicting

LNM in both the training and validation sets. DCA showed superior clinical

benefits from radiomics and combined models.

Conclusion: The models based on DECT LN radiomics features or combined

traditional features have high diagnostic performance in determining the nature

of each LN with a short-axis diameter of ≥6 mm in advanced GAC.
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1 Introduction

Gastric cancer (GC) is the fourth leading cause of cancer-related

death worldwide (1) and the third leading cause of cancer-related

death in China (2, 3). Lymph node (LN) metastasis (LNM) is the

main metastatic pathway of GC and an independent predictor of

patient prognosis (4–6). Accurate preoperative judgment of LN

status has guiding significance for selecting treatment options and

evaluating patient prognosis (7–9). GC has abundant lymphatic

drainage and skip metastasis, making it difficult to determine LNM

before surgery accurately. Computed tomography (CT) is the main

imaging method for the preoperative assessment of LNM in GC.

However, there is no uniform standard for judging LNM, and the

overall accuracy rate is only approximately 60% (10, 11).

Radiomics mines massive quantitative features from image

data, which can reflect the spatial distribution of voxels and better

reflect tumor heterogeneity (12, 13). Radiomics has been shown to

predict malignant LNM (13–16). Compared to traditional CT data,

dual-energy CT (DECT) data can enrich the radiologic

characteristics and provide more valuable characteristics for

judging LNM. Most previous studies have investigated the

radiomics features of the primary tumor, which can only predict

the presence or absence of LNM (17–19), and the nature of each LN

and N stage cannot be accurately determined. Few studies on LNM

prediction in GC based on LN radiomics features exist. Patients

with GC are more likely than healthy people, and patients with

advanced GC are more likely than those with early GC to have

perigastric LNs with a short-axis diameter ≥ 6 mm (20, 21).

Currently, there is no uniform standard for judging LNM. It is

generally believed that the larger the LN, the more likely it is to

metastasize, and it is difficult to characterize LNs with a short

diameter of 6–10 mm in clinical work. Therefore, this study took

perigastric LNs with a short-axis diameter of ≥6 mm as the research

object to investigate the value of DECT LN radiomics features in

predicting LNM in advanced gastric adenocarcinoma (GAC).
02
2 Materials and methods

2.1 Research object

This study was approved by the Ethics Committee of the Fourth

Hospital of Hebei Medical University. Data from patients with GC

undergoing surgery at our hospital from April 2015 to December

2017 were retrospectively analyzed. Inclusion criteria: (1) patients

received radical gastrectomy and LN dissection and had not received

antitumor therapy before surgery; (2) whole abdominal dual-energy

enhanced CT scan was performed within 1 week before surgery; and

(3) postoperative pathologically confirmed advanced GAC wherein

LN pathological staging was clear. A total of 172 patients met the

above criteria, including 28 pN0 cases, 44 pN1 cases, 55 pN2 cases,

and 45 pN3 cases. As this was a retrospective study, achieving the

exact correspondence between imaging and pathology was difficult.

To ensure maximum correspondence, metastatic LNs were only

selected from pN3 cases, and nonmetastatic LNs were selected from

pN0 cases. Based on the pathology report, the LNs were selected

from the corresponding CT areas of pN3 cases in a descending order

of LN short-axis diameter in the metastatic group. The selected

number of LNs was not greater than the number of metastatic LNs in

this group, and the diameter of the short axis was ≥6 mm. In the

nonmetastatic group, LNs with short-axis diameters ≥6 mm were

selected from pN0 cases (Figure 1).
2.2 Dual-energy CT imaging

Examination methods and parameters: Patients underwent 6–8

h of fasting before examination, were intramuscularly injected with

10 mg of anisodamine 10 min before scanning, and were orally

given 6 g of gas-producing powder or 800–1000 mL of warm water

to fill the stomach cavity. Second-generation dual-source CT

(Somatom Definition Flash, Siemens Healthcare, Erlangen,
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Germany) was used for scanning. The scanning range was from the

top of the diaphragm to the level of the lower border of the pubic

symphysis. For the plain scan, the tube voltage was 120 kV, the tube

current was 210 mAs, the collimator width was 128 × 0.6 mm, and

the pitch was 0.9. Iohexol (300 mgI/mL) was injected through the

cubital vein at a rate of 3.0 mL/s using a high-pressure injector, with

a dose of 1.5 mL/kg body weight, and dual-energy dual-phase

scanning was performed at 25 s and 70 s after injection.

