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Introduction: Young cervical cancer patients who require ovarian transposition

usually have their ovaries moved away from the pelvic radiotherapy (RT) field

before radiotherapy. The dose of ovaries during radiotherapy is closely related to

the location of the ovaries. To protect ovarian function and avoid ovarian dose

exceeding the limits, a safe location of transposed ovary must be determined

prior to surgery.

Methods: For this purpose, we input the patient's preoperative CT into a neural

network model to predict the dose distribution. Surgeons were able to quickly

locate low-dose regions based on the dose distribution before surgery, thus

determining the safe location of the transposed ovary. In this work, we proposed

a new progressive refinement transformer model PRT-Net that can generate

dose prediction at multiple scale resolutions in one forward propagation, and

refine the dose prediction using prediction details from low to high resolution

based on a deep supervision strategy. A multi-loss function fusion algorithm was

also built to fit the prediction results under different loss dimensions. The clinical

feasibility of the method was verified through an actual cases.

Results and discussion: Therefore, using PRT-Net to predict the dose

distribution by preoperative CT in cervical cancer patients can assist clinicians

to perform ovarian transposition surgery and prevent patients' ovaries from

exceeding the prescribed dose limit in postoperative radiotherapy.
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1 Introduction

Cervical cancer is currently the most common cancer of the

female reproductive system globally, with approximately 30%–40%

of cervical cancers occurring in young women (1). Patients with

early-stage cervical cancer who have high pathological risk factors

for recurrence after radical hysterectomy need adjuvant

radiotherapy or chemotherapy. The dose of conventional

postoperative radiotherapy for cervical cancer is 4,500 cGy or

greater, but the ovaries are sensitive to radiation. Some studies

have shown that doses above 400 cGy can lead to permanent

ovarian failure, early menopause, some menopausal syndromes,

etc. (2). As a result, young patients often undergo ovarian

transposition during a radical hysterectomy to move their ovaries

out of the pelvic region that is potentially the field of radiation,

which can significantly reduce the dose to the ovaries. However,

current data show that only approximately 50% of transposed

ovaries retain their function, even if the ovaries have been

removed from the potential radiation field (3–5). The ovarian

survival rate still needs to be improved. Studies have shown that

the maintenance of ovarian endocrine function after radiotherapy

in cervical cancer patients is directly related to ovarian dose (6, 7),

which is closely associated with the location of the transposed

ovaries. Therefore, during ovarian transposition, it is particularly

important to determine the appropriate location for ovarian

placement and ensure that the dose of the ovaries in

postoperative adjuvant radiotherapy is below safe limits.

Current research on the location of the transposed ovary is

mainly based on statistical methods (8–10). By analyzing data from

150 patients who had undergone ovarian transposition and received

postoperative radiotherapy, LV et al. (8) plotted the operating

characteristic curve (ROC) of ovarian position versus the dose

received and concluded that moving the ovaries above 1.12 cm in

the iliac crest plane enabled the dose to be controlled below the

safety limit. J Toman et al. (9) monitored the ovarian endocrine

function following pelvic external beam radiation with the ovaries at

various transposition locations and discovered that the ovaries were

safe beyond 2.5 cm of the radiation field edge. Nevertheless, each

patient’s anatomy and pathology staging affect the size of the target

area in radiation. Even if the ovaries are all located 2.5 cm from the

radiation field edge for various people, the radiation dose may differ

significantly. As a result, the findings from earlier studies were not

patient-specific and might not be appropriate for all individuals.

Researchers have recently utilized deep learning to predict the

dose distribution for several cancer types, including prostate, rectal,

and cervical cancers (11–13). The U-net and several U-net-like

models are typically the foundation of current experiments

employing deep learning for the dose prediction (14–16).

However, it has been documented that due to the physical

characteristics of volumetric modulated arc therapy (VMAT)

dose, traditional U-Net models often do not predict the VMAT

dose distribution well, especially in low dose regions (17, 18). To

improve the ability of neural network models to predict VMAT

dose distribution, we propose a novel progressive refinement

attention model with deep supervised strategy and weighting self-

attention architecture, which can improve the generalization and
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robustness of the model. Then, the model is applied to the

prediction for the dose distribution. The predicted dose

distribution can be visualized on preoperative computed

tomography (CT), which then can be used to determine the

location of the ovary during ovarian transposition surgery so that

the dose of the ovary in postoperative radiotherapy is below the

safety limit. By using a neural network model that exploits the

characteristic relationship between patient anatomy and dose

distribution, the dose distribution can be predicted more

accurately based on the unique anatomy of each patient, and thus

the appropriate transposed ovarian location can be predicted.
2 Materials and methods

In this study, a new progressive refinement attention model,

PRT-Net, was used to predict the dose distribution. The

preoperative CT slices, organs at risk (OARs), and PTVs were

used as the input of the model. The dose distribution of the

planning CT was mapped to the preoperative CT and used as the

output of the model. Note that the planning CT is the CT taken after

ovarian transposition, namely, postoperative CT. This output of the

model combining the dose distribution with preoperative CT will

provide a low dose region that will be the range for the ovarian

transposition. The surgeons can then determine the safe location of

ovary prior to surgery based on clinical knowledge within this

range. A flow chart showing the process of this study is

demonstrated in Figure 1.
2.1 Patients and treatment planning

In this study, the clinical data of 104 patients (69 cases were

randomly selected as training data, 22 as validation data, and the

remaining 13 as test data) with cervical cancer who received

postoperative radiotherapy in Hubei Cancer Hospital, Wuhan,

China, were collected. Prior to radical hysterectomy, preoperative

CT was obtained using SOMATOM Definition AS+ (Siemens,

Berlin, Germany), with a slice thickness of 5 mm. The patients

were immobilized in the supine position by vacuum cushions.

Planning CTs were acquired with a Brilliance CT (Big Bore,

Philips, Cleveland, OH, USA), and the slice thickness was

also 5 mm.

