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Objectives: The present study aimed to develop a radiomics nomogram based on

conventional ultrasound (CUS) to preoperatively distinguish high tumor-infiltrating

lymphocytes (TILs) and low TILs in triple-negative breast cancer (TNBC) patients.

Methods: In the present study, 145 TNBC patients were retrospectively included.

Pathological evaluation of TILs in the hematoxylin and eosin sections was set as the

gold standard. The patients were randomly allocated into training dataset and

validation dataset with a ratio of 7:3. Clinical features (age and CUS features) and

radiomics featureswere collected. Then, the Rad-scoremodelwas constructed after

the radiomics feature selection. The clinical features model and clinical features plus

Rad-score (Clin+RS)model were built using logistic regression analysis. Furthermore,

the performance of the models was evaluated by analyzing the receiver operating

characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

Results: Univariate analysis and LASSO regression were employed to identify a

subset of 25 radiomics features from a pool of 837 radiomics features, followed

by the calculation of Rad-score. The Clin+RS integrated model, which combined

posterior echo and Rad-score, demonstrated better predictive performance

compared to both the Rad-score model and clinical model, achieving AUC

values of 0.848 in the training dataset and 0.847 in the validation dataset.

Conclusion: The Clin+RS integrated model, incorporating posterior echo and

Rad-score, demonstrated an acceptable preoperative evaluation of the TIL level.

The Clin+RS integrated nomogram holds tremendous potential for preoperative

individualized prediction of the TIL level in TNBC.
KEYWORDS

radiomics, tumor-infiltrating lymphocytes (TILs), breast cancer, triple-negative breast
cancer (TNBC), ultrasound
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Introduction

Triple-negative breast cancer (TNBC), a distinct form of breast

cancer, is identified by the lack of estrogen receptor (ER), human

epidermal growth factor receptor type 2 (HER2), and progesterone

receptor (PR) expression (1). TNBC has a higher rate of recurrence

and metastasis than non-TNBC (1, 2).

Tumor-infiltrating lymphocytes (TILs) have proven to be a

dependable predictor of treatment response and prognosis in cases

of breast cancer (3, 4). TILs are primarily observed in cases of TNBCs

(5, 6). In several previous studies, the presence of higher TILs in

TNBC tumors was found to be associated with improved outcomes

(5–9). The patients with higher TILs in breast cancer were shown to

have a higher responsiveness to chemotherapy compared to the

patients with lower TILs in breast cancer (10–12). In the past few

years, there has been a growing emphasis on the utilization of

immunotherapy, particularly the application of immune checkpoint

inhibitors, owing to their favorable clinical outcomes observed in both

early and advanced TNBC (13–15). It is anticipated that TILs will

function as a prognostic indicator for the immunotherapeutic efficacy

in patients receiving immune checkpoint inhibitors. At present, TILs

are often assessed in histopathological slides obtained through

invasive core needle biopsy, especially for neoadjuvant

chemotherapy patients (3). However, the core needle biopsy has

several well-known pitfalls, including the limited tissue sampling and

heterogeneity in lymphocyte distribution, which may affect the

accuracy of evaluating TIL level. Hence, it is imperative to develop

a non-invasive imaging method allowing for visualization of the entire

tumor to serve as an important supplement to evaluate TIL level.

Breast conventional ultrasound (CUS) is a real-time, non-

radiative, cost-effective and commonly used diagnostic imaging

method for breast tumors in clinical settings. Radiomics, a

potentially valuable quantitative technique, involves the extraction

of high-throughput imaging characteristics from medical images (16,

17), which has extensive application in classifying phenotypic

subtypes and making prognostic predictions for solid tumors (18,

19). CUS-based radiomics has shown the potential to differentiate

malignant and benign lesions (20) and evaluate the prognosis for

patients with breast cancer (21, 22). However, limited research has

been conducted on the efficacy of the CUS-based radiomics approach

in differentiating high TILs from low TILs in TNBC. This research

aims to investigate the potential of CUS-radiomics models for

preoperative assessment of TIL level in patients with TNBC.
Methods

Patients

In the present study, we retrospectively enrolled primary

invasive breast cancer patients in our hospital from 1 January 2017

to 30 October 2023 with baseline breast ultrasounds available. A total

of 3795 consecutive patients were initially included who underwent

breast ultrasound examinations and were confirmed with

pathological diagnosis of primary invasive breast cancer. The
Frontiers in Oncology 02
criteria for exclusion were as stated below: (1) non-TNBC breast