The scanning parameters were as follows: The voltages of tubes

A and B were 100 kV and Sn 140 kV, respectively. Care Dose 4D

was turned on, the reference tube currents were 230 mAs and 178

mAs, respectively, collimator width was 32 × 0.6 mm, pitch was

0.55, slice thickness was 5.0 mm, and increment was 5.0 mm. The

venous phase data were reconstructed into equivalent 120 kV linear

fusion images (fusion coefficient of 0.5) and iodine maps (IM), with

a reconstruction thickness of 1.0 mm and an increment of 1.0 mm.
2.3 Building the traditional features model

Two radiologists with 5 years (observer 1) and 17 years

(observer 2) of experience in abdominal imaging diagnosis

independently analyzed traditional features in venous phase

fusion images without knowing the postoperative pathology.

When their opinions differed, they reached an agreement through

consultation. LN traditional features included: short axis diameter,
Frontiers in Oncology 03
long axis diameter, long-to-short axis ratio (LSR), position (D1

station; non-D1 station), shape (nearly round shape, LSR ≤1.5; non-

round shape, LSR >1.5), density (homogeneous; heterogeneous),

edge (regular; unregular), and the degree of enhancement (mild

enhancement, <20 HU; moderate to strong enhancement, ≥20 HU).

Based on the training set data, univariate logistic regression analysis

was used to screen out traditional features related to LNM, and then

backward stepwise multivariate logistic regression analysis was

performed to establish the traditional features model.
2.4 Building the radiomics model

2.4.1 Image segmentation
Using Radiomics software (Frontier, Siemens Healthcare), in

the venous phase fusion image, observer 1 manually delineated a

two-dimensional region of interest (ROI) at the maximum level of

the LN along the inner edge of the LN contour, which was reviewed

by observer 2. Disagreement was resolved through negotiation, and

thereafter, the ROI was copied on the IM using the software to

ensure consistency in the delineation.

2.4.2 Feature extraction, screening, and
model building

Radiomics software was used to extract radiomics features for

each ROI in the training set of venous phase fusion images and IM
FIGURE 1

Flow chart of lymph node enrollment in the metastatic group and nonmetastatic group.
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using Radiomics software. Feature screening method: (1) In total, 50

cases were randomly selected, observer 1 performed the second

delineation after a 1-month interval, and the radiomics features

with an intra-class correlation coefficient (ICC) >0.8 were retained.

(2) The features were further screened using the Boruta, an

algorithm to screen important features by comparing their

importance with that of randomly generated shadow features.

Because of its high computational efficiency, it is suitable for

datasets with many variables (22). In this study, Boruta feature

selection was implemented through the R package Boruta (Version

7.0.0), and the selected key features were used to establish radiomics

models. The radiomics workflow is shown in Figure 2.
2.5 Building the combined model

The traditional features (P<0.05) with statistical significance in

the univariate logistic regression analysis and the radiomics score

(Rad-score) based on the radiomics model were subjected to

multivariate logistic regression analysis, and the independent

predictors of LNM were screened to construct the combined

model and nomograms.
2.6 Statistical methods

R software 4.0.5 (http://www.Rproject.org) was used. Count

data were compared with the c2 test or Fisher’s exact test.
Frontiers in Oncology 04
Measurement data conforming to a normal distribution are

expressed as the mean ± standard deviation, and an

independent samples t-test was used to compare the two

groups. Measurement data that do not conform to a normal

distribution are expressed as the median [upper and lower

quartiles], and the Mann−Whitney U test was used to compare

the two groups. P<0.05 was considered statistically significant.

