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Multiple myeloma (MM) is an incurable hematological disease characterized by

the uncontrolled growth of plasma cells primarily in the bone marrow. Although

its treatment consists of the administration of combined therapy regimensmainly

based on immunomodulators and proteosome inhibitors, MM remains incurable,

and most patients suffer from relapsed/refractory disease with poor prognosis

and survival. The robust results achieved by immunotherapy targeting MM-

associated antigens CD38 and CD319 (also known as SLAMF7) have drawn

attention to the development of new immune-based strategies and different

innovative compounds in the treatment of MM, including new monoclonal

antibodies, antibody-drug conjugates, recombinant proteins, synthetic

peptides, and adaptive cellular therapies. In this context, Syndecan1 (CD138 or

SDC1), a transmembrane heparan sulfate proteoglycan that is upregulated in

malignant plasma cells, has gained increasing attention in the panorama of MM

target antigens, since its key role in MM tumorigenesis, progression and

aggressiveness has been largely reported. Here, our aim is to provide an

overview of the most important aspects of MM disease and to investigate the

molecular functions of CD138 in physiologic and malignant cell states. In

addition, we will shed light on the CD138-based therapeutic approaches

currently being tested in preclinical and/or clinical phases in MM and discuss

their properties, mechanisms of action and clinical applications.
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1 Introduction

Multiple myeloma (MM) is a hematological malignancy affecting plasma cells (PCs)

lineage primarily found in the bone marrow (BM). The PCs are derived from B

lymphocytes, a type of white blood cell in the immune system of most vertebrates that

produces large amounts of antigen-specific immunoglobulins (Igs) in response to various

stimuli (1). In most of patients affected by MM, PCs are transformed into cancerous cells,
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multiply in the BM, and secrete a large amount of a specific Ig (also

known as monoclonal protein or M paraprotein), which

accumulates in the blood and tissues and leads to organ damage

and dysfunction (1, 2). To date, MM accounts for 1% of all cancers

and about 10% of all hematological malignancies, making it the

second most common hematological cancer after non-Hodgkin’s

lymphoma (3). Several data show that the incidence of MM is

strongly related to age and gender (1, 3, 4). In Italy, 38% of

diagnoses affect people aged 70 and over and only 2% affect

people younger than 40, with men being diagnosed with MM

more frequently than women (www.airc.it). This cancer shows

few characteristic signs that are driven by the production of M

paraprotein and dysregulation in the network of signaling

molecules produced by malignant PCs and other cellular

components located in the BM microenvironment (BMME) (5).

The most typical clinical manifestations that occur in MM patients

are defined by the C.R.A.B. criteria, an acronym that stands for

calcium elevation (or hypercalcemia), renal failure, anemia and/or

bone disease with lytic lesions. This criteria defines specific signs

and symptoms of end-organ damage that can be used to determine

the stage of progression of MM and as an important tool for MM

diagnosis and therapy (5, 6). Although standard chemotherapy

regimens based on immunomodulatory drugs (IMiDs), proteasome

inhibitors (PIs) or a combination of both have achieved remarkable

results in prolonging the survival of MM patients, they also target a

broad spectrum of healthy cells and therefore cause serious adverse

events when administered (7, 8). To achieve a safer and durable

response in MM patients several studies have identified key antigens

overexpressed on malignant PCs essential for MM progression, and

innovative targeted therapeutic strategies have been developed

against them, mainly based on monoclonal antibodies (mAbs),

immunoconjugates, synthetic peptides, and adaptive cellular

therapies (see below). In addition to the widely studied MM-

related antigens CD38 (9–11) and signaling lymphocyte activation

molecule F7 (SLAMF7) (12–14), against which three mAbs have

already received FDA approval for clinical use (10, 14), and the B-

cell maturation antigen (BCMA) (15, 16), there is growing evidence

for the key role of Syndecan1 (CD138 or SDC1), a transmembrane

heparan sulfate proteoglycan (HPSG), in MM tumorigenesis (17–

19). CD138 is highly expressed on malignant PCs and is involved in

several cellular pathways responsible for their growth, survival, and

proliferation by binding many growth factors and proteins in the

extracellular matrix (ECM) (17, 20). In addition to the well-known

cancer-related function of CD138 as an antigen receptor, its

tumorigenic role is enhanced by its dysregulated shedding

mechanism, which stimulates migration and angiogenesis of MM

cells and overall correlates with poor prognosis and limited

therapeutic efficacy (17–19). In this sense, the prominent role of

CD138 in MM biology suggests the identification and development

of novel therapeutic agents to suppress its activity, as no CD138-

targeted therapy has yet been approved for clinical use in MM and

only few are being investigated in relevant clinical phases. In this

review, we aim to provide a brief overview of the most important

molecular aspects of MM disease. Moreover, we focus our interest

on CD138 and discuss its the role in MM tumorigenesis and

progression. In addition, we provide a review of current CD138-
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development, highlighting key information on their mechanisms

of action, efficacy and safety profile.
2 Key molecular aspects of MM and
the BMME associated to cancer

2.1 Ontogenesis of B cells

B lymphocytes originate from the hematopoietic stem cells

(HSCs) in the BM and go through various stages of maturation to

become a mature B cell after differentiation (Figure 1A). The

development of B cells takes place primarily in the BM and

continues in secondary lymphoid organs (SLOs) such as lymph

nodes and spleen, where B cells can be activated into PCs. In the

maturation in the BM, B cells pass through various developmental

stages, each characterized by precise genetic patterns (21, 22).

During this differentiation, B cells undergo V(D)J recombination

and exhibit the pre-B cell receptor (pre-BCR) and eventually a

mature BCR, which consists of the IgH-IgL complex and can bind

antigens. B cells harboring the BCR on the cell membrane undergo

positive or negative selection in the BM to prevent the further

development of self-reactive cells and to ensure the formation of

functional B cells. Clones that have passed both positive and

negative selections, defined as transitional B cells, migrate to the

spleen to complete their development and eventually mature into

mature follicular B cells (FO) or marginal zone B cells (MZ),

depending on the stimuli received by the BCR and other

receptors (23, 24). After their differentiation, they are now

referred to as mature B cells or naive B cells (25). Finally, the B

cells migrate to SLOs where they undergo T cell-independent (MZ

B cells) or -dependent (FO B cells) activation. When naïve B cells

encounter their cognate antigen, they are activated and differentiate

into short- and/or long-lived antibody-secreting PCs (SLPCs/

LLPCs) after clonal expansion (26–28). SLPCs are proliferating

cells with a lifespan of 3 to 5 days that are mainly formed in

extrafollicular areas of SLOs and express IgM antibodies with low

affinity for immediate protection. On the contrary, LLPCs are non-

proliferating cells with a lifespan of several months to lifetime that

are typically formed during the GC reaction and secrete high-

affinity switch class antibodies located in BM cells (28). Two

consecutive phases, which occur predominantly in FO and in GC,

are required to the generation of LLPCs and memory B cells from

the naïve B cell in the primary response to antigen. In the first step,

the BCR-antigen interaction induces naïve B cells to differentiate

into SLPCs and GC B cells in the B cell follicles. In the second step,

the B cells are induced by antigens to differentiate into LLPCs and

memory B cells in the GCs. In this way, memory B cells differentiate

into LLPCs upon a recall response to antigens or by re-entering the

GC reaction (29, 30). Normal PCs predominantly express CD19,

CD45, CD27 and CD81 while malignant ones, undergoing MM

transformation, show a characteristic down regulation of the

mentioned markers but an overexpression of other antigens such

as CD56, CD117, CD28, CD33, CD200 (31), GPRC5D and FcRH5
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(32). In addition, particular key proteins viable for the development

of therapeutic strategies against MM, including CD38, SLAMF7,

BCMA and CD138, are present on the surface of healthy and

malignant PCs, though mostly up regulated in the latter population

(1, 33).
2.2 The development of MM is a multi-
stage process driven by genetic mutations,
pathways’ dysregulations and involves the
interplay between the BMME and MM

Although a complete information regarding the events

causative the MM pathogenesis is still missing, it is well known

that this cancer is a progressive disease characterized by different

stages of development, from the precursor disease state known as

monoclonal gammopathy of undetermined significance (MGUS) to

the asymptomatic smoldering MM (SMM) and MM. The string of

events leading to the pathogenesis of MM begins with molecular

alterations of mature B cells in the GC, a specialized

microenvironment in the lymphoid follicle, and includes Ig

translocations and hyperdiploidy, the most common form of

aneuploidy in MM cells (34–37) (Figure 1B). Chromosomal

translocations are mediated by errors in V(D)J recombination

and place oncogenes (OGs) under the control of strong
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14q32, and lead mainly to the dysregulation of D-cyclins and thus to

the transition from G1 to S in the cell cycle (38). Premalignant PCs

affected by these events are subjected to increased genomic

instability, which leads to the acquisition of new alterations as

MM progresses, mainly in the driver genes RAS, RB1 andMYC, and

in the tumor microenvironment (TME) (35–38). Furthermore, the

signaling pathways that are over-activated in MM have been largely

described and support MM pathogenesis by promoting cell survival,

proliferation, differentiation, and migration as well as angiogenesis,

immune dysregulation, drug resistance mechanism and inhibition

of apoptosis (39–53). The reciprocal interaction between MM cells

and the BMME is crucial for the development and progression,

especially in the early stages of malignant transformation of PCs, as

well as for the treatment of the disease. The BM is composed of

highly specialized cell lineages organized in anatomical and

functional niches and harbors different cell types belonging either

to the hematopoietic lineage, such as osteoclasts (OCs), B, T and

natural killer (NK) lymphocytes and myeloid-derived suppressor

cells (MDSCs), or to the non-hematopoietic cells, such as

osteoblasts (OBs), stromal BM and endothelial cells (54–56).