The clinical target volume (CTV) and OARs including bladder,

rectum, small intestine, bilateral femoral heads, marrow, and spinal

cord were delineated by an attending oncologist. The prescription

was 45 Gy in 25 fractions (1.8 Gy per fraction) to the planning target

volume (PTV) generated with 0.5 cm uniform expansion from the

CTV. All VMAT plans are using two full arcs with 6-MV energy,

designed in the Monaco treatment planning system (TPS) (version

5.11.01, Elekta, Stockholm, Sweden) with the Monte Carlo

algorithm for an Infinity accelerator (Elekta, Stockholm, Sweden).

According to ICRU (International Commission on Radiation

Units and Measurements) Report 83, D95% of the PTV is greater

than the prescribed dose, D2% is less than 110% of the prescribed

dose, and D98% is greater than 95% of the prescribed dose. For the
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evaluation of OAR for cervical cancer, reference was made to the

RTOG (Radiation Therapy Oncology Group) Report 0418 and the

actual situation of our institution. The corresponding evaluation

criteria are as follows: V30<50%, V40<40%, V45<35% for bladder,

V30<60%, V40<55% for rectum, V30<15% for femur head, and

Dmax<45 Gy for spinal cord.
2.2 Dose alignment

The dose from the planning CT needs to be mapped to the

preoperative CT in order to show the dose distribution on the

preoperative CT, allowing surgeons to quickly determine the safe

location of the transposed ovarian before the surgery. The image

processing software MIM (version 6.8.7, MIM Software Inc., USA)

was used to achieve image registration between preoperative and

planning CT of the same patient using rigid alignment. Considering

that the uterus, lymph nodes, and other structures are removed

during radical hysterectomy for cervical cancer, the OARs will be

greatly deformed between the preoperative CT and the planning

CT. Therefore, the contours of targets and OARs of the pre-

operative CT of each patient were manually revised by the

radiation oncologist.
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2.3 Data preprocessing

Raw CT pixel values were converted to Hounsfield units (HU) on a

scale between -1,000 and +400. Each OAR and PTV contours were

filled with 0 (background) and 1 (foreground) to transform into the

binary mask. The PTV, bladder, femoral head left, femoral head right,

kidney left, kidney right, marrow, rectum, spinal cord, and body were

chosen as the relevant structures for VMAT dose prediction. The dose

distribution was resampled to a voxel size of 2.5 × 2.5 × 5.0 mm by

using single linear interpolation. In addition, the original image feature

matrix was resampled to 512 × 512 pixels using the zero filling method.

To allow our neural network to learn the volumetric features,

training was performed using image triplets input (19), which

combines three consecutive 2D CT slices and their corresponding

binary segmentation masks. Each 2D CT slice and a binary

segmentation mask are combined into a superimposed feature

map with 11 channels, denoted as x ∈ R11�512�512, then

concatenated with three sets of spatially continuous superposition

feature maps together along the channel dimension to form a final

triplet feature map with 33 channels, denoted as x ∈ R33�512�512.
2.4 Quantitative dose prediction evaluation

To quantitatively evaluate the accuracy of the network model,

we compared the dose prediction results of PRT-Net with three

other neural network models [U-Net (20), U-net++ (21), and

DeepLab-V3-plus (22)]. The evaluation metrics include mean

absolute error (MAE), mean squared error (MSE), root mean

square error (RMSE), absolute differences of dosimetric

parameters between the real and predicted dose in the OARs and

PTV, the dose–volume histogram (DVH), gamma index, and the

isodose volume DSC, including the 4-, 10-, 15-, and 20-Gy isodose

regions. All evaluation indexes are based on body contour as a

mask, with the following formula:

f½Neural Network (input feature map)� *(body contour),  
(ground truth)*(body contour)g

Gamma index passing criteria was 3%/2 mm, and only the dose

exceeding 10% of the maximum dose was calculated. In addition,

areas outside the body were not included in the gamma

index calculation.

The DSC of the isodose volume was evaluated in the 3D dose

distribution. The DSC calculates the overlapping results of two

different volumes based on Equation 1:

DSC =
2A ∩ B
A + B

(1)

where A is the real isodose volume and B is the predicted

isodose volume.
2.5 Implementation details

For training neural networks, Adam with a weight decay of

0.0001 was utilized to optimize network parameters, with the initial
FIGURE 1

Overall workflow of the study.
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learning rate set to 0.0001. The batch size was set to 16, and the

epoch size was set to 100. The neural network using PyTorch was

implemented, and experiments were performed on a small NVIDIA

RTX3090Ti workstation equipped with 24 GB of RAM.
3 Network architecture

We proposed a new progressive refinement attention model,

Swin-Refinement-Attention (PRT-Net), based on the Swin-

Transformer architecture (23), as shown in Figure 2. The model

uses an efficient encoding module to extract superimposed feature

map information, an attention module (24) to assign feature

weights over space and channels and a decoder to gradually

generate dose distribution from low- to high-scale resolution.
3.1 Encoding module

Considering that the traditional convolutional neural network

(CNN) encoding architecture is unable to obtain global information

at local locations and that the receptive field mechanism is prone to

lose detailed semantic features, we adopted an encoding

architecture based on the transformer, as shown in Figure 2. The

encoding module consists of four enhanced Swin-Transformer

encoders, each containing two mutually independent feature

extraction modules (the constant window and the shifted

window). Before feeding the input features into the enhanced

Swin-Transformer layer, several pre-processing operations

need to be performed on the raw feature maps. First, the

original features x ∈ RC�H�W were split into N (N = H
P � W

P )

tokenization x ∈ RC�P�P of the same size by the window splitting

algorithm, where P is the patch size and C is the channel dimension.

Then, to match the input of the enhanced Swin-Transformer layer,

the linear projection function was used to convert the three-

dimensional image patches into a two-dimensional embedding

sequence xe ∈ RN�ce , where Ce represents the dimensionality of

each embedding sequence. Finally, the generated embedding
Frontiers in Oncology 04
sequences were added with the prior position parameters to

acquire the output sequence xp ∈ RN�ce , which was fed directly

into the enhanced Swin-Transformer layer.