cancer proven by immunohistochemistry (IHC) staining (n=3451),

(2) without pathological evaluation of TILs (n=83), (3) pathological

evaluation using the needle biopsy specimen but not surgical

resection specimens (n=69), (4) preserved ultrasound images were

marked with measurement lines (n=26), (5) underwent neoadjuvant

chemotherapy in TNBC before surgical resection (n =12), (6)

preoperative breast ultrasound images lost (n=9). After these

exclusions, 145 patients with TNBC were finally included. The

detailed patient inclusion is illustrated in Figure 1. The framework

of the current study is presented in Figure 2.
Pathologic evaluation

The assessment of stromal TILs was conducted based on

pathological hematoxylin and eosin (H&E) slides by pathologists

according to published guidelines (23). The percentage of stroma in

each breast cancer tumor was documented relative to the lymphoid

cells (24). In this study, TILs refer to stromal TILs unless otherwise

specified. Previous studies found that a percentage of TILs≥20% was

associated with pathologic complete response in TNBC (25, 26).

Thus, this study defined the percentage of TILs≥20% as a high

TIL level.
Ultrasound examination

Experienced board-certified radiologists performed all breast

ultrasound examinations. Several ultrasound machines were used

for conducting breast ultrasound examinations, including ESAOTE

(MyLab 90 X-vision, Italy) and Logic E9 (GE Healthcare, USA) with

high-frequency probes. Relevant images of the primary tumor were

recorded during the examination, including both transverse and

longitudinal views.
Ultrasound characteristics evaluation
by radiologists

Two experienced radiologists with ≥ 8 years of expertise in

breast ultrasound retrospectively assessed the CUS characteristics of

the index tumor for each patient. They were blinded to the

ultrasound and pathologic reports. In the event of a discrepancy

between the two observers, a consensus was reached following

deliberation. The CUS characteristics were assessed for the

following CUS features: shape, margin, orientation, echo pattern,

posterior echo features, vascularity, and calcification.
Tumor segmentation and radiomics
feature extraction

To begin with, the patients were randomly assigned to either the

training or validation group in a 7:3 ratio. Then, the jpg file format

was used to save the ultrasound images, and subsequently, they
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were imported into the PyCharm software (2022.2 edition).

Subsequently, a radiologist with ≥ 8 years’ experience in breast

ultrasound manually delineated the region of interest (ROI), which

was then verified by another radiologist with ≥ 8 years’ experience

in breast ultrasound utilizing the Labelme software package

(3.16.7). Neither of the radiologists had knowledge of the

pathological findings while annotating the images, and any

discrepancies were resolved through consensus reached via

discussion. Radiomics characteristics were obtained from tumors

following image processing using various filters through the

utilization of the Pyradiomics package (Version 3.0.1) which were

subsequently categorized into distinct classes, including 1) first-

order features; 2) shape-based features; 3) high-order features,

including GLCM, GLDM, GLRLM, GLSZM, and NGTDM.

Finally, 837 radiomics features were extracted for this study.
Frontiers in Oncology 03
The establishment of clinical, Rad-score,
and clinical features plus Rad-score
integrated models

To begin with, we employed an independent t-test or Mann-

Whitney U test to identify significant features exhibiting statistically

meaningful differences (P<0.05). Afterwards, the least absolute

shrinkage and selection operator (LASSO) was utilized for

selecting coefficients that are not zero through cross validation of

10-fold. Lastly, the Rad-score was computed using the chosen

features. The detailed formulation of the Rad-score can be found

in the Supplementary Materials.