During the main course of MM evolution, malignant PCs show a

tendency to homing to the BM compartments as they are dependent

on the BMME signals for growth and survival (55, 57). In particular,

the homing process involves the interaction of the CXC chemokine
A

B

FIGURE 1

Stages of B cell development and pathogenesis of MM. (A) The development of B cells begins in the bone marrow, where the cells undergo a
rearrangement of the heavy and light chains of immunoglobulins and express a mature BCR in the immature B cell stage. After the transition to the
peripheral tissue, the B cells complete their maturation and during the final differentiation step, at the plasmablast stage, they acquire CD138
expression on their surface. (B) MM is a multistep process that starts from a premalignant stage called monoclonal gammopathy of undetermined
significance (MGUS), in which long-lived plasmacells (LLPCs) begin to produce low levels of monoclonal protein (M-protein). When the amount of
PC and the M-protein concentration increase, there is a transition from MGUS to an intermediate stage called smoldering multiple myeloma (SMM).
At this stage, the malignant clone begins to increase CD138 cell surface expression, which inversely correlates with CD19 expression. The selection
and spread of the malignant clone characterize the last stage of MM and causes infiltration of all organs, which correlates with poor prognosis.
Primary genetic events in the development of MGUS, SMM and MM mainly include chromosomal translocations, whereas the number of secondary
genetic alterations increases from MGUS to SMM and then to MM.
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receptor type 4 (CXCR4) with its ligand, the chemokine CXCL12,

which is thought to be crucial for the homing of plasmablasts in the

BM and the survival of mature LLPCs in niches organized by

CXCL12-expressing stromal cells (27, 55, 57). In MM, CXCR4 and

CXCL12 proteins are upregulated on both PCs and stromal cells.

The CXCL12-CXCR4 axis leads to an increase in the activity of very

late antigen-4 (VLA-4 or a4b1), an integrin located on the MM cell

membrane that enhances its binding to fibronectin and its ligand

vascular cell adhesion molecule 1 (VCAM-1), the latter being

expressed on the surface of the endothelial cells of the BM

microvasculature. P-selectin and E-selectin contribute to the

anchoring process in the initial stages of the process (58–62). The

interaction between accessory components of BM and malignant

cells leads to dysregulated activation of key signaling cascades by

affecting the production of cytokines and chemokines in stromal,

bone and immune cells, initiating or altering physical interactions

via adhesion molecules, and inducing the biosynthesis of exosomes,

small membrane-based vesicles that serve as a means of transport

for bioactive molecules (39, 54).
2.3 Epigenetic abnormalities contribute to
MM oncogenesis, progression and
drug resistance

As in many pathological conditions, epigenetic alterations

involving DNA methylation, histone modifications and non-

coding RNAs (ncRNAs) regulation play an important role in the

pathogenesis of MM (63). Abnormal deposition of epigenetic

markers and up and downregulation of ncRNAs likely dysregulate

the expression pattern of key tumor suppressor genes (TSGs) and

OGs involved in cell cycle control, apoptosis and cellular

differentiation, thus contributing to disease progression (63–66).

Furthermore, by Next Generation Sequencing (NGS) analyses non-

synonymous point mutations of epigenetic regulators such as lysine

demethylases KDM6A/UTX and KDM6B/JMJD3, histone

methyltransferases MMSET and MLL and homeobox protein

Hox-A9 (HOXA9) have been uncovered in MM cells (67, 68).

The mechanisms responsible for dysregulated DNA methylation in

MM cells are not yet fully characterized but are mainly caused by

aberrant expression of DNA methyltransferases. Decreased

expression of these enzymes leads to DNA hypomethylation,

which is increased in MM cells and associated with the

expression of several cancer-related genes involved in cell

migration (69), proliferation (70) and drug resistance mechanisms

(71), ultimately leading to myelomagenesis and poor survival. In

addition, DNA hypermethylation was observed at the CpG islands

in the promoter of specific TSGs, including some that are critical for

cell cycle progression (72–74) and cell adhesion (75, 76).

Hypermethylation of genes’ promoter has been also associated

with activation of the WNT signaling pathway (69, 77), an

aggressive phenotype, poorer response to therapies and short

survival for patients (78). Furthermore, epigenetic changes in MM

can be influenced by the TME and are crucial in explaining the high

degree of plasticity and clonal heterogeneity in different tumors (79,

80). Histones undergo acetylation and methylation, two well-known
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post-translational modifications (PTMs) that are largely involved in

the modulation of gene expression. In MM, deregulation of histone

methylation modifiers is associated with aberrant chromatin

accessibility and consequently with abnormal cell growth,

proliferation, adhesion and therapeutic potential (81–83).

Similarly, histone acetylation modifiers have been found to have

carcinogenic significance as they are involved in cell proliferation,

survival and apoptosis (84–86). Recently, a differential analysis of

histone mark profiles highlighted links between histone

modifications, including H3K9me3, H3K27me3 and H3K4me3,

and cytogenetic abnormalities or recurrent mutations in MM

cells, suggesting their prognostic value and association with drug

response (87). Since DNA methylation and histone modifications

have been reported to modulate the levels of microRNAs (miRNAs)

(88), epigenetic changes could also be responsible for impaired

miRNAs expression. In the panorama of ncRNAs, miRNAs are

probably the most important elements in the regulation of gene

expression at the post-transcriptional level. Several miRNAs are

present in cells, and a consistent fraction is deregulated in

malignant cells, supporting oncogenesis and progression of MM

(89). Since miRNAs exert a physiological negative regulation of

gene expression, MM exploits this mechanism to thrive by reducing

the expression of certain miRNAs targeting cancer-relevant OGs to

enhance their level, while increasing the amount of specific miRNAs

to inhibit the expression of TSGs, thus blocking their anti-cancer

effects (90, 91). As with other markers, the altered expression of key

miRNAs in malignant PCs can be used as a prognostic and

diagnostic tool, as in the case of miR-203 (92) or miR-1246 (93),

or to better understand the underlying mechanisms leading to

transformation of PCs and drug response and resistance in MM.
2.4 Dysregulation of the immune system
within the BMME in MM

Since the BM is an immunological tissue, it harbors many

immature and mature cellular components of the innate and

adaptive immune system. These immune cells originate either

from the myeloid compartment, such as MDSCs, macrophages

and dendritic cells (DCs), or from the lymphoid compartment,

which gathers helper (CD4+) and cytotoxic (CD8+) T lymphocytes,

NK and B cells. Progression of the disease to more advanced stages

is accompanied by severe immunologic dysfunction in the BMME

of MM patients and requires the cooperation of members of both

compartments (54, 94–98). In general, immune tolerance to

immune surveillance is promoted by different mechanisms,

including reprogramming of macrophages, generation of T cell

memory, activation of dendritic and T cells and alteration of

immune checkpoint molecules through the production of various

soluble factors (54, 94–98). Although it has been repeatedly

demonstrated that MDSCs modulate the CD8+ T response by

activating regulatory T cells while inhibiting effector T cells, and

that macrophages respond to pro-tumor chemokines directing their

polarization to M2 macrophages, including subsets of tumor-

associated macrophages (TAMs), most dysregulation occurs in

the lymphoid compartment (54, 94–98). For instance, CD4+ T
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cells go toward distribution and functional abnormalities and

trigger antitumor responses by interacting with macrophages in

the BM, while CD8+ T cells increase in MM but show low

proliferation and cytotoxic activity against MM cells and

approach exhaustion. NK and B cell activities are severely

impaired in MM due to reprogramming of activating/inhibitory

receptors for NK and impaired functionality for B cells. Finally,

mesenchymal stromal cells (MSCs) contribute to the creation of an

immunosuppressive environment (54, 94–98).
3 Syndecan1 is markedly involved in
MM pathogenesis

3.1 The Syndecans protein family mediates
cell signaling and biological functions

The ECM consists of an intricate, non-cellular network of

carbohydrates and proteins that surrounds cells and whose main

function is to provide them with the necessary biochemical and

structural support. Although the composition of the ECM varies

according to multicellular structures, it is generally composed of

several fibrous proteins, proteoglycans (PGs) and other molecules

arranged in a reticular mesh-like structure. The contribution of the

ECM to important cellular processes required for the maintenance

of tissue homeostasis, including cell signaling, proliferation,

differentiation and migration, has been extensively studied (99–
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101). Syndecans (SDCs) are a family of type I transmembrane