Distinct from the traditional Swin-Transformer algorithm with

a multi-headed self-attention mechanism (25), we adopted the

multi-head-enhanced self-attention (enhanced multi-headed self-

attention mechanism) architecture. First, three learnable matrixes

(the query matrix WQ ∈ RCe�dk , the key matrix WK ∈ RCe�dkand

the value matrixWV ∈ RCe�dv , where dk = dv =
Ce
h ,  h represents an

independent self-attention layer) with the output of the previous

enhanced Swin-Transformer layer or input layer were used to

calculate three sequence vectors (the query vector Q, the key

vector K, and the value vector V), as shown in Equation 2. Then,

the learnable weights matrix Wa ∈ Rdk�N was utilized to perform

an enhanced self-attentive calculation on the query vector and the

key vector to obtain the attention score, which was passed through

the softmax activation function to acquire the normalized score, and

then multiplied by each value vector to get the output vector SA xl
� �

,

as shown in Equation 3.

Q = xlWQ,K = xlWK ,V = xlWV (2)

SA xl
� �

= softmax
½tanh (Q + K)� · Waffiffiffiffiffi

dk
p

( )
· V (3)

Multiple head cascades W −MSA(xl) for calculating the self-

attention scores in different subspaces were generated to capture the

correlation between different subspaces of the sequence, as shown in

Equation 4, W −MSA denotes the enhanced self-attention

algorithm with constant window, and then xl+1 was obtained by

summing with the original high-dimensional spatial features using

the residual mechanism, as shown in Equation 5, with LN denoting

layer normalization. Ultimately, the output of the constant window-

based feature extraction module can be obtained by Equation 6;

MLP denotes multi-layer perceptron.

W −MSA(xl) =  Concat  SA xl
� �

1
: : : : SA xl

� �
h

h i
(4)
FIGURE 2

Schematic diagram of the proposed PRT-Net architecture.
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xl+1 = W −MSA LN xl
� �h i

+ xl (5)

x̂ l+1 = xl+1 + MLP LN xl+1
� �h i

(6)

The shift window feature extraction module SW −MSA was

obtained by adding the window shift algorithm based on the W −

MSA module. The cross-window connection introduced in SW −

MSA while ensuring efficient computation of non-overlapping

windows can fuse the feature information extracted from different

windows and improve the model ability. The SW −MSA module

employed window configurations distinguished from the regular

window division of the W −MSA module, and SW −MSA module

adopted shifting P
2 ,

P
2

� �
pixels relative to the top left pixel point as

the new window. Ultimately, the output of the SW −MSA module

can be obtained by Equation 7.

xl+2 = SW −MSA LN x̂ l+1
� �h i

+ x̂ l+1

+ MLP LN SW −MSA LN x̂ l+1
� �h i

+ x̂ l+1
� �h i

(7)
3.2 Attention module

To further improve the feature representation, we employed a

lightweight convolutional attention operator that inferred

attentional concentration regions along two specific and mutually

independent dimensions and adaptively optimized local features by

applying different attention scores for channel information and

spatial information, respectively. The channel attention weight

operator is shown in Equation 8. The channel weight operator

was multiplied with the input feature map xl+2 to obtain the channel

enhancement feature map x̂ l+2, as shown in Equation 9. The spatial

attention weight operator is shown in Equation 10. The spatial

weight operator was multiplied with the channel-enhanced feature

map x̂ l+2 to obtain the channel–space enhanced feature map xl+3, as

shown in Equation 11. Finally, the channel–space enhanced feature

map xl+3 was added to the input feature map xl+2 to obtain the

output feature map x̂ l+3 of the attention module, as shown in

Equation 12. Due to its smaller and lighter architecture, the

convolutional attention operator can be seamlessly integrated into

the network architecture while ignoring its cost to perform end-to-

end training together with the neural network.

Mc(x
l+2)  = s (MLP(AvgPoolC�1�1(xl+2))

+MLP(MaxPoolC�1�1(xl+2))) (8)

x̂ l+2 = Mc(x
l+2)⊗ xl+2 (9)

Ms(x̂
l+2) = s Conv7�7(½AvgPool1�H�W(x̂ l+2);MaxPool1�H�W(x̂ l+2)�)

� �
(10)

xl+3 = Ms(x̂
l+2)⊗ x̂ l+2 (11)
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x̂ l+3 = xl+2 + xl+3 (12)

In the equations above, s is the activation function sigmod and

MLP is multi-layer perceptron. AvgPoolC�1�1 and AvgPool1�H�W

denote the global channel pooling and global spatial pooling,

r e s p e c t i v e l y . MaxPoolC�1�1 a nd MaxPool1�H�W d eno t e

maximum channel pooling and maximum spatial pooling,

respectively. Conv7�7 represents the convolution with a kernel

size of 7×7. ⊗ denotes element multiplication.
3.3 Decoding module

To recover efficient semantic expressions, a decoding module

containing up-sampling was employed to gradually recover the

feature space information. The up-sampling was performed by the

bilinear interpolation operator (26) with a scale factor of 2. Each

decoding module consists of two consecutive series (convolution,

batch normalization, Mish activation function), with the integral

expression shown in Equation 13 and the Mish expression shown in

Equation 14. All the convolutional layers in the decoding module

have kernel size of 3×3 and padding size of 1. The number of

channels is 512, 256, 128, and 64, respectively. The decoder can

decompress the encoded medical image feature information and

generate the corresponding dose distribution map.

xl+4 = ½MishfBN½convC�3�3(x̂ l+3)�g��2 up�sample  (13)

Mish(x) = x · tanh( ln(1 + ex)) (14)

For each decoding module, the scale resolution of the feature

map increases by a factor of 2. The skip connection between

encoding and decoding modules not only introduces spatial

information but also alleviates the common gradient problem in

deep learning.
3.4 Progressive refinement module

As shown in Figure 2, the progressive refinement (17) module

contains four predictive branches pi to predict the dose distribution

at different scale resolutions. Each prediction branch contains a

generation module G to generate the dose distribution map jG
i of

size ni � ni. The generation module consists of two consecutive

series (convolution, batch normalization, Mish activation function)

with a scaling tuned convolution, as shown in Equation 15. To

ensure constant output dimensionality, all convolutional layers

have a convolutional kernel size of 3×3 and padding size of 1.

jG
i = conv1�3�3½MishfBN½convC�3�3(xl+4)�g��2  (15)