The baseline clinical features and Rad-score were compared

using univariate analyses between the low TILs and high TILs

groups (Table 1). Then, multivariable logistic regression models
FIGURE 2

The flowchart of the study.
FIGURE 1

Flowchart of the patient inclusion.
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were constructed by including variables that had a significance level

of p <0.05 in the univariate analyses in both the clinical features

model and clinical features plus Rad-score (Clin+RS) integrated

model. The model’s ability to discriminate was assessed through

analysis of the receiver operating characteristic (ROC) curve, while

the accuracy of the models’ predictions was measured via

calculating the area under the curve (AUC) in the training dataset

and validation dataset.
Statistical analysis

Statistical analyses were conducted utilizing SPSS software

(version 26) and R software (version 4.2.1). Quantitative variables

were expressed as mean ± SD or medians (25th percentile, 75th

percentile). The normality of the data was evaluated using the

Kolmogorov–Smirnov test. To analyze quantitative variables, either
Frontiers in Oncology 04
an independent samples t-test or a Mann–Whitney U-test was

conducted, while categorical variables were analyzed using either a

chi-square test or Fisher’s exact test. The models were assessed for

their diagnostic accuracy using ROC analysis. To compare the ROC

curves, DeLong’s test was employed. Moreover, calibration curves

were performed to evaluate the predictive performance.

Furthermore, decision curve analysis (DCA) was conducted to

evaluate the clinical usefulness. A statistically significant result

was defined as P < 0.05 (two-sided).
Results

Clinical data

In this study, 145 female patients with TNBC were finally

included, including 87 low TILs and 58 high TILs patients. There

were no significant variations in age and tumor size observed

between the low TILs group and high TILs group (P>0.05,

Table 1). Compared with the low TILs, the tumors with high

TILs showed a higher probability of having an oval or round

shape, parallel orientation, well-defined margins, complex cystic

and solid echo patterns, and posterior enhancement (all p<0.05).

The calcification and vascularity exhibited no significant differences

between the low TILs group and high TILs group (all p>0.05).
Univariate analysis of
clinical characteristics

In our research, the individuals were randomly allocated into

two separate datasets for training and validation purposes, with a

distribution ratio of 7:3. No significant differences were found in

clinical characteristics between the training and validation datasets

(P>0.05), except for margin (P=0.045, Supplementary Table S1).

There was no difference in age and tumor size between low TILs and

high TILs, as observed in the training dataset (P>0.05,

Supplementary Table S2) and validation dataset (P > 0.05,

Supplementary Table S3). The training dataset showed that shape,

posterior echo, margin, and Rad-score differed significantly (P <

0.05, Supplementary Table S2), while the validation dataset showed

that echo pattern and posterior echo differed significantly between

the low TILs group and high TILs group (P < 0.05, Supplementary

Table S3).
Rad-score model establishment

For every individual, a total of 837 radiomics features were

obtained. After undergoing a process of feature selection, a LASSO

regression analysis (Supplementary Figure S1) identified and

retained 25 radiomics features (Supplementary Table S4), which

were used to construct the Rad-score in the training dataset. The

high TILs group had higher Rad-score than the low TILs group in

all participants (P<0.001, Table 1), training dataset (P<0.001,

Supplementary Table S2), and validation dataset (P=0.002,
TABLE 1 Clinical characteristics and Rad-score in 145 patients with
TNBC, stratified by TIL level.

Low TILs
(n=87)

High TILs
(n=58)

P value

Age (y), mean ± SD 55.8 ± 10.3 53.0 ± 10.2 0.112

Size (mm), median 20.0 (14.0, 25.0) 20.5 (16.0, 25.0) 0.148

Shape 0.004

Oval/round 34(39%) 37(64%)

Irregular 53(61%) 21(36%)

Orientation 0.026

Parallel 63(72%) 51(87.9%)

Not parallel 24(28%) 7(12.1%)

Margin <0.001

Well-defined 16(18%) 27(46.6%)

Ill-defined 71(82%) 31(53.4%)

Echo pattern 0.030

Complex cystic-solid 2(2%) 7(12%)

Hypoechoic 85(98%) 51(88%)

Posterior echo <0.001

Enhancement 7(8%) 23(40%)

No/Shadowing 80(92%) 35(60%)

Calcification 0.400

Absent 57(65%) 34(59%)

Present 30(35%) 24(41%)