HSPGs composed of sulfated glycosaminoglycans (GAGs), heparan

sulfate (HS), or both HS and chondroitin sulfate (CS) covalently

linked to core proteins (19, 102). The HS polysaccharide chains

confer an important modulatory role to SDCs in various processes

by interacting with the “heparin-binding domains” harbored by a

variety of growth factors (GFs), including Epidermal growth factor

(EGF), Fibroblast growth factor (FGF), Hepatocyte growth factor

(HGF), Platelet growth factor (PDGF) and Vascular endothelial

growth factor (VEGF), but also present on proteases and various

other ligands in the ECM compartment (103–105). This

engagement leads to the triggering of downstream signal

transduction pathways that ultimately alter cell behavior in

response to specific stimuli (106). In mammals, the SDC family is

composed of four members, from SDC1 to SDC4, which share

common features in terms of composition and function. All

members consist of three different structural domains: the

extracellular, the transmembrane and the cytoplasmic domains

(18, 102) (Figure 2A). The first domain harbors the HS and CS

chains, which are covalently bound to serine residues, and mediates

most interactions with a variety of ligands. In addition, the

extracellular domain contains the cleavage site, a specific SDC

portion located in the proximity of outer membrane that is

recognized by specific proteases and allows the release of a

functional soluble ectodomain (see below). The single

transmembrane domain anchors the SDCs to the membrane and

carries the consensus G-X-X-X-G, a conserved dimerization motif.

Finally, the cytoplasmic tail is divided into two conserved regions
A B

FIGURE 2

CD138 molecular structure and role in the microenvironment. (A) Schematic representation of the molecular structure of CD138. Details on each
domain are provided in the text. (B) CD138 has various roles in the MM microenvironment: (I) it interacts with various extracellular matrix, proteins
such as laminin and fibronectin, and promotes adhesion and migration. (II) It acts as a co-receptor in various interactions, stabilizes multicomplex
formation between GF receptor and a4b1 integrin, and activates pathways involved in cell proliferation and survival. (III) Its extracellular domain can
be cleaved by proteases and released in the extracellular environment, (IV) also acting as a co-receptor on other cells and activating paracrine
signaling. (V) With the transmembrane domain, CD138 activates various factors, including those involved in exosome biogenesis. (VI) On endothelial
cells, it facilitates the interaction between VEGF and VEGFR2, leading to activation of the angiogenic signaling pathway.
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(C1 and C2) flanked by a variable region (V). The C1 region is

located under the cell membrane, where it interacts with the

cytoskeleton and is involved in cytoskeletal organization and

endocytosis, while the C2 region, the C-terminal domain, can

bind various adaptor proteins that harbor the PDZ domains and

mediate growth factor-induced cascades. Interestingly, C1 and C2

are highly conserved among SDCs, while the V region shows little

similarity, although it is highly conserved between species (17, 18).
3.2 The role of CD138 in
physiological state

Among the members of the SDC family, SDC1 (also known as

CD138) is the most studied gene since it was biochemically

characterized in the murine mammary epithelial NMuMg cell line

by Merton Bernfield and colleagues in 1989 (107). The human

CD138 gene is located on chromosome 2 (2p24.1) and has a length

of approximately 24.6 kb, divided into 5 exons, and encodes the

HSPG protein CD138. It has a predicted molecular size of 33 kDa

and consists of 283 amino acids (107), although its mass is much

larger due to its carbohydrate modifications - three sites for CS

chains and two for HS chains - in the extracellular domain (108).

Together with SDC2 and SDC4, it is translated with a signal peptide

that is later cleaved during its processing (102). CD138 is mainly

expressed on epithelial cells, transiently on developing

mesenchymal cells and mature B cells and together with other

molecules maintains the normal morphological phenotype (18,

109). Thanks to the presence of HS outer chains that facilitate

ligand-receptor recognition and its ability to interact with integrins

and ECM components such as fibronectin and laminin, CD138

serves as a key receptor for the maintenance of physiological cell

state (110) (Figure 2B). Like other SDCmembers, CD138 undergoes

shedding, a regulated proteolytic cleavage in which a portion of the

extracellular domain is cleaved off at a juxtamembrane site and

released as soluble form (111, 112). Shedding is usually mediated by

sheddases, a general term that includes members of the matrix

meta l lopro te inase (MMP) (113) , A-d i s in tegr in and

metalloproteinase (ADAM) (114) and Beta-site amyloid precursor

protein-cleaving enzyme 1 (BACE) protein families (115). In

addition, heparanase (HPSE), an endoglycosidase that acts within

the ECM to trim HS chains and generate specific short fragments by

exposing the core protein for cleavage by MMPs, is largely involved

in CD138 shedding and is severely implicated in tumor

angiogenesis, growth and metastasis (116–118). After cleavage,

the newly formed fragment is deposited in the ECM environment

where it exerts autocrine and paracrine effects by reducing the

available binding sites on the transmembrane of CD138 and other

PGs, acting as a sponge for cytokine/chemokine/GFs ligands and

consequently affecting downstream cascades (17, 111). In addition,

the shed fragment can also formmorphogen gradients across tissues

and penetrate the cytoplasmic environment of the cells, indirectly

modulating the gene expression patterns of selected genes (119).

This process occurs to a small extent constitutively but can be

significantly altered in response to various stimuli and/or under

pathological conditions, making CD138 a diagnostic and prognostic
Frontiers in Oncology 06
marker for monitoring infectious states and tumor progression.

Nevertheless, the involvement of CD138 in cell-matrix interactions,

cell migration and proliferation makes it a valuable player in the

progression of pathological conditions, including inflammation and

cancer (17–19, 102).
3.3 The role of CD138 in MM
pathological condition

CD138 is highly expressed on both end-stage differentiated

normal and malignant PCs and plays a causal role in the

progression of MM, as evidenced by the fact that its ablation

leads to poor growth of MM cells in vitro and apoptosis in vivo

(120, 121). In the context of malignant transformation, it has been

reported that CD138 expression correlates with disease severity

(33). The correlation between its low epithelial expression and a

high shed level in serum, which is mainly favored by dysregulated

HPSE activity, indicates a high tumor stage with a low overall

survival rate (122). However, this correlation can also exist at the

time of diagnosis, being a sign of a poor prognosis, and used as an

index of the effectiveness of the treatment regimen (17, 33).

Accordingly, patients who respond to chemotherapy have lower

CD138 serum levels than patients who do not respond to treatment,

emphasizing the key role of CD138 in MM progression (123).

Moreover, CD138 surface expression has been shown to

dynamically drive the switch between growth and spread of MM

depending on nutrient conditions (124), to also act as a co-receptor

for transmembrane activator and CAML interactor (TACI) and

APRIL, promoting the APRIL/TACI-associated pathways that

induce proliferation and survival of cancerous PCs (125), and few

studies have addressed the role of CD138 in bone disease, one of the

pathognomic hallmarks of MM pathogenesis (50, 126, 127). The

core of MM-related bone disease lies in the presence of an

unbalanced equilibrium in physiologic bone turnover, with an

increase in bone resorption activity by OCs and a concomitant

decrease in bone formation mediated by OBs. This phenomenon

has been shown to be mediated by MM cells which, by interacting

with bone cells and inducing the production of cytokines from the

BMME, stimulate the OCs activity and in parallel suppresses OBs

function, promoting disease progression (128, 129). The increased

OCs activity is primarily mediated by the RANK/RANKL/OPG

molecular pathway, which is critical for their maturation and bone

remodeling in both physiological and pathological conditions. The

key components of this pathway are RANK, a transmembrane

receptor belonging to the tumor necrosis factor receptor (TNFR)

molecular subfamily expressed on precursor and mature OCs, and

its ligand RANKL, a cytokine expressed by OBs (51, 127, 130). The

interaction between RANK/RANKL is of fundamental importance

for the differentiation, activation and survival of OCs and

significantly controls bone resorption. However, OPG, a cytokine

secreted by OBs and BMSCs, disrupts RANK/RANKL binding by

acting as a soluble decoy for RANKL and plays a critical role in

inhibiting osteoclastogenesis and consequently excessive bone

resorption by OCs (130, 131). In MM, malignant PCs act on

cellular cascades to stimulate the expression of RANKL and
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decrease the availability of OPG within the BMME, shifting the

RANKL/OPG balance in favor of OPG. In this way, the PCs cause

an increase in the number and activity of OCs to the detriment of

OBs, leading to bone destruction and disease. Furthermore,

upregulation of CD138 by MM cells enables binding,

internalization and degradation of OPG, thereby promoting

RANKL-mediated activity of OCs and osteolysis (127, 130, 131).

Similarly, Activin A is a pleiotropic cytokine that belongs to the

TGF-b superfamily and can trigger the NF-kB signaling pathway by

inducing RANK expression to support OCs differentiation (132).