The low-scale resolution dose distribution map jG
i was fed to

the higher-scale prediction branch after bilinear interpolation up-

sampling operation with a scale factor of 2. Then, elementwise

addition with the dose distribution map at high-scale resolution was

used to obtain jG
i+1, as shown in Equation 16.
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pi =
jG
i , i = 1

jG
i+1 + U(jG

i ), i = 2, 3, 4

(
(16)

Generally, low-scale resolution feature maps are easier to

reconstruct than higher-scale resolution feature maps, and they

pay more attention to detailed features. Thus, by utilizing the above-

mentioned progressive refinement module, detailed information

could be gradually added during the decoding process to generate

more accurate dose distributions.
3.5 Multi-loss function fusion algorithm

To fit the dose distribution more accurately and accelerate the

convergence of the model, we proposed the multi-loss function

fusion algorithm (mean square error loss Lm, planning target area

loss Lp, and rank loss Lr) for weight optimization. Each prediction

branch generated the loss score L(pi, yi) of the dose prediction pi
compared to the ground truth yi, as shown in Equation 17.

L(pi, yi) = Lm(pi, yi) + Lp(pi, yi) + Lr(pi, yi) (17)
3.5.1 Mean square error loss
In the dose prediction task, the mean square error (27) reflects

the different degree of pixel points between images. The predicted

dose pi is generally expected to be extremely close to the ground

truth yi. Therefore, the mean square error was used as a loss

function, as shown in Equation 18, where mi represents the

number of dose pixels at level i.

Lm =
1

2mi
‖ pi − yi ‖22 (18)
3.5.2 Voxel-based loss
The voxel-based objective loss function (28) was designed based

on the mean square error loss function, mainly using the PTV

contour as a mask to generate the inner area Pk and the outer area

N. The internal dose distribution of the PTV is expected to be

consistent with the gold standard since a too-high or too-low dose

can result in an irreversible impact on patient treatment. Thus, for

the inner area of the PTV, voxels that differ from the target value

were penalized. Meanwhile, it is expected that the dose of the outer

region of the PTV drops rapidly enough to avoid damage to normal

tissue so that, for the outer area of the PTV, only the voxels higher

than the target value were penalized. The weight coefficients were

lk = 0:7 mi = 0:3 for the PTV region and the non-PTV region,

respectively, and the loss function is shown in Equation 19. Here pai
and pbi represent the predicted dose of the PTV and non-PTV

region at layer i, respectively. yai and ybi represent the target dose of

the PTV and non-PTV region at layer i, respectively. Pi and Ni

represent the voxel number of the PTV and non-PTV region at

layer i, respectively.
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Lp =

lk o
a∈Pk

pai − yaið Þ2

2Pi
+

mi o
b∈N

max pbi − ybi  
� �

, 0
n oh i2
2Ni

(19)
3.5.3 Rank loss
The most direct assessment of the quality of the dose

distribution is to measure the DVH, which usually uses the

percentile of the dose distribution to determine the dose metric—

for instance, D98 is the value of the 98th percentile in the dose

distribution, which means that the sequential relation of dose values

can reflect the dose distribution. Therefore, we proposed a rank-

based loss function Lr to ensure the order between the dose values in

the dose prediction pi to be close to the real criteria yi. Firstly, the

pixel values in pi and yi were vectorized and sorted in ascending

order to get the pixel distribution y*i of yi with the corresponding

pixel index lindex , which was used to reconstruct the pi pixel vector

in order to obtain p*i . Secondly, the order of adjacent pixel metrics

in y*i and p*i is shown in Equations 20 and 21, respectively, where

s ∈ ½1,mi − 1�.

r p*i (s), p*i (s + 1)
� �

=
exp p*i (s + 1) − p*i (s )

� �
1 + exp p*i (s + 1) − p*i (s )

� � (20)

w y*i (s ), y*i (s + 1)
� �

=

1, y*i (s + 1) > y*i (s )

1=2, y*i (s + 1) = y*i (s)

0, y*i (s + 1) < y*i (s )

8>>><
>>>:

(21)

Finally, the negative log-likelihood was used to measure the

rank loss of pi versus yi, as shown in Equation 22.

Lr = −
1

2mi
o
mi−1

j=1

w y*i (s ), y*i (s + 1)
� �

· log r p*i (s ), p*i (s + 1)
� �

+

1 − w y*i (s ), y*i (s + 1)
� �� �

· 1 − log r p*i (s ), p*i (s + 1)
� �� �

2
64

3
75

(22)
4 Result

4.1 Global dose prediction

As shown in Table 1, all four network models were trained using

three different loss function algorithms. As can be seen in the table,

DeepLab-V3-plus was slightly superior to PRT-Net in the MAE

results obtained by training using the Lm&Lp algorithm, while in

the remaining MSE, MAE, and RMSE indices, PRT-Net was the

smallest of the four models. PRT-Net showed the least difference

between the prediction and real data in the four models.

We divided the remaining results into two parts, showing the

comparison between the four network models and the comparison

between the three loss function models.
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4.1.1 Comparison between the four
network models

The four network models were trained separately using the Lm

loss function algorithm, and the results of each are shown below.

Table 2 demonstrates the absolute differences between the

dosimetric parameters predicted by the four neural network

models and the real ones. As can be seen in the table, PRT-Net

achieved optimal results for several metrics (PTV D2, bladder V30,

V40, V45, rectum V30, V40, left femoral head, and right femoral

head V30 had the smallest absolute errors among the four models).

U-net++ also showed good results on several indicators (D95 and

D98 for PTV and Dmax for the spinal cord). Figure 3 shows the

dose distribution of three patients in the test cohort, including the

real dose distribution and predicted outcomes in four models. PRT-

Net is the closest to the real dose distribution in predicting the high

dose range and the low dose range by comparing the predictions of

the four models. Figure 4 shows the DVH curves predicted by the

four network models. The OARs and PTV curves show that the
Frontiers in Oncology 07
DVH curves predicted by PRT-Net are the closest to the real curve

in the four models, especially the PTV curves. Figure 5 shows the

results of the 2D gamma analysis with 3%/2 mm criteria. This

suggests that the U-net model is relatively poor at predicting VMAT

doses, while PRT-Net has the highest gamma pass rate and the

closest approximation to true dose distribution.