Receiver operating characteristic (ROC) curves were used to

evaluate the diagnostic performance of the models, and the

DeLong test was used to compare the differences in diagnostic

performance among the models. Decision curve analysis (DCA)

was used to evaluate the clinical benefit of the model.
3 Results

3.1 Comparison of the baseline features
between the training and validation sets

A total of 36 pN3 cases with 114 LNs were included in the

metastatic group: 27 males and 9 females, with an average age of

56.7 ± 10.2 years. A total of 26 pN0 cases with 65 LNs were included

in the nonmetastatic group: 22 males and 4 females, with an average

age of 60.7 ± 9.1 years. The two groups of LNs were randomly

assigned to the training set (n=125) and the validation set (n=54) in

a 7:3 ratio. There were no significant differences in clinical and

traditional features between the training and validation sets (all

P>0.05) (Table 1).
FIGURE 2

Flow chart for establishing a dual-energy computed tomography-based model for predicting lymph node metastasis of lymph nodes with a short-
axis diameter ≥6 mm in gastric adenocarcinoma.
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3.2 The traditional feature model

Univariate logistic regression analysis showed that the LN

short-axis diameter, long-axis diameter, shape, and edge were

correlated with LNM (all P<0.05). Backward stepwise multivariate

logistic regression analysis showed that LN long axis diameter and

shape were independent predictors of LNM (all P<0.05) (Table 2).

Based on this, the traditional features model was built, and its area

under the curve (AUC), accuracy, sensitivity, and specificity in the

training set and validation set were 0.772, 0.720, 0.707, 0.744 and

0.820, 0.741, 0.781, 0.682, respectively.
Frontiers in Oncology 05
3.3 The radiomics models

Based on the venous phase fusion image and IM, 1691

radiomics features were extracted from each; thus, 3382 radiomics

features were extracted, including three types: 26 shape features, 19

first-order features, and 75 texture features. Texture features

included 24 gray level co-occurrence matrices (GLCM), 16 gray

level run length matrices (GLRLM), 16 gray level size zone matrices

(GLSZM), 14 gray-level dependence matrices (GLDM) and 5

neighboring gray tone difference matrices (NGTDM). After the

ICC test and Boruta algorithm screening, 27 radiomics features

were finally retained for model building, of which 16 features were

from IM and 11 were from venous phase fusion images (Figure 3).

The Rad-score of the metastatic group was higher than that of the

nonmetastatic group (P<0.01) (Figure 4). The AUC, accuracy,

sensitivity, and specificity of the radiomics model in the training

and validation sets were 0.986, 0.952, 0.939, and 0.977 and 0.984,

0.963, 0.969, and 0.955, respectively. Delong’s test showed no

significant difference in the AUC of the radiomics model between

the training and validation sets (P=0.948).
3.4 The combined model

Multivariate logistic regression analysis showed that LN shape

and Rad-score were independent predictors of LNM (all P<0.05).

Based on this, the combined model was constructed, and the AUC,

accuracy, sensitivity, and specificity of the training set and validation

set were 0.970, 0.936, 0.963, and 0.884, and 0.977, 0.870, 0.969, and

0.727, respectively.
3.5 Comparison of the three models

The DeLong test was used to compare the AUCs of the

traditional features, radiomics and combined models. The AUCs

of the training and validation sets in the radiomics and combined

models were higher than those of the traditional features model (all

P<0.01). There was no significant difference in AUCs between the

radiomics model and the combined model (all P>0.0167) (Table 3,

Figure 5). The DCA curves of the three models were higher than the

two reference lines, and the net clinical benefit of the radiomics

model and the combined model was higher than that of the

traditional features model (Figure 6). The nomogram of the

combined model is shown in Figure 7.
4 Discussion

Accurate preoperative judgment of LNM in GC is crucial for

selecting treatment options and determining the extent of LN

dissection. In this study, both the radiomics model established

based on the radiomics features of DECT LNs and the combined

model based on the traditional features of LNs and the radiomics

features of DECT LNs have high diagnostic performance. The
TABLE 1 Comparison of clinical and traditional features of the training
and validation sets.