Overall, RANKL and its antagonist OPG are two important

molecules to understand the features of myeloma bone disease

(MBD) as they are closely associated with the clinical outcome of

the disease (133). Finally, CD138 in synergy with HPSE has been

shown to promote MM bone disease by activating the HGF-Met-IL-

11-RANKL signaling axis, resulting in inhibition of bone formation

and promotion of bone resorption (134). Of note, a small

subpopulation of human MM cells lacking the expression of

CD138 has been reported to have tremendous proliferative

potential, drug resistance, carcinogenic ability, and the capacity to

differentiate into CD138+ PCs in in vitro experiments and in vivo

models (135, 136). In line with these findings, patients with CD138-

plasmacytomas have been diagnosed with worse prognosis (124).

Additionally, Wu and colleagues found a dramatic difference in

gene expression between CD138- and CD138+ PCs, mainly

centered on the ataxia telangiectasia mutated and Rad3 related

kinase-checkpoint kinase 1 (ATR-CHK1) cell cycle pathway, which

is closely related to the clonal proliferation characteristics of CD138

+ PCs and correlates with low overall survival in MM patients (120).

Nevertheless, there are few studies addressing the role of epigenetic

regulators in CD138+ PCs. Zhang and colleagues have found DNA

methylation peaks in intragenic and intronic regions in bone

marrow-derived CD138+ MM cells and found hypermethylation-

mediated inhibition of tumor suppressors miRNA-10b-5p and

miRNA-152, leading to overexpression of their target genes OGs

DNMT1, BTRC, MYCBP, and E2F3 (137). In addition, Gullà and

colleagues showed that upregulation of protein arginine

methyltransferase 5 (PRMT5), an enzyme involved in growth and

survival pathways that promote tumorigenesis, was closely

associated with decreased progression-free survival (PFS) and

overall survival (OS) in immunopurified CD138+ cells, suggesting

the oncogenic role and prognostic significance of PRMT5 in MM

pathogenesis (138). Notably, Yan and colleagues demonstrated that

piRNA-823, a member of piwi-interacting RNAs, a large class of

endogenous small ncRNAs potentially involved in post-

transcriptional gene silencing, contributes to tumorigenesis by

regulating de novo DNA methylation and angiogenesis in primary

CD138+ MM cells (139).
3.4 CD138 shedding is a regulated
mechanisms in MM and associated
to tumorigenesis

The importance of CD138 shedding in various cancers/

hematological malignancies is well documented (19, 33, 140),
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including in MM cells and within dysfunctional BMME, and

unfortunately associated with poor prognosis, treatment and

overall survival once its serum level increases in advanced-stage

disease (116, 141–145). In CD138 shedding, HPSE plays a key role

as its dysregulated expression correlates with poor prognosis in MM

patients (116, 146). Several studies have addressed the relationship

between CD138 shedding, HPSE and the progression of MM (117,

142, 146, 147). For example, upregulation of HPSE promotes

CD138 shedding and expression, which is responsible for the

increased concentration of CD138 ectodomain in BMME and

MM serum, thus promoting angiogenesis, growth, and metastasis

of MM to bone in vivo (117). Similarly, Purushothaman and

colleagues observed that in MM, the HPSE-induced increase in

CD138 shedding is facilitated by the sustained stimulation of ERK

phosphorylation, which in turn drives MMP-9 expression (147). In

addition, Ramani and co-workers reported that HPSE stimulates an

increase in the expression of HGF, a putative paracrine and

autocrine regulator of MM growth, and CD138 shedding to

enhance HGF signaling in the MM environment, fostering its

critical role as a modulator of MM progression (146). Similarly, it

was observed that soluble CD138 binds to HGF via HS chains

remaining on the fragment and that this interaction promotes

activation of the PI3K/Akt and Ras/Raf/MAPK/ERK kinase

signaling pathways as well as stimulation of the HGF/Met

pathway, leading to proliferation and survival of MM cells (142).

The involvement of CD138 and/or HPSE in other important

signaling cascades has been investigated as well (148–150). In

particular, CD138 promotes the angiogenic phenotype of MM

endothelial cells by supporting VEGF-VEGF2 signaling (148) and

the binding of EGF family ligands to the HS chains of CD138 is

essential for the growth of MM (150). In addition, Purushothaman

and colleagues also demonstrated that an increase in HPSE

expression by enhancing VEGF and other factors leads to a

decrease in nuclear CD138 and increased histone acetyltransferase

(HAT) activity, which in turn upregulates the transcription of

several genes that cause an aggressive tumor phenotype in

MM (149).
4 CD138-based therapeutic strategies
in MM

4.1 The development of CD138-based
therapies is associated with benefits
and risks

In the next future, CD138-based therapies could gain a firm

place in the panorama of MM therapeutic strategies. Many studies

are investigating the use of CD138 as a suitable target for therapy as

it is readily accessible on the cell membrane and it is fundamental in

the physiology of malignant PCs, especially in aggressive relapsed/

refractory (RR) stages of MM (Table 1). Similarly to other

immunotherapeutic approaches, CD138-based strategies are

associated with some benefits but also with some disadvantages

and risks. Most of the current anti-CD138 therapeutics are
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TABLE 1 Clinical trials in MM.

NCT
Number

Title Status Conditions Interventions Phases Refs

NCT03196414

Study of T Cells Targeting CD138/BCMA/CD19/More
Antigens (CART-138/BCMA/19/More) for
Chemotherapy Refractory and Relapsed

Multiple Myeloma

Recruiting MM
Biological: CART-138/BCMA/

19/more
Phase 1|
Phase 2

–

NCT03672318
Study of ATLCAR.CD138 Cells for Relapsed/Refractory

Multiple Myeloma
Recruiting

MM|Immune
System
Diseases

Drug: CAR138 T Cells Phase 1 –

NCT01745588

Autologous Stem Cell Transplant With Pomalidomide
(CC-4047¬Æ) Maintenance Versus Continuous
Clarithromycin/ Pomalidomide / Dexamethasone

Salvage Therapy in Relapsed or Refractory
Multiple Myeloma

Active,
not

recruiting
MM

Drug: Pomalidomide|Procedure:
stem cell|Drug: Dexamethasone|

Drug: Clarithromycin
Phase 2 –

NCT06006741 Universal CAR-T Cells Targeting Multiple Myeloma Recruiting
MM

in Remission
Biological: MM-specific universal

CAR T cells
Phase 1 –

NCT00869232
UARK 2008-02 A Trial for High-risk Myeloma

Evaluating Accelerating and Sustaining
Complete Remission

Active,
not

recruiting
MM

Drug: Velcade|Drug: Melphalan|
Drug: Thalidomide|Drug:

Dexamethasone|Drug: Cisplatin|
Drug: Adriamycin|Drug:
Cyclophosphamide|
Drug: Etoposide

Phase 2 –

NCT05759793
A Study of CAR-GPRC5D in Patients With Relapsed/
Refractory Multiple Myeloma or Plasma Cell Leukemia

Recruiting RRMM|PCL Drug: CAR-T (CAR-GPRC5D) Phase 1 –

NCT04850846
Investigation of Metformin for the Prevention of
Progression of Precursor Multiple Myeloma

Recruiting MGUS|SMM
Drug: Metformin XR|

Other: Placebo
Phase 2 –

NCT04790474

Ixazomib-pomalidomide-dexamethasone as Second or
Third-line Combination Treatment for Patients With
Relapsed and Refractory Multiple Myeloma Previously

Treated With Daratumumab, Lenalidomide
and Bortezomib

Recruiting RRMM
Drug: ixazomib-

pomalidomide-dexamethasone
Phase 2 –

NCT04975997

Open-label Study Comparing Iberdomide,
Daratumumab and Dexamethasone (IberDd) Versus
Daratumumab, Bortezomib, and Dexamethasone
(DVd) in Participants With Relapsed or Refractory

Multiple Myeloma (RRMM)

Recruiting MM
Drug: Dexamethasone|Drug:

Daratumumab|Drug: Bortezomib|
Drug: Iberdomide

Phase 3 –

NCT02773030

A Study to Determine Dose, Safety, Tolerability, Drug
Levels, and Efficacy of CC-220 Monotherapy, and in
Combination With Other Treatments in Participants

With Multiple Myeloma

Active,
not

recruiting
MM

Drug: CC-220|Drug:
Dexamethasone|Drug:

Daratumumab|Drug: Bortezomib|
Drug: Carfilzomib

Phase 1|
Phase 2

–

NCT03651128
Efficacy and Safety Study of bb2121 Versus Standard
Regimens in Subjects With Relapsed and Refractory

Multiple Myeloma (RRMM)

Active,
not

recruiting
MM

Biological: bb2121|Drug:
Daratumumab|Drug:
Pomalidomide|Drug:
Dexamethasone|Drug:

Bortezomib|Drug: Ixazomib|Drug:
Lenalidomide|Drug: Carfilzomib|

Drug: Elotuzumab

Phase 3 –

NCT01946477

Pomalidomide in Combination With Low-dose
Dexamethasone or Pomalidomide in Combination

With Low-dose Dexamethasone and Daratumumab in
Subjects With Relapsed or Refractory Multiple