4.1.2 Comparison between the three loss
function models

The PRT-Net model was trained using three loss function

algorithms, Lm, Lm&Lp, and Lm&Lp&Lr, respectively, and the

results are shown below. Table 3 shows the absolute dose difference

between the predicted dose distribution and the real dose

distribution for dose indicators. As can be seen in the table, for

PTV D2, D98, D95, bladder V30, V40, left femoral head, and right

femoral head V30, the Lm&Lp&Lr algorithm model had the least

error and the best prediction. The results show that using the

Lm&Lp&Lr algorithm as a loss function can reduce the prediction
TABLE 2 The differences in the quantitative dosimetric metrics between real dose distribution and the four models’ dose prediction.

ROIs Metric UNet UNet++
DeepLab
– V3 – Plus

PRT – Net

PTV D95(Gy) 2.58 ± 0.57 0.59 ± 0.51 1.44 ± 0.37 1.11 ± 0.29

D98(Gy) 3.98 ± 1.03 1.67 ± 0.72 2.43 ± 0.48 1.96 ± 0.52

D2(Gy) 1.17 ± 0.43 0.89 ± 0.52 0.80 ± 0.42 0.75 ± 0.40

Bladder V30(%) 4.65 ± 3.42 2.89 ± 2.29 2.65 ± 2.72 2.64 ± 1.54

V40(%) 6.18 ± 2.73 3.85 ± 3.66 3.19 ± 2.40 2.95 ± 1.68

V45(%) 8.74 ± 5.57 5.67 ± 4.99 5.83 ± 3.83 4.33 ± 2.49

Rectum V30(%) 1.55 ± 1.44 1.79 ± 1.77 2.95 ± 3.79 1.45 ± 1.37

V40(%) 6.04 ± 4.02 6.25 ± 4.40 6.40 ± 4.51 3.64 ± 2.83

Femoral left V30(%) 2.74 ± 1.44 1.94 ± 2.27 2.50 ± 1.72 1.56 ± 2.05

Femoral right V30(%) 2.16 ± 1.42 2.33 ± 1.39 1.75 ± 1.48 1.33 ± 1.25

Spinal cord Dmax(Gy) 1.91 ± 1.89 1.56 ± 1.55 1.78 ± 1.61 1.67 ± 1.38
The smallest value in each row is highlighted in bold font. Results are given as mean ± standard deviation.
TABLE 1 MSE, MAE, and RMSE of the four models trained with three loss function algorithms.

Metric UNet UNet ++
DeepLab
−V3 −Plus

PRT-Net

Lm

MSE 2.40 ± 1.85 1.97 ± 1.53 1.96 ± 1.87 1.26 ± 1.08

MAE 0.72 ± 0.36 0.61 ± 0.34 0.62 ± 0.38 0.52 ± 0.31

RMSE 1.35 ± 0.74 1.21 ± 0.69 1.16 ± 0.77 0.95 ± 0.59

Lm&Lp

MSE 2.33 ± 1.77 1.78 ± 1.57 2.13 ± 1.65 1.12 ± 0.98

MAE 0.73 ± 0.44 0.55 ± 0.41 0.55 ± 0.39 0.57 ± 0.29

RMSE 1.33 ± 0.76 1.19 ± 0.58 1.23 ± 0.86 0.88 ± 0.61

Lm&Lp&Lr

MSE 2.45 ± 1.83 1.88 ± 1.41 1.76 ± 1.77 1.31 ± 1.12

MAE 0.69 ± 0.33 0.57 ± 0.39 0.61 ± 0.44 0.49 ± 0.33

RMSE 1.30 ± 0.72 1.21 ± 0.66 1.09 ± 0.59 0.92 ± 0.71
The smallest value in each row is highlighted with bold font. Results are given as mean ± standard deviation.
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error to some extent. Figure 6 shows the dose distribution of a

patient. From the figure, the model is better able to characterize the

dose distribution after fusion of the Lm&Lp&Lr algorithm than

using the Lm algorithm alone as a loss function. As shown in

Figure 7, in the 2D gamma analysis with 3%/2 mm criteria, the

bright color range of the Lm&Lp&Lr algorithm model is the

smallest, especially the range of the low dose region near the

body. It indicates that using the Lm&Lp&Lr algorithm as a loss

function is also able to predict the low dose region more accurately
Frontiers in Oncology 08
to some extent, and its predicted dose distribution is closest to the

real dose distribution.
4.2 Dose prediction in the low dose region

To determine the appropriate location of the ovary during

ovarian transposition, it is necessary to focus on the prediction of

low dose regions in this study. To demonstrate that image
A B

DC

FIGURE 4

Samples of DVHs derived from the real dose distributions and dose predictions from U-Net, U-Net++, DeepLab-V3-plus, and the proposed PRT-
Net. The solid lines are DVHs of the real dose distribution, and the dotted lines are DVHs of the different models’ dose predictions. (A) U-Net,
(B) U-Net++, (C) DeepLab-V3-PLUS, and (D) PRT-Net.
A B D EC

FIGURE 3

Example of dose predictions. The real dose distribution and the dose distribution predicted by the four models in color wash are included. (A) Label,
(B) U-Net, (C) U-Net++, (D) DeepLab-V3-PLUS, and (E) PRT-Net.
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alignment has a small effect on the low dose region of interest in this

study, it is ensured that the constructed dose prediction model can

accurately predict the low dose distribution. The dice similarity

coefficient (DSC), Hausdorff distance (HD), and Jaccard coefficient

after rigid alignment were calculated for isodose volumes of 4, 10,

15, and 20 Gy, and the results are shown in the Table 4 (training by

Lm loss). The DSC for 4, 10, 15, and 20 isodose are all higher than

0.97, the Hausdorff distances are all between 1.8 and 2.0 cm, and the

Jaccard coefficients are all higher than 0.9. This indicates that the

low isodose volume on the preoperative CT obtained by the rigid

alignment is very close to that of the planning CT.