Vascularity 0.415

Absent 26(30%) 12(21%)

Internal vascularity 37(42%) 30(52%)

Vessels in rim 24(28%) 16(27%)

Rad-score, median -0.79(-1.28, -0.45) -0.12(-0.44, 0.47) <0.001
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Supplementary Table S3). No statistically difference was detected in

the Rad-score between the training dataset and validation dataset

(P=0.88, Supplementary Table S1).
Clinical model and Clin+RS integrated
model establishment

In the clinical model, multivariable logistic regression analysis

revealed that shape (oval/round shape, P=0.024) and posterior echo

(posterior enhancement, P=0.007) were independent predictors for

predicting high TILs in the training dataset (Table 2). In the Clin

+RS integrated model, multivariable analysis showed that posterior

echo enhancement (P=0.041) and Rad-score (P<0.001) were

independent predictors for predicting high TILs in the training

dataset (Table 2).
Performance, construction, and validation
of nomogram

In the training dataset, the clinical model achieved an AUC of

0.710, while the Rad-score model showed a higher AUC of 0.835.

The Clin+RS integrated model outperformed both with an even

higher AUC of 0.848 (Figure 3, Table 3). Compared to the clinical

model, the Rad-score model (P=0.039), and Clin+RS integrated

model (P=0.007) showed better performances; compared to the

Rad-score model, Clin+RS integrated model showed better

performance (P=0.048). In the validation dataset, the clinical

model achieved an AUC of 0.691, while the Rad-score model

showed an improved performance with an AUC of 0.811.

Notably, when integrating both clinical and Rad-score features in

the Clin+RS model, a higher AUC of 0.847 was observed (Figure 3,

Table 3). A nomogram of the Clin+RS integrated model was further

developed to individually predict high TILs in the patients with

TNBC (Figure 4). In the validation dataset, the prediction results

and observations showed a strong correspondence in terms of

calibration and DCA curves for the Clin+RS integrated

model (Figure 5).
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Discussion

In the current research, we effectively created and verified a

nomogram that combines CUS characteristics with CUS-Radiomics

features. The nomogram functions as an evaluation tool for

preoperatively assessing TIL levels in patients with TNBC, offering

valuable perspectives without requiring invasive procedures.

Moreover, the nomogram derived from the Clin+RS integrated

model demonstrated enhanced predictive accuracy and net benefit

compared to the clinical or Rad-score models individually.

Current treatment strategies for individuals with breast cancer

predominantly rely on the molecular categorization of this disease

(27, 28). TNBC, which accounts for approximately 10% to 20% of

cases with breast cancer, poses difficulties in treatment due to its

heterogeneous nature and absence of clearly defined molecular

targets (29, 30). Moreover, TNBC is linked to an increased

likelihood of recurrence and metastasis, leading to unfavorable

consequences (29). TILs have been identified as indicators of

immune infiltration and prognosis in breast cancer, showing

promise as potential biomarkers for predicting patient response to

immunotherapy (3, 4). However, the current quantification of TILs

relies on the manual assessment using pathological slides, which is

restricted by the invasive nature of specimen collection and the

labor-intensive analysis method. Therefore, noninvasive

preoperative imaging examinations are crucial for predicting the

TIL level in TNBC as a supplementary diagnostic method.

CUS has been proved to be a dependable imaging technique in

the clinical diagnosis of breast cancer. The present research

established a clinical model to determine the TIL level using

independent predictors of tumor shape and posterior echo

features. In the clinical model, we found that the tumors with high

TILs had a higher probability of have an oval/round shape and

posterior echo enhancement, which are the characteristics of benign

breast lesions (31, 32). Indeed, many TNBC tumors are easily

misdiagnosed as benign tumors because of their benign-like CUS

appearances (33). Therefore, the tumors with high TILs may be more

likely to be misdiagnosed as benign tumors, such as fibroadenomas.

The biological mechanism of the association between these

sonographic appearances and the TIL level remains to be elucidated.
TABLE 2 Multivariate logistic analysis.