Myeloma Following Lenalidomide-based Therapy in
the First or Second Line Setting

Active,
not

recruiting
MM

Drug: Pomalidomide|Drug:
Dexamethasone|

Drug: Daratumumab
Phase 2 –

NCT03896737
Daratumumab-bortezomib-dexamethasone (Dara-VCd)
vs Bortezomib-Thalidomide-Dexamethasone (VTd),

Then Maintenance With Ixazomib (IXA) or IXA-Dara

Active,
not

recruiting
MM

Drug: Daratumumab plus Velcade
Cyclophosphamide

Dexamethasone|Drug: Velcade
Thalidomide Dexamethasone

Phase 2 –

(Continued)
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developed by engineering and/or arming mAbs with toxic payloads,

modifying T/NK cells to recognize CD138+ clones and synthesizing

short peptides (Figure 3), and some of them provided remarkable

results in terms of PCs targeting, therapeutic efficacy and safety (see

below). The exceptional accuracy in the targeting of CD138 on MM

cells can significantly reduce the systemic toxicities associated with
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conventional chemotherapy and stimulate the patient’s immune

system to efficiently recognize and attack malignant cells,

potentially leading to long-term positive benefits. The eradication

of CD138+ clones can be achieved by direct/indirect mechanisms

elicited by mAbs (VIS832), ADCs (indatuximab ravtansine) and

other immunoconjugates (B-B4-I131), or by activating CD138-
TABLE 1 Continued

NCT
Number

Title Status Conditions Interventions Phases Refs

NCT00723359
Safety and Dose Determining Study of BT062 in

Patients With Relapsed or Refractory
Multiple Myeloma

Completed MM Drug: BT062 Phase 1

(151–
153)

NCT01001442
Safety and Dose Determining Multi-dose Study of
BT062 in Patients With Relapsed or Refractory

Multiple Myeloma
Completed MM Drug: BT062

Phase 1|
Phase 2

NCT01638936
BT062 in Combination With Lenalidomide or

Pomalidomide and Dexamethasone in Patients With
Multiple Myeloma

Completed MM
Drug: BT062,

intravenous administration
Phase 1|
Phase 2

NCT01296204
Radioimmunotherapy (RIT) in MULTIPLE

MYELOMA Using the Antibody B-B4 Radiolabelled
With IODE 131

Completed MM Drug: BB4 antibody-Iodine 131 Phase 1 (154)

NCT01886976
Treatment of Chemotherapy Refractory Multiple

Myeloma by CART-138
Unknown
status

MM Biological: CART-138 cells
Phase 1|
Phase 2

(155)

NCT01718899
Phase 1/2a Study of Cancer Vaccine to Treat

Smoldering Multiple Myeloma
Completed SMM Biological: PVX-410 Phase 1 (156)

NCT02886065
A Study of PVX-410, a Cancer Vaccine, and

Citarinostat +/- Lenalidomide for Smoldering MM

Active,
not

recruiting
SMM

Drug: Hiltonol|Drug: Citarinostat|
Drug: Lenalidomide|Biological:

PVX-410
Phase 1 –

NCT01764880 SST0001 (Roneparstat) in Advanced Multiple Myeloma Completed MM Drug: SST0001 (Roneparstat) Phase 1 (157)
frontie
Clinical trials present on ClinicalTrials.gov searching the keywords “multiple myeloma” and “138” in “all studies”. The research has been done adding the filters: recruiting, active, not recruiting,
early phase 1, phase 1, phase 2 and phase 3. The research has been performed on January 5th, 2024. Trials going from “NCT00723359” to “NCT01764880” have been added later with the
references found in the manuscript. MM: multiple myeloma. SMM, smoldering multiple myeloma; MGUS, monoclonal gammopathy of undetermined significance.
FIGURE 3

CD138-based therapies. Schematic representation of CD138-based therapies against MM.
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specific T cells to elicit strong cytotoxic effects against malignant

cells, as is the case of PVX-410 cancer vaccine and CART-138 cells

(see below). In addition, some studies have shown the possibility of

combining immunotherapy with other anti-MM agents, such as the

chemotherapeutic agents widely used in the treatment of MM,

leading to encouraging results in terms of PFS and OS in patients

(151, 152). Nonetheless, the development of CD138-based strategies

must deal with complexities and uncertainties. Like other antigen-

based approaches, CD138-based therapy may not be effective in all

patients. Response may depend on environmental and individual

factors, such as the health of the immune system, which may be

fatally compromised in already debilitated MM patients, and the

specific molecular characteristics of the malignant cells (158). For

example, higher doses may be necessary to achieve a therapeutic

response, but at the same time may cause immune-related side

effects and severe or potentially fatal toxicities, leading to poor

treatment outcome and, in the worst case, accelerating patient
Frontiers in Oncology 10
death. Besides, a fraction of patients may only have a partial

response to therapy even after the administration of higher doses

of the compound, with the potential manifestation of non-specific

side effects (158). Moreover, a known common feature of cancer is

its ability to overcome the efficacy of therapeutic approaches by

deploying drug resistance mechanisms (159). Consequently, as

therapy progresses, some fractions of MM clones may evade the

benefits of treatment by either downregulating the expression of

CD138 or gradually reducing its presence in the cell membrane,

eventually leading to treatment failure and disease progression in

some patients. In addition, some therapies may require a long time

to be developed or be too expensive from an economic perspective

and therefore inaccessible to most of the patients or healthcare

systems (160). Furthermore, although most CD138-based strategies

have provided encouraging data in vitro and in vivo, only few of

them are under evaluation in relevant clinical phases (Table 2),

meaning that long-term results on their efficacy and safety are still
TABLE 2 CD138-based therapies in MM.

Strategy Treatment NCT Number Study Title Developmental
state

Study
Status

Phases Refs

mAbs VIS832 – – Preclinical – – (161,
162)

4B3 – – Preclinical – – (163)

ADCs Indatuximab
ravtansine
(BT062)

NCT00723359 Safety and Dose
Determining Study of
BT062 in Patients With
Relapsed or Refractory
Multiple Myeloma

Clinical Completed PHASE1 (151–
153)

Indatuximab
ravtansine
(BT062)

NCT01001442 Safety and Dose
Determining Multi-dose

Study of BT062 in
Patients With Relapsed or

Refractory
Multiple Myeloma

Clinical Completed PHASE1/
2a

(151–
153)

Indatuximab
ravtansine
(BT062)

NCT01638936 BT062 in Combination
With Lenalidomide or
Pomalidomide and
Dexamethasone in
Patients With

Multiple Myeloma

Clinical Completed PHASE1/
2a

(151–
153)

B-B4-DM1 – – Preclinical – – (164)

Radioimmunoconjugates B-B4-
Iodine-131

NCT01296204 Radioimmunotherapy
(RIT) in MULTIPLE
MYELOMA Using the

Antibody B-B4
Radiolabelled With

IODE 131

Clinical Completed PHASE1 (154)

B-B4-
Bismuth-213

– – Preclinical – – (165)

B-B4-Bismuth-
213-9E7.4

– – Preclinical – – (166,
167)

B-B4-
Lutetium-
177-9E7.4

– – Preclinical – – (167)

Immunotoxins B-B2-saporin – – Preclinical – – (168)

(Continued)
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undisclosed and further research is needed to fully understand their

potential benefits and limitations.
4.2 Monoclonal antibodies

Immunotherapy with mAbs is widely used to treat a variety of

solid and hematological cancers, not only as monotherapy but also

in combination with conventional chemotherapeutic agents and is

clinically effective also on patients with advanced-stage cancers.

mAbs exert potent anti-tumor activity by interacting with
Frontiers in Oncology 11
components of the immune system to induce effector functions

through antibody-dependent cell-mediated cytotoxicity (ADCC),

complement-dependent cytotoxicity (CDC) and antibody-

dependent cellular phagocytosis (ADCP) and/or affect tumor

biology through direct modulation of survival-related signal

transduction (178).

4.2.1 VIS832
VIS832 is an afucosylated humanized IgGk mAb derived from

the B-B4 clone. This mAb showed robust and dose-dependent

CD138 engagement to MM cell lines and patient-derived MM
TABLE 2 Continued

Strategy Treatment NCT Number Study Title Developmental
state

Study
Status

Phases Refs

B-B4-saporin – – Preclinical – – (168)

Immunocytokines Anti-
CD138-
IFNa14

– – Preclinical – – (169,
170)

Anti-
CD138-IFNa2

– – Preclinical – – (169,
170)

Anti-
CD138-

IFNa2YNS

– – Preclinical – – (169,
170)

BsAbs ULBP2-BB4 – – Preclinical – – (171)

STL-001 – – Preclinical – – (172)

STL-002 – – Preclinical – – (173)

CAR-Ts CART-138 NCT01886976 Treatment of
Chemotherapy Refractory
Multiple Myeloma by

CART-138

Clinical Unknown PHASE1/
2a

(155)

CD138.CAR NCT03672318 Study of ATLCAR.CD138
Cells for Relapsed/

Refractory
Multiple Myeloma

Clinical Recruiting PHASE1 (174)

CAR-NK – – Preclinical – (175)

Cancer vaccines PVX-410 NCT01718899 Phase 1/2a Study of
Cancer Vaccine to Treat

Smoldering
Multiple Myeloma

Clinical Completed PHASE1/
2a

(156)

PVX-410 NCT02886065 A Study of PVX-410, a
Cancer Vaccine, and

Citarinostat +/-
Lenalidomide for
Smoldering MM

Clinical Active,
not

recruiting

PHASE1 –

SSTNs SSTN-IGF-1R – – Preclinical – – (176,
177)

SSTN-VLA4 – – Preclinical – – (176,
177)

SSTN-
VEGFR2

– – Preclinical – – (176,
177)

HPSE inhibitor Roneparstat
(SST0001)

NCT01764880 SST0001 (Roneparstat) in
Advanced

Multiple Myeloma

Clinical Completed PHASE1 (157)
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cells, as well as target-specific ADCC mediated by NK cells and

macrophages against MM cell lines and autologous patient cells.