The dose predictions in the low dose region of each model are

shown below. The mean DSC of 4, 10, 15, and 20 Gy for the 13 test

set data are shown in Table 5 (training by Lm loss) and Table 6. It

can be seen that, among the four models, the DSC of DeepLab-V3-

plus is slightly higher than that of PRT-Net for the 10-Gy isodose,

and the DSC of PRT-Net is the highest among the four models for

the remaining metrics. The DSC values of PRT-Net are all higher

than 0.96. As shown in Table 6, although Lm&Lp&Lr loss did not

produce the best DSC metric for the 4-Gy isodose line, the 95%
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Hausdorff distance (HD95) is the smallest. In addition, compared to

Lm loss and Lm&Lp loss, Lm&Lp&Lr loss still achieved the best

performance in the prediction of 4- to 20-Gy isodose lines. Thus,

Lm&Lp&Lr loss is more appropriate to guide the low dose region to

move the ovary to.

In order to quantitatively evaluate the prediction accuracy in the

low dose range, we counted the number of voxels predicted by the

models for 4–10 Gy, 10–15 Gy, and 15–20 Gy dose region and the

number of voxels in the real dose distribution for the corresponding

dose regions to find the average absolute difference between the

predicted and real dose. From Figure 8, we can see that among the

four models, 4–10 Gy voxel number predicted by DeepLab-V3-plus

had the smallest error, which was slightly better than that predicted by

PRT-Net. The prediction by PRT-Net generated the smallest error of

voxel numbers for 10–15 and 15–20 Gy dose regions among the four

models. Overall, PRT-Net was better at predicting low dose regions

than the other three models. After incorporating the Lm&Lp&Lr

algorithm, the errors in number of voxel predicted by the model

decreased for 4–10-, 10–15-, and 15–20-Gy dose regions, indicating a

further improvement in the model’s ability to predict low dose regions.
A B DC

FIGURE 5

Gamma passing rate with 3%/2 mm criteria of a patient case for the four models. (A) U-Net, (B) U-Net++, (C) DeepLab-V3-PLUS, and (D) PRT-Net.
TABLE 3 The differences of the quantitative dosimetric metrics between real dose distribution and the prediction from the PRT-Net model trained
with three loss function algorithms.

ROIs Metric Lm Lm&Lp Lm&Lp&Lr

PTV D95(Gy) 1.11 ± 0.29 0.79 ± 0.39 0.57 ± 0.44

D98(Gy) 1.96 ± 0.52 1.59 ± 0.57 0.95 ± 0.86

D2(Gy) 0.75 ± 0.40 0.72 ± 0.38 0.59 ± 0.28

Bladder V30(%) 2.64 ± 1.54 4.49 ± 4.17 2.45 ± 2.11

V40(%) 2.95 ± 1.68 3.84 ± 3.33 2.77 ± 2.02

V45(%) 4.33 ± 2.49 4.92 ± 4.20 4.40 ± 4.14

Rectum V30(%) 1.45 ± 1.37 1.06 ± 0.88 1.12 ± 0.85

V40(%) 3.64 ± 2.83 2.60 ± 1.98 3.05 ± 2.77

Femoral left V30(%) 1.56 ± 2.05 1.58 ± 1.73 1.38 ± 1.23

Femoral right V30(%) 1.33 ± 1.25 1.45 ± 1.60 1.11 ± 1.00

Spinal cord Dmax(Gy) 1.67 ± 1.38 0.88 ± 0.73 1.69 ± 0.93
The smallest value in each row is highlighted with bold font. Results are given as mean ± standard deviation.
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4.3 Application to clinical case

To validate the clinical feasibility of our proposed method, the

preoperative CT of a patient who will undergo ovarian

transposition and receive postoperative radiotherapy at our

hospital was selected as input into our dose prediction model.

The predicted dose distribution combined with the preoperative CT

was provided to the surgeon as shown in Figure 9A. The

approximate range of the low dose within which we recommend

moving the ovaries to can be seen in the figure (blue area in the

figure). Based on this result, the surgeon moved the ovaries to

within our recommended safe dose range during the ovarian

transposition surgery. The postoperative radiotherapy plan based

on the postoperative CT is shown in Figure 9B. Additionally, the
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DVH of the ovaries on the preoperative CT and postoperative CT

were compared to determine whether the dose to the ovaries was

reduced and the clinical feasibility of our proposed method, as

shown in Figure 10.

Figure 10A shows the DVH of the ovary when ovarian

transposition surgery has not yet been performed. As can be seen

in the figure, without ovarian transposition, the ovaries will be

treated with postoperative radiotherapy at doses as high as the

prescribed dose of 45 Gy or even higher. Figure 10B shows the DVH

of the ovary in postoperative radiotherapy after ovarian

transposition surgery using our proposed method as guidance. By

moving the ovaries to the predicted safe dose area, the dose to the

ovaries in postoperative radiotherapy will be greatly reduced to

within the safety limit of 4 Gy.
A B C

FIGURE 7

Gamma passing rate with 3%/2 mm criteria of a patient case for the PRT-Net model trained with three loss function algorithms. (A) Lm, (B) Lm&Lp,
and (C) Lm&Lp&Lr.
A B DC

FIGURE 6

Example dose predictions. The real dose distribution and the dose distribution predicted by the PRT-Net model trained with three loss function
algorithms are included. (A) Label, (B) Lm, (C) Lm&Lp, and (D) Lm&Lp&Lr.
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5 Discussion

In this study, we proposed a novel progressive refinement

attention model PRT-Net for predicting the location of

transposed ovary before surgery to assist surgeons in their clinical

work. Compared to U-net, U-net ++, and DeepLab-V3-plus, three

widely used network models for dose prediction studies, PRT-Net

has enhanced feature extraction and learning capabilities. In the

high dose region near PTV, PRT-Net had a prediction error of 1.11

± 0.29 Gy for PTV D95 compared to 2.58 ± 0.57 Gy for classic U-

Net and 1.44 ± 0.37 Gy for DeepLab-V3-plus. The accuracy of the

PRT-Net model in predicting high dose is improved. In the low

dose range, the DSC of PRT-Net was 0.974 ± 0.04 for 4 Gy isodose,

which was also better than that of U-net, U-net++, and DeepLab-

V3-plus (0.920 ± 0.12, 0.957 ± 0.07, and 0.968 ± 0.11, respectively),

and the dose predicted by PRT-Net was closer to the real data.