Features
Training
cohort
(n=125)

Validation
cohort (n=54)

P
value

Age, M[Q25;Q75] 58.0 [56.0;64.0] 58.0 [56.0;63.8] 0.908

Sex, No. (%) 0.872

Female 18 (14.4%) 9 (16.7%)

Male 107 (85.6%) 45 (83.3%)

Size, M[Q25;Q75]

Short
axis diameter

0.79 [0.67;0.98] 0.84 [0.66;1.05] 0.663

Long
axis diameter

1.12 [0.91;1.52] 1.20 [0.92;1.61] 0.448

Long-to-short
axis ratio

1.35 [1.20;1.57] 1.30 [1.21;1.59] 0.929

Location, No. (%) 0.494

D1 station 100 (80.0%) 40 (74.1%)

Non-D1 station 25 (20.0%) 14 (25.9%)

Shape, No. (%) 0.917

Nearly
round shape

97 (77.6%) 43 (79.6%)

Non-
round shape

28 (22.4%) 11 (20.4%)

Density, No. (%) 0.189

Homogeneous 119 (95.2%) 48 (88.9%)

Heterogeneous 6 (4.80%) 6 (11.1%)

Edge, No. (%) 1.000

Regular 63 (50.4%) 27 (50.0%)

Irregular 62 (49.6%) 27 (50.0%)

Degree of
enhancement,
No.(%)

0.749

Mild 88 (70.4%) 40 (74.1%)

Moderate
to strong

37 (29.6%) 14 (25.9%)
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models can accurately determine the nature of LNs with a short-axis

diameter of ≥6 mm in advanced GAC before surgery. This has

important clinical value in the preoperative judgment of N staging,

individualized treatment plans, and patient prognosis.

This study found that the short-axis diameter, long-axis

diameter, shape, and edge of perigastric LNs were associated with

LNM in advanced GAC, and long-axis diameter and shape were

independent predictors of LNM. Unlike previous research results

(23, 24), the degree of LN enhancement did not become an

independent predictor of LNM, which may be related to the

larger LNs with a short-axis diameter ≥6 mm included in this

study. The enlargement of LNs in the nonmetastatic group may be

due to inflammatory stimulation or reactive hyperplasia. This

resulted in increased blood supply to the LNs, thereby narrowing

the difference in the degree of enhancement between the metastatic

and nonmetastatic LNs in this study.

By extracting high-throughput quantitative features, radiomics

analysis can effectively assess the spatial distribution of voxels that

was viewed as highly related to tissue heterogeneity (25, 26). Currently,

most relevant studies are based on the radiomics features

of primary GC to predict LNM (AUC: 0.704–0.837) (17–19).
TABLE 2 Univariate and multivariate logistic analysis of traditional features on lymph node metastasis in gastric adenocarcinoma.

Features
Univariate Multivariate

beta OR (95%CI) P value beta OR (95%CI) P value

Short axis diameter 4.382 79.999 (10.046–1079.203) <0.001 - - -

Long axis diameter 1.475 4.369 (1.698–13.035) 0.004 2.808 16.585 (4.318–86.079) <0.001

Long-to-short axis ratio -0.984 0.374 (0.111–1.224) 0.105 - - -

Location 0.513 1.670 (0.672–4.084) 0.261 - - -

Shape 1.240 3.457 (1.459–8.418) 0.005 2.429 11.352 (3.635–41.923) <0.001

Density 1.003 2.727 (0.422–53.168) 0.367 - - -

Edge 1.232 3.427 (1.588–7.717) 0.002 - - -

Degree of enhancement -0.214 0.808 (0.365–1.821) 0.600 - - -
OR, odds ratio; CI, confidence interval.
FIGURE 3

A total of 27 radiomics features in the radiomics model.
BA

FIGURE 4

Violin plot of Rad-scores. (A) Training set (B) Validation set. The
violin plot shows the distribution of the overall Rad-score. The wider
shape represents a higher probability of the same Rad-score, and a
narrower shape represents a lower probability of the same
Rad-score.
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Individual LNs cannot be independently predicted. Therefore,

preoperative LN staging cannot be performed accurately. Yang et al.

(27) established models to predict LNM in GC based on the radiomics

features of primary tumors and LNs, and the results showed that the

performance of the LNs model was better than that of the primary

tumor model (AUC: 0.911 vs 0.852), suggesting that the radiomics
Frontiers in Oncology 07
features of LNs could provide more heterogeneity information of LNs,

and could predict LNM more directly and accurately. To avoid the

autocorrelation between the features of the primary tumor and LN, and

because all the patients had advanced gastric cancer, this study only

focused on the features of LNs. In this study, the LNM model for

predicting LNM in GC established based on the radiomics features of
BA

FIGURE 5

Receiver operating characteristic curves of the traditional features model, radiomics model and combined model for predicting lymph node
metastasis in gastric cancer. (A) Training set (B) Validation set.
TABLE 3 Comparison of AUCs of the traditional features model, radiomics model and combined model.