Further in vitro experiments showed that VIS832 enhanced lysis of

MM cells in combination with the IMiDs lenalidomide (Len) and

pomalidomide (Pom) and the PI bortezomib (Btz) and induced

ADCP against MM cells that were sensitive and resistant to

dexamethasone (Dex), IMiDs or daratumumab. In addition,

VIS832 showed significant anti-cancer activity in a xenograft

mouse model of MM, alone or in combination with Len or Btz,

two drugs that synergize its therapeutic activity (161). In a previous

work, Yu and colleagues investigated the use of the chimeric anti-

CD138 mAb 1610 in in vitro studies and showed that it is able to

induce ADCC cytotoxicity in CD138+ MM cells through NK cell-

mediated activation (162).

4.2.2 4B3
4B3 is a mouse mAb anti-CD138 that recognize a similar

epitope with B-B4 and is capable to inhibit two type of MM cells

(XG1 and XG-2) proliferation in vitro in a dose-dependent

manner (163).
4.3 Antibody-drug conjugates

Antibody-drug conjugates (ADCs) are synthetic molecules that

represent an innovative class of compounds with potent anti-cancer

activity. Each ADC consists of a selective mAb, either full size or

fragment, and a potent cytotoxic agent attached to the mAb through

a linker, a short organic spacer. Compared to conventional

chemotherapy, ADCs show remarkable improvements in terms of

targeted killing of malignant cells and limited side effects outside the

tumor, two aspects that strongly depend on their precise

mechanism of action (178). Among the clinically recognized

ADCs, belantamab mafotodine (Blenrep®) was recently approved

by the FDA and EMA for the treatment of RRMM and targets the

BCMA, a member of the tumor necrosis factor receptor family that

is upregulated in this type of cancer (178). However, in 2022

Blenrep was withdrawn from market based on the outcome of the

DREAMM-3 phase III confirmatory trial, which did not meet the

requirements of the FDA Accelerated Approval regulations

(www.gsk.com). Despite few ADCs targeting BCMA are currently

in various stages of development, other candidate markers are also

being investigated, including CD138.

4.3.1 Indatuximab ravtansine
Indatuximab ravtansine or BT062 (Biotest AG) is an ADC

consisting of a chimeric IgG4 mAb (clone B-B4) against CD138

conjugated via a disulfide-based linker to the maytansinoid drug

DM4 (or Ravtansine), a microtubule polymerization inhibitor. The

cytotoxicity is achieved by the dose-dependent activation of

apoptosis. BT062 showed significant anti-cancer activity in

preclinical testing, as it inhibited tumor growth and prolonged

host survival when administered as monotherapy in xenograft

mouse models (179) and in combination with Len and Len/Dex

in vitro and in vivo mouse xenograft models of MM (153). Building
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on this promising foundation, a phase I clinical trial investigated the

effect and best dose of BT062 when administered as monotherapy in

RRMM patients (NCT00723359). This ADC was administered at a

dose of 10 mg/m2 to 200 mg/m2 once every three weeks to 31

patients, all of whom received both a PI (Btz) and an IMiD (Len or

Thal). The maximum tolerated dose (MTD) was set at 160 mg/m2

as few patients developed dose-limiting toxicities (DLT), including

mucositis and skin and ocular toxicities, at this or a higher dose (200

mg/m2). Although the data from this study showed an acceptable

safety profile, the low objective response rate (ORR) (3.2%)

prompted the investigation of an alternative dosing regimen in a

Phase I/IIa study (151). The clinical trial NCT01001442 enrolled 34

RRMM patients who had already received a PI (Btz) and an IMiD

(Len or Thal) with the aim of evaluating the BT062 multi-dosage

schedules. The data collected showed that the multi-dose regimen,

administered on days 1, 8 and 15 of a four-week cycle, fixed the

MTD at 140 mg/m2 and resulted in median PFS and OS of 3 and

26.7 months, respectively, with most adverse effects being grade 1 or

2, supporting further studies on the use of BT062 in combinatorial

regimens (151). Following these encouraging results, a multicenter

Phase I/IIa study was conducted in patients with RRMM to evaluate

the safety, activity, and pharmacokinetics of BT602 and low-dose

Dex in combination with the IMiDs drugs Len or Pom

(NCT01638936). BT062 was administered intravenously on days

1, 8 and 15 of each 28-day cycle at increasing doses from 80 mg/m2

to 100 mg/m2 to 120 mg/m2. Data collected from patients receiving

these drugs showed very similar median follow-up times (24.2

months for Len versus 24.1 months for Pol). In addition, the

ORR for BT062 plus Len was observed in 71.7% of patients, while

the ORR in the BT062 plus Pom group was 70.6% and the clinical

benefit was 85% of patients treated with BT062 plus Len and 88% of

patients treated with Pom, demonstrating the promising clinical

activity of these combination treatments. In general, hematotoxicity

(neutropenia in 22%, anemia in 16% and thrombocytopenia in 11%

of patients) represented the main grade 3-4 adverse events in both

groups, and treatment-related adverse events led to treatment

discontinuation in almost half of the patients, while only a few of

them resulted in non-BT062-related deaths. This study determined

the MTD of BT062 plus Len at 100 mg/m2 and established the

recommended Phase 2 dose for BT062 in combination with

Pol (152).
4.3.2 B-B4-DM1
B-B4-DM1 is an ADC composed of a IgG1 mAb anti-CD138

carrying the potent anti-microtubule polymerization agent DM1. B-

B4-DM1 selectively reduced growth and survival of different CD138

+ MM cell lines and in in vivo mouse models mediated promotion

of MM regression, improvement in OS and reduction in the level of

circulating human M protein at well tolerated doses (164).
4.4 Radioimmunoconjugates

Radioimmunoconjugates (or radiolabeled mAbs) consist of a

mAb linked to a radionuclide. In contrast to ADCs,
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radioimmunoconjugates do not require internalization in the target

cells to exert their anticancer effect, as the emitting radionuclide can

also cause DNA strand breaks in the vicinity of the target.

Moreover, depending on the length of the pathway traveled by

the radionuclide, these compounds can also cause bystander

killing (180).

4.4.1 B-B4-I131

B-B4-I131 is a radiolabeled IgG1 mAb that binds to I131 and

targets the extracellular domain of CD138. In a preliminary clinical

study based on 4 RRMM patients who had received at least three

prior lines of treatment, one patient experienced a partial response

after administration of B-B4-I131, although the other three patients

did not achieve a response and one of four patients suffered severe

side effects after treatment (154). A Phase I clinical trial evaluating

DLT to determine MTD in MM has been completed

(NCT01296204). Other formulations labeling bismuth213 and

lutetium177 have been studied in preclinical MM models. Chérel

and colleagues showed promising therapeutic efficacy of 213Bi-

labeled anti-mouse CD138 for the treatment of residual disease in

MM, with only moderate and transient toxicity (166), though a

study comparing B-B4-I131 and B-B4-Bi213 demonstrated that the

latter showed significantly higher efficacy in terms of cell viability,

blockade of G2/M phase and clonogenic survival in MM cell lines

(165). In addition, Fichou and colleagues investigated the

therapeutic efficacy of 9E7.4, an anti-mouse CD138 derivative

radiolabeled with either bismuth-213 or lutetium-177, in an MM

mouse model, showing little benefit for mouse survival (167).
4.5 Immunotoxins

Immunotoxins are immunoconjugates consisting of two

functional subunits: a targeting system linked by a spacer to an

effective complete or modified protein that serves as a payload.

Interestingly, in addition to mAbs or small fragments, this

component can also be a GF, a cytokine, or a chemokine (181).