Combining the PRT-Net with the Lm&Lp&Lr algorithm

significantly improved the model’s ability to predict dose

distribution by more accurately characterizing the relationship

between contour location and dose, reducing the predicted PTV

D95 error from 1.11 ± 0.29 to 0.57 ± 0.44 Gy.
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The PRT-Net model uses an enhanced self-attentive module to

fit the inter-correlation information between different features. It

uses a convolutional attention mechanism to infer the weight

concentration region in the channel and spatial dimensions and

adaptively optimize local features. Moreover, the model can

generate dose predictions at four different resolutions during a

forward propagation by the refinement module and improve the

dose prediction results by gradually fitting the high resolution at low

resolution. A multi-loss function fusion algorithm was proposed to

improve the prediction results in different loss dimensions. A deep

supervised training algorithm was deployed to jointly optimize

three different loss functions: mean square error loss, planning

target region loss, and sequence loss.

The reason for using preoperative CT rather than planning CT

as model input in this study is based on the anatomy. In previous

dose prediction studies, researchers have used the planning CT as

the input to the model. However, for patients undergoing radical

hysterectomy and postoperative radiotherapy, a planning CT will

show that the surgery has been completed and the ovaries are

located in a way that cannot be easily changed. Therefore, it is

illogical to use planning CT for dose prediction to determine the

safe location of the ovaries. To predict the safe location of the ovary

prior to surgery, preoperative CT must be used as the model input.

Since no other deep learning-based dose prediction studies are

using preoperative CT as model input, it is difficult to compare the

dose prediction results of this study with other dose prediction

studies in the literature. The reason why other studies did not use

preoperative CT for dose prediction was mainly because the

location and size of OARs on preoperative CT and planning CT

differ depending on the drugs used during chemotherapy and

radical hysterectomy. The deformation of the OARs resulted in a

significant variation of dose distribution in the high dose regions;
TABLE 4 DSC, Hausdorff distance, and Jaccard coefficient for low-
isodose volume after rigid alignment.

ROIs DSC
Hausdorff

distance (cm)
Jaccard

coefficient

4 Gy 0.974 ± 0.041 1.940 ± 1.707 0.948 ± 0.054

10 Gy 0.973 ± 0.082 1.808 ± 1.354 0.951 ± 0.047

15 Gy 0.963 ± 0.076 2.006 ± 1.323 0.951 ± 0.041

20 Gy 0.966 ± 0.064 1.898 ± 1.246 0.942 ± 0.040
TABLE 5 Iso-dose dice similarity coefficient (DSC) between clinical and predicted isodose volumes for the four models.

UNet UNet++ DeepLab – V3 – Plus PRT – Net

4 Gy 0.920 ± 0.120 0.957 ± 0.072 0.968 ± 0.114 0.974 ± 0.041

10 Gy 0.933 ± 0.071 0.971 ± 0.052 0.976 ± 0.091 0.973 ± 0.082

15 Gy 0.955 ± 0.118 0.954 ± 0.073 0.961 ± 0.080 0.963 ± 0.076

20 Gy 0.949 ± 0.046 0.961 ± 0.105 0.944 ± 0.055 0.966 ± 0.064
The best result in each row is highlighted in bold font.
TABLE 6 Iso-dose dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95) between clinical and predicted isodose volumes for the PRT-
Net model trained with three loss function algorithms.

Lm Lm&Lp Lm&Lp&Lr

DSC HD95 DSC HD95 DSC HD95

4 Gy 0.974 ± 0.04 1.103 ± 0.99 0.966 ± 0.05 1.215 ± 1.01 0.968 ± 0.114 1.032 ± 0.87

10 Gy 0.973 ± 0.08 1.097 ± 1.11 0.976 ± 0.03 1.133 ± 0.99 0.976 ± 0.093 1.152 ± 1.31

15 Gy 0.963 ± 0.07 1.336 ± 1.21 0.964 ± 0.09 1.227 ± 1.04 0.972 ± 0.062 1.313 ± 1.19

20 Gy 0.966 ± 0.06 1.297 ± 0.83 0.961 ± 0.10 1.306 ± 1.08 0.969 ± 0.082 1.282 ± 1.29
The best result in each row is highlighted in bold font.
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thus, the results predicted by the model in the high dose regions

(e.g., dosimetric parameters for rectum and bladder) cannot be

applied clinically. The DVH curve in Figure 4 shows a particularly

high dose in the rectum, mainly due to the deviations in the position

of the rectum on preoperative and planning CT. The rectum on the

preoperative CT was just on the location of the PTV in the planning

CT, which resulted in the dose level to the rectum on the

preoperative CT being close to the PTV. However, our study

found that the location of isodose lines in low dose areas such as

4 and 10 Gy was minimally affected by the deformation of OARs. As

shown in Table 4, the variation of the low isodose volume after rigid

image alignment is very small. For this reason, this study was able to

accurately predict the dose distribution in the low dose region by

preoperative CT, thus predicting the safe location of the transposed

ovary. Therefore, the deformation of OARs has a significantly

negative impact on predicting parameters associated with OARs

in the high dose region but has a little effect on the dose distribution

in the low dose region of interest in this study.

In addition, even if the preoperative CT dose distribution differs

slightly from the planning CT dose distribution due to factors such
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as the deformation of OARs and the difference in treatment couch,

the surgeon and physicists can further fine-tune the dose of the

ovary to bring it below the safe dose limit by the subsequent design

of the RT plan. The position of the 4-Gy isodose line shown on the

dose distribution is not always suitable for the fixation and

placement of the transposed ovary due to procedural difficulties

and other factors. Therefore, the surgeon can also choose to

transpose ovaries to 5–10-Gy areas and adjust the ovarian dose

through subsequent RT treatment plans to ensure that the dose is

below the safe limit. Using the method proposed in this study can

prevent surgeons from mistakenly transposing ovaries into the 20-

and 30-Gy high dose regions without knowing the dose

distribution. In such cases, it is difficult to control the dose of the

ovary below the safe limit in subsequent treatment planning, which

may either lead to insufficient coverage in PTV or sacrifice of the

protection of the ovary. The dose distribution generated by artificial

intelligence also provides a visual reference for the surgeon

preoperatively, allowing them to specify the appropriate ovarian

transplant location and reduce the procedure’s difficulty and risk.