Cohorts

Area under the curve (95% confidence interval)

P value
(0 vs 1)

P value
(0 vs 2)

P value
(1 vs 2)

Traditional
features
model (0)

Radiomics
model (1)

Combined
model (2)

Training cohort
0.772 0.986 0.970

<0.001* <0.001* 0.027
(0.687–0.858) (0.970–1.000) (0.942–0.998)

Validation cohort
0.820 0.984 0.977

0.005* 0.007* 0.275
(0.711–0.930) (0.953–1.000) (0.941–1.000)
*P<0.0167.
BA

FIGURE 6

Decision curve analysis curves of the traditional features, radiomics model and combined model for predicting lymph node metastasis in gastric
cancer. (A) Training set (B) Validation set.
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LNs had AUCs of 0.986 and 0.984 in the training set and validation set,

respectively, with high sensitivity and specificity and good robustness.

The diagnostic efficacy was also better than that of the LNM prediction

model, combining radiomics features of the primary tumor and LNs of

GC reported in the literature (AUC=0.908) (28).

DECT-derived IMs can quantify iodine distribution related to

the blood supply, and radiomics analysis based on IM can reflect

perfusion-related blood supply heterogeneity through high-

throughput quantitative features (24, 29). In this study, radiomic
Frontiers in Oncology 08
features were extracted fromDECT venous phase fusion images and

IM, and 27 radiomic features with high correlation with LNM in

GC, 16 of which were from IM, were screened. The results suggest

that the dual-energy data enriches the radiomics features and

provides more valuable features for determining LNM. A total of

23 of the 27 radiomics features were texture features, of which 16

were processed and decomposed by wavelet filters to explore spatial

heterogeneity at multiple scales (30), which can objectively reflect

the internal details and heterogeneity of LNs and is an important
B C

D E

A

FIGURE 7

(A) Nomogram for predicting lymph node metastasis in advanced gastric adenocarcinoma patients with a short-axis diameter of ≥6 mm. (B, C) Male,
58 years old, GAC b: A No. 3 group LN (arrow), which was nearly round and approximately 11.1×9.0 mm, was diagnosed by the traditional features
model as metastatic LN (prediction score was 0.742, cutoff value was 0.638), diagnosed by the radiomics model as nonmetastatic LN (Rad-score
was 0.137, cutoff value was 0.401), diagnosed by the combined model as nonmetastatic LN (predictive score was 0.001, cutoff value was 0.614) c:
Pathology confirmed it as nonmetastatic LN (HE, 10×), and the pathological stage was T4aN0M0. (D, E) Male, 71 years old, GAC D: A No.3 group LN
(arrow), which was nearly round and approximately 8.0×7.3 mm, was diagnosed as nonmetastatic LN by the traditional features model (prediction
score was 0.546, cutoff score was 0.638), diagnosed by the radiomics model as metastatic LN (Rad-score was 1.000, cutoff value was 0.401),
diagnosed by the combined model as metastatic LN (prediction score was 1.000, cutoff value was 0.614) e: Pathology confirmed it as metastatic LN
(HE, 10×), and the pathological stage was T4aN3M0.
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feature for judging the nature of LNs. “square root gldm Gray Level

Non-Uniformity” and “wavelet HHH glcm Inverse Variance io”

were the two texture features with larger weights.

The diagnostic performance of the combined model established

by combining LN shape and Rad-score was comparable to that of

the radiomics model, and both were higher than that of the

traditional features model, which also confirmed the important

value of radiomics features in predicting LNM in advanced GAC.

Our study has the following limitations: 1. This study was a

single-center retrospective analysis. The model performance needs

to be further verified by a large-sample, multicenter prospective

study. 2. Using two-dimensional image segmentation instead of

whole tumor segmentation may not reflect all the features of LNs. 3.

We focused on venous phase images only, while arterial phase

images may provide additional information.
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