Toxins are highly potent proteins whose function is to disrupt vital

cellular processes and cause cells death. They are mainly derived

from bacteria, such as anthrax toxin, Shiga-like toxin, P. aeruginosa

exotoxin A and diphtheria toxin, and from plants, such as pokeweed

antiviral protein, saporin, ricin and gelonin, and must be engineered

to remove the cell-binding domain and replace it with a targeting

moiety (182, 183). As far as the use of immunotoxins in therapy is

concerned, the main disadvantage lies in the nature of the toxins

themselves, i.e. their immunogenicity triggers the production of

antibodies against them (181, 184, 185). However, in order to

increase their safety, the toxins can be modified to remove the

epitope recognized by the immune cells and responsible of the

unneeded immune reaction (184). Currently, 3 immunotoxins have

been approved by the FDA for hematological malignancies (186). In

MM, immunotoxins have been constructed from B-B2 and B-B4

mAbs by coupling them to the plant ribosome inactivating protein

saporin, resulting in a significant reduction in the number of

PCs (168).
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4.6 Immunocytokines

Immunocytokines are fusion proteins made of Abs and

cytokines specifically designed to interact with dysregulated

antigens that are expressed to a greater extent on tumor cells or

in the TME. This formulation is designed to target a cytokine

receptor on T or NK cells to trigger a targeted immune response

against cancer cells (181, 187). To date, only interferon-a (IFNa)
and IL-2 have been approved by the FDA for cancer treatment

(188). 3 immunocytokines combining the specificity of IgG1 anti-

CD138 mAb with the cytokines IFNa14, IFNa2 or IFNa2YNS, a
mutated moiety, were investigated regarding their use as a

therapeutic approach in MM. In vitro analyses performed on MM

cell lines showed an intriguing cytotoxic effect of all formulations,

alone or in combination with PI Btz. Moreover, in vivo experiments

demonstrated their anticancer activity by reducing MM tumor

growth and prolonging survival, highlighting their potential as

new and innovative candidates for MM treatment (169, 170, 189).
4.7 Recombinant proteins and
bispecific antibodies

Recombinant proteins are defined as large and complex

molecules whose therapeutic activity is highly dependent on their

structure (190, 191). Bispecific antibodies (BsAbs) are emerging

immunotherapeutics designed to ideally achieve a stronger benefit

than the solely mAbs. BsAbs interact with both an antigen on the

malignant cell population and a second target on immune effector

cells, such as T and NK cells. In this manner, this T cell receptor

(TCR)-independent interaction results in activation of T/NK cells

and therefore causes direct lysis of tumor cells. To date, all BsAbs in

Phase I/II clinical trials use CD3, a T cell co-receptor, to activate T

cells, but none have been approved for the treatment of MM yet

(32, 192).

4.7.1 ULBP2-BB4
ULBP2-BB4 is a recombinant bispecific protein designed to

induce NK cells toxicity on CD138+ cell lines, including MM cells.

This recombinant compound consists of the anti-CD138 mAb B-B4

fused to UL-binding protein 2 (ULBP2), a ligand capable of binding

the NKG2D receptor, which is mainly expressed on NK cells. While

BB4 targets the CD138+ MM cells, ULBP2 stimulates the NKG2D

receptor on NK cells and triggers the release of soluble factors

involved in NK recruitment and activation of cytotoxicity.

Interestingly, ULBP2-BB4 showed potent anti-tumor activity in

vitro and inhibited tumor growth in a mouse model of MM (171).

4.7.2 STL001 (or BiTE-hIgFc)
STL001 is a bispecific anti-CD138 x anti-CD3 Ab consisting of

two single chain variable fragment (scFV) arms with the IgG1-Fc

region sequence. This bispecific T cell engager (BiTE) can target

immune T and NK cells as well as MM cell co-cultures and showed

stronger anti-tumor activity in vitro than the combination of single

anti-CD138 and anti-CD3 mAbs. Notably, STL001 achieved lysis of
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90.1% of MM cells, remarkable T cell activation efficiency and

phenomenal interaction with NK cells in vitro. In addition,

administration of STL001 in a human MM xenograft mouse

model resulted in a significant 75% reduction in tumor volume

compared to the negative control (172).

4.7.3 h-STL002 and m-STL002
In addition to STL001, Chen and colleagues have developed two

recombinant BsAbs targeting CD138 and CD3, the co-receptor

involved in T cell activation, consisting of two scFv arms and an

IgG1-Fc region. Preclinical data from experiments with MM cell co-

cultures showed strong cytotoxicity in this in vitro model via a

remarkable T cell-mediated immunological response (173).
4.8 CAR-T cells

Chimeric antigen receptor (CAR) T cells are genetically

engineered T cells derived from MM patients that have been

modified to express the chimeric protein against the selected

antigen. In this sense, CAR-T cells express an extracellular

synthetic mAb-derived scFv fused with co-stimulatory

intracellular domains to trigger the activation and redirection of

T cells upon tumor binding to enable cancer cell recognition and

suppression (193).

4.8.1 CART-138
CART-138 are modified CAR-T cells consisting of the scFv

against CD138 fused to the T cell activation domain 4-1BB. In the

phase I/II of NCT01886976 clinical trial, autologous CART-138 was

tested as a therapeutic option in 5 patients with chemotherapy-

refractory MM. The data collected in this study showed that the 4

infused patients reentered into a stable disease state for more than

three months, and 1 patient with advanced plasma cell leukemia

experienced a significant reduction of MM cells in his peripheral

blood. Along with the clinical outcome, the treatment regimen was

generally safe and well tolerated and caused no serious adverse

effects (155).

4.8.2 CD138.CAR
The investigation of the feasibility of CD138 in CAR-T therapy

led to the development of an alternative CAR-T-based strategy. Sun

and colleagues developed CD138-specific CAR cells (CD138.CAR)

expressing the scFv of the chimeric mAb BT062 together with

various signaling (CD28, 4-1BB) and endodomains (CD28, CD8a).

In their study, they showed that CD138.CARs can be expressed by T

cells from healthy donors and that they target CD138+ MM cell

lines while sparing normal epithelial and endothelial cells. In

addition, the authors have shown that these CAR-T cells can be

derived from MM patients and are directed against autologous

CD138+ MM cells and putative MM cancer stem cells, ultimately

exhibiting significant anti-cancer activity in a xenograft mouse

model of MM. Similar to the previous study, infusion of the

engineered T cells was generally safe and well tolerated,

suggesting that therapeutic strategies based on CAR-T cells may
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have the potential to achieve remarkable results in MM

patients (174).

4.8.3 CAR-NK
In addition to reprogramming T cells, Jiang and colleagues

reprogrammed NK cells with a CAR to generate 4B3 anti-CD138

scFv fused to the CD3z chain as a signaling moiety. These CAR-NK

cells showed increased anti-MM cytotoxicity against CD138+ MM

cell lines and achieved promising results in the xenograft NOD-

SCID mouse model (175).
4.9 Peptide and vaccines

Peptides are based on in vitro synthesized peptides with 8–30

amino acids, which are known to be highly immunogenic and trigger

the desired immune response. Vaccines, which can be defined as a

cocktail of peptides, can keep the body’s immune effector cells in a

constant active state to keep the tumor under attack (194).

4.9.1 GLVGLIFAV peptide and PVX-410 vaccine
GLVGLIFAV (also known as L-valine-glycyl-l-leucyl-l-valylglycyl-

l-leucyl-l-isoleucyl-l-phenylalanyl-l-alanyl- or CD138260–268) is a short

and immunogenic human leukocyte antigen A2 (HLA-A2)-specific

CD138 epitope nanomer, which elicits a restricted cytotoxic T

lymphocyte (CTL) response to MM cells positive to CD138 and

HLA-A2 expression (195). The efficacy of the GLVGLIFAV peptide

was demonstrated by its ability to induce CD138-CTL anticancer

activity against primary CD138+ cells isolated from HLA-A2+ MM

patients and by the high level of intracellular IFNg and cell proliferation
in response to MM cell lines (195). The ability to elicit more specific

CTLs response was evaluated with PVX-410, a cocktail of HLA-A2-

specific peptides and including CD138260–268, using T cells from SMM

patients. Interestingly, data revealed an effective anti-MM response in

an HLA-A2-restricted and peptide-specific manner (196). The

combination of PVX-410 vaccine with or without Len in SMM

patients was assessed in a phase I/IIa non-randomized clinical trial

(NCT01718899) (156). The data collected in this study showed that the

multipeptides vaccine PVX-410 elicited a highly effective immune

response against MM cells by expanding CD3+ CD8+ CTL

components against CD138 and other epitopes. Moreover, PVX-410

was safe and well tolerated when administered as monotherapy and

even more effective when combined with lenalidomide (156). In line

with this study, a phase I clinical trial aims to test the effect of PVX-410

vaccine with citarinostat, a histone deacetylase inhibitor, with/without

Len in SMM patients (NCT02886065).
4.10 Synstatins

Synstatins (SSTNs) are short inhibitory peptides derived from

specific strings of amino acid in the CD138 extracellular domain.

Synthetic SSTNs, by mimicking few selected sites on CD138

ectodomain, shall compete with agonists receptor binding to their

dockingmotifs, thus blocking their pro-tumor signaling cascades (176).
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4.10.1 SSTNIGF-1R

CD138 has been shown to be an excellent antigen to be targeted

by SSTNs as it plays a role in tumorigenesis together with insulin-

like growth factor receptor (IGF-1R) type I and tumor-induced

integrins avb3/avb5 (176, 177). In response to PCs malignant

transformation, overexpression of integrins leads to the clustering

of pre-assembled inactive CD138-avb3/avb5-IGF-1R ternary

complex and, upon engagement of CD138 to ECM-ligands, the

IGF-1/2-independent triggering of IGF-1R. By inactivating ASK-1

and the associated suppression of JNK pro-apoptotic activity, MM

cells support their survival and, via Talin-directed inside-out

integrin signaling, also angiogenesis and invasiveness. SSTNIGF-1R

(or SSTN92-119) mimics the docking site of avb3 and avb5 integrins
and IGF-1R to prevent their interaction with CD138, thereby

competitively disrupting the ternary complex and smothering

pro-tumor pathways (121, 176, 177).