Note that, in this study, the ovaries were excluded from the
FIGURE 8

Difference between the real voxel number and the predicted number from the models.
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structures, and the ovarian objective function was not included in

the plan optimization, so the AI model did not learn the location

information of ovarian displacement selected by the surgeons.

Therefore, the method proposed in this study can help surgeons

quickly determine the approximate range of safe ovarian locations,

significantly reducing the risk of surgeons leaving the ovaries in the

possible high dose area.

Differently from previous research, our research focuses on

using artificial intelligence to solve a specific challenge in practical

clinical work, which is to determine the location for ovarian

transposition. The main focus of research for utilizing neural

network in dose prediction was to improve the accuracy of

network model prediction, making the prediction closer to the

clinical plan, or to automatically generate a deliverable plan through
Frontiers in Oncology 13
artificial intelligence (29–31). Wang et al. (17) proposed a novel

progressive refinement U-Net with rank loss to predict the VMAT

dose of prostate cancer end-to-end, using the multi-task learning

training strategy to optimize the output details, which had a

significant improvement compared to traditional U-net models.

Sun et al. (28) proposed a voxel optimization strategy based on the

U-net algorithm, which used the PTV binary contour as a mask to

generate the inner and outer regions, then utilized these two regions

to optimize the treatment plan, and applied a “hybrid” optimization

strategy to generate personalized radiotherapy plan. In contrast, our

research was aimed at assisting clinicians to perform their tasks

more efficiently and accurately by introducing deep learning

methods to protect the ovaries of young cervical cancer patients.

In this work, U-net had the weakest VMAT dose prediction ability
A

B

FIGURE 9

Dose distribution in axial, coronal, and sagittal views in color wash in a patient. The red contour is the left ovary, and the blue contour is the right
ovary. (A) Predicted postoperative dose distribution overlaid on preoperative CT. (B) Postoperative dose distribution.
A B

FIGURE 10

DVH of the ovaries. (A) Prediction of the ovary dose on preoperative CT. (B) Postoperative ovarian dose after ovarian transposition using our method
as guidance.
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among the four models, especially for the low dose region, and these

results were similar to those of Wang et al. (17). Even compared

with U-net++ and DeepLab-V3-Plus, the proposed PRT-Net has

better dose prediction ability. Currently, although commercial TPS

software is available to provide commercial dose prediction

functions (e.g., Rapidplan knowledge-based planning), Rapidplan

mainly predicts DVH to obtain an objective function to optimize

the plan (32, 33). It is based on postoperative planning CT for dose

prediction, but the results of dose prediction using preoperative CT

are not clear for the time being. The surgeon needs to combine the

complete dose distribution with the preoperative CT to accurately

determine the location of the transposed ovary. Therefore, we

constructed a progressive refinement module to improve the

accuracy of predicting low dose regions based on preoperative CT

and thus more accurately predict the location of safe ovarian

transposition. The network is more applicable to assist in the

clinical performance of ovarian transposition.

There are also some limitations of this study. First, in actual

clinical practice, ovarian survival is closely related not only to the dose

in radiotherapy but also to the age of the patient and the drugs used in

the concurrent chemotherapy (2, 34). However, for cervical cancer

patients who need to maintain ovarian function, age is the

determining factor. Moreover, to ensure the efficacy of treatment, it

is difficult to change the chemotherapy schedule. Thus, only the dose

of radiotherapy is easier to limit and control (8). This study provides

technical guidance for current ovarian function protection in terms of

radiation doses. If we want to further improve the ovarian survival

rate, several factors such as the use of chemotherapy drugs need to be

considered. Second, in actual clinical diagnosis, PTV is usually

delineated based on multiple adjacent slices along the cranial–

caudal direction (Z-axis). However, the 2D convolutional kernels

approach ignores the context along the Z-axis, resulting in losing

spatial congruence information. Specifically, the single slice or three

consecutive slices cropped from 3D volumetric images were fed to the

2D neural networks, and the 3D dose volume was generated by

simply stacking the 2D dose map. Although using adjacent slices, it

still cannot fully exploit the spatial information in three dimensions,

which may bias the prediction results. Furthermore, rigid registration

was utilized in this study due to the unpredictable deformation of

structures during hysterectomy, although rigid registration was

sufficient to achieve the goal of this study, which is to predict the

low dose regions, as proven by the high DSC and HD95. The possible

reason is that the low dose area is large, and the most important

factors affecting its volume and location are the shape and location of

the PTV. Since the shape and position of PTV on preoperative CT

and postoperative CT of cervical cancer are relatively stable and

unchanged, the method using rigid alignment is able to let neural

network predict the low dose area. Future work may include training

of neural network on learning of preoperative CT to postoperative CT

registration for a more robust predicted dose distribution. Finally, the

transformer-based neural network architecture requires large data

sets to eliminate overfitting. However, so far, the local institution has

only 104 cases available for dose prediction, which may lead to

prediction bias. Maybe the more optimized transformer algorithms,

such as the axial self-attention model (35) or gated-attention-model

(36), could alleviate the overfitting. Future work includes
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implementing our model to 3D dose prediction, applying our

method to more clinical cases, and exploring the possibility of

improving ovarian survival in young cervical cancer patients by

combining various factors such as chemotherapy. In addition, we

will consider applying our model to other clinical work to assist

clinicians with risk assessment and decision analysis, making the

clinical work less difficult and more efficient.
6 Conclusion

In this work, we propose PRT-Net based on reinforced self-

attentive architecture, which deployed a multi-loss function fusion

algorithm to train the progressive refinement module to fit the dose

prediction distribution. It is challenging to predict the dose

distribution by preoperative CT due to factors such as the

deformation of OARs, which has higher requirements for neural

network model algorithms. Low dose regions were successfully

predicted based on the patient’s preoperative CT. The results

were applied to ovarian transposition to reduce the risk of ovaries

in