Characteristics Clinical model Clin+RS model

OR 95%CI P value OR 95%CI P value

Shape NA

Oval/round 2.74 1.15- 6.71 0.024 NA

Irregular Reference NA

Posterior echo

Enhancement 4.34 1.53-13.64 0.007 3.39 1.08-11.68 0.041

No/Shadowing Reference Reference

Rad-score NA NA NA 7.83 3.21-24.17 <0.001
fro
Clin+RS, clinical features plus Rad-score.
NA, None applicable.
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Radiomics has become increasingly significant in the diagnosis

and prognosis prediction, and the Rad-score model has been

proposed for assessing the therapeutic outcome and prognosis of

individuals diagnosed with breast cancer (21, 22). In this study, after

radiomics feature selection, 25 radiomics features that described the
Frontiers in Oncology 06
tumor heterogeneity were associated with the TIL level

(Supplementary Table S4). Then, the Rad-score was created using

a set of 25 radiomics features mentioned above. Furthermore, we

established three models (clinical model, Rad-score model and Clin

+RS integrated model) to noninvasively predict the TIL level. Of
TABLE 3 Diagnostic performance of the prediction models in the training and validation datasets.

Prediction models Datasets AUC (95%CI) Accuracy Sensitivity Specificity

Clinical model Training 0.710 0.646 0.744 0.571

Clinical model Validation 0.691 0.783 0.40 0.968

Rad-score model Training 0.835 0.788 0.791 0.786

Rad-score model Validation 0.811 0.826 0.667 0.903

Clin+RS model Training 0.848 0.788 0.744 0.821

Clin+RS model Validation 0.847 0.891 0.733 0.968
Clin+RS, clinical features plus Rad-score.
FIGURE 3

ROC curves for predicting high TILs in training and validation datasets. Clin+RS, clinical+Rad-score; ROC, Receiver operating characteristic; RS,
Rad-score.
FIGURE 4

Nomogram for the clinical+Rad-score model for predicting the probability of high TILs.
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these three models, the Clin+RS integrated model demonstrated

superior performance, achieving an AUC of 0.848 and 0.847 in the

training dataset and validation dataset correspondingly. Prior to

this study, multiple investigations have investigated the correlation

between radiomics and TILs using mammographic or MRI images

in patients with breast cancer (34–38). However, CUS is the most

commonly diagnostic imaging method for breast tumors in clinical

settings due to the real-time, non-radiative, and cost-effective

advantages. To the best of our knowledge, our research is the first

to investigate the correlation between radiomics and TILs in TNBC

utilizing CUS images. The validation cohort demonstrated excellent

performance of the prediction model, achieving an AUC value of

0.847. Furthermore, the prediction model was validated by its high

accuracy (0.891), sensitivity (0.733), and specificity (0.968). The

calibration curve of the integrated model demonstrated a favorable

concordance, while the DCA of the integrated model indicated a

greater net benefit. Thus, the Clin+RS integrated model has the

potential to serve as a reliable and valuable approach in effectively

differentiating between high and low TILs in patients with TNBC.

In addition, nomogram is a useful tool for multi-index joint

diagnosis or prediction in breast cancers, providing substantial

advantages in clinical settings offering (39, 40). The present study

further constructed a Clin+RS integrated nomogram for

preoperatively predicting the TIL level in TNBC.
Frontiers in Oncology 07
This study has some limitations. First, our study conducted a

retrospective analysis at a single institution with a restricted sample

size. In the future, the model needs to be further validated by larger

sample sizes from multiple centers and a prospective cohort.

Second, we only analyzed CUS-based radiomics features. Future

studies could further perform radiomics analyses using ultrasound

elastography and contrast-enhanced ultrasound images. Lastly, the

variations in ultrasound image acquisition stemming from different

ultrasound equipment may also influence experimental outcomes.

In summary, the radiomics features based on CUS exhibit

promising potential as a biomarker for differentiation between

high and low TILs in patients with TNBC. The Clin+RS

integrated model, which integrates posterior echo and Rad-score,

exhibits enhanced predictive precision in comparison to the clinical

or Rad-score models individually. In addition, the Clin+RS

integrated nomogram holds tremendous potential for

preoperative individualized prediction of the TIL level in TNBC.
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