4.10.2 SSTNVLA4 and SSTNVEGFR2

SSTNVLA4 and SSTNVEGFR2 are two peptides whose sequences

mimic the docking motif for VLA4 and VEGFR2, respectively, at a

juxtamembrane region from amino acid 210 to 236 in the

extracellular domain of CD138. Specifically, SSTNVLA4 is shorter

than the other SSTN and carries an essential DFTF domain to its N-

terminus to enable binding of VLA4, while SSTNVEGFR2 mimics the

CD138 docking motif of VEGFR2 and carries the important PVD

domain at its C-terminus (116, 176, 177). In malignant PCs, the

invasive phenotype promoted by CD138-mediated activation of

VLA4 can be blocked by SSTNVLA4, preventing VLA4 docking on

transmembrane CD138. On the contrary, the need to block

VEGFR2 comes from its role in cell invasion and polarization.

After truncation of HS polymers by HPSE and the shedding by

MMP-9, soluble CD138 couples to an inactive complex formed by

various proteins, including VEGFR2, leading to its ligand-

independent activation. This event triggers an intracellular

cascade that leads to enhanced VLA4-madiated invasion of

immune and MM cells, but also inhibits LFA-1-mediated

migration of NK and CD8+ T tumor suppressor cells. In this

context, SSTNVEGFR2 serves to prevent VEGF2-independent

activation of this pathway by sequestering secreted CD138,

thereby targeting key processes of tumorigenesis (116, 176, 177).
4.11 Heparanase inhibitor

HPSE is the main enzyme responsible for extracellular HS

degradation and its expression is significantly increased in aggressive

cancers, facilitating tumor progression through metastatic

dissemination (122, 197). Given the central role of HPSE in CD138

metabolism and in the progression of MM, it represents a promising

candidate for the development of new antitumor agents.
4.11.1 Roneparstat
Roneparstat (or SST0001) is a polymer with a heparin-like

structure that is able to inhibit the growth and angiogenesis of MM

by disrupting the HPSE-CD138 axis (198). As Roneparstat achieved
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significant anti-MM activity in preclinical mouse models in

monotherapy or in combination with Dex, Btz or melphalan, its

safety dose and tolerability were assessed in an open-label,

multicenter, phase I clinical trial enrolling RRMM patients

(NCT01764880), with little efficacy (157).
5 Conclusions

In recent years, several advances have been made in improving

therapeutic modalities for MM, including the discovery of new drugs

and novel supportive care. However, most patients still die from their

cancer since MM remains highly heterogeneous and largely incurable.

The effects of immunological agents, such as mAbs, BiTEs and CAR-

Ts, which are nowwidely used in clinical practice, are dependent on the

expression of specific antigens on MM cells. However, it is difficult to

monitor the expression of these antigens accurately and consistently in

practical treatment. As therapy progresses, the number of cell clones

that do not express a specific antigen gradually increases, and the

development of immune escape mechanisms eventually leads to drug

resistance. Together with other HPSGs, CD138 acts as a critical

regulator in the communication between malignant PCs and the

BMME, fueling MM tumorigenesis and progression. In this sense, by

mediating the activity of specific GFs from the BM niche, CD138

triggers key pathways required by MM cells for their homing, growth,

and survival. The surface proteome of MM cells regulates PCs biology

and delineates therapy targets. As recently reported, CD138 has been

detected as one of the most important antigens characterizing the

surfaceome of MM cells, along with the canonical and better-studied

markers BCMA, CD38 and SLAMF7 among others (199). Accordingly,

most preclinical and clinical MM studies to date have focused on the

key immunotherapy antigens BCMA, CD38 and SLAMF7, with the

latter two being the target of three already FDA-approved mAbs.

BCMA, CD38 and SLAMF7 represent three key antigens in the biology

of MM; the first plays a key role in B cell maturation and differentiation

into PCs and is upregulated in disease progression from MGUS to

SMM and active MM (15); the second is uniformly expressed on PCs

and is involved in modulating immune cell activation and migration

(9), while the latter is involved in the development of immune system

and promotes PCs proliferation and growth (13). Given its central role

in MM biology, restricted expression on normal PCs but strong

upregulation on malignant cells, BCMA has become the most

common target of various therapeutic strategies, each associated with

logistical challenges and unique toxicities. Among the most interesting

BCMA-based approaches investigated are BiTEs, which showed high

efficacy and moderate toxicity but short half-life, CAR-Ts, which

achieved high response rates in heavily pretreated MM patients but

induced cytokine release syndrome (CRS) and increased susceptibility

to infection, and ADCs, which exhibited corneal toxicities and need

further investigation (181, 192, 200–202). While BCMA expression

increases significantly with the progression of MM, but the intensity of

expression varies greatly from patient to patient (203) potentially

affecting the therapeutic benefits, CD38 levels are robust and

constant during MM pathogenesis. In addition to daratumumab and

isatuximab, two FDA-approved mAbs for the treatment of newly

diagnosed (ND)/RRMM patients, CD38 is largely targeted by the
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development of BsAbs and immunoconjugates, some of which are in

preclinical and clinical stages, as well as mono/dual-specific CAR-Ts,

the latter with high efficacy and safety (204). However, the

simultaneous expression of CD38 on healthy PCs and other

hematopoietic (T lymphocytes) and non-hematopoietic cells, such as

epithelial, endothelial and vascular smooth muscle cells, as well as

hepatocytes, goblet and columnar cells of gastrointestinal tract (205)

may pose a serious obstacle to its use as a targeted MM antigen, as it

may likely cause severe off tumor side effects in the already susceptible

MM patients. In this context, the ADC BT062 led to skin and mucosal

toxicities, the radioimmunoconjugate B-B4-I131 caused severe side

effects in one patient after treatment, and CRS and neurotoxicity

mediated by proinflammatory cytokines upon CAR-T cell activation

represent another issue to be addressed, although no significant

toxicities were observed in a small pilot study with CD138 CAR-T

cells (206, 207). Nevertheless, the likelihood of on-target/off-tumor side

effects should be expected as key MM antigens are also expressed on

normal cells and therapies based on these antigens could lead to

common manifestations and severe toxicities (207). Apart from the

comparable importance between these antigens and CD138 in this type

of cancer, this marker has gained considerable attention in the

therapeutic panorama of MM as it shares important functional

features with the promising candidates mentioned above, including

significant presence and easy accessibility on the malignant cell

membrane. Most importantly, CD138 is often abundant even in RR

stages of MM, making it a consistent target for therapy. In this context,

while there are some fractions of MM cells that do not express CD138

or express it at low levels, which may impact the efficacy of antigen-

based molecules, the fact remains that such therapies may increase the

chances of thorough eradication of all malignant clones in more

aggressive stages of MM disease, as these are characterized by higher

levels of CD138, as evidenced by higher serum levels in these patients.

Nevertheless, since the CD38 marker may fade or weaken compared to

the CD138 marker in PCs after chemotherapy (208) and BCMA- and/

or CD38-negative relapses have also been observed (209–211), the need

for complementary treatment strategies must be carefully considered

and strongly recommended, highlighting CD138 as a compelling

candidate for further development of anti-MM approaches.

Significant efforts have been made to identify therapeutic treatments

against CD138. In this sense, many innovative anti-CD138

immunotherapeutics developed by engineering and/or arming mAbs

with toxic payloads have provided interesting results in terms of PC

targeting, therapeutic efficacy, and safety in different models, with ADC

Indatuximab ravtansine probably being the most interesting candidate

for future clinical application. Other studies have provided robust proof

of concept for MM cell killing by simultaneously targeting CD138 and

specific receptors on T/NK cells to trigger their activation, with

promising results in cell lines, in mouse models and in MM patients

as well. In addition, new avenues have recently been explored focusing

on inhibitory peptides that either induce the cytotoxic anti-cancer

activity of CTLs or mimic key interacting domains on CD138, as well

as polymers that offer the possibility of disrupting molecular

interactions useful for MM progression leading to anti-cancer

activity. However, for most approaches, the still limited amount of
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data suggests further efforts to better characterize these compounds and

their relationship with the cellular environment. Although most

CD138-targeting strategies have shown promising results in in vitro

and/or ex vivo cells and in mouse models, there are still some caveats

and limitations that need to be carefully considered, especially in terms

of mechanism of action and safety. In addition, since few immune- and

peptide-based approaches have been tested in combination with IMiDs

and PIs in MM patients, extensive efforts are underway to identify

additive (or even synergistic) benefits when combined CD138-based

treatments with these drugs and non-overlapping toxicity profiles that

could enable tolerable and novel combination therapies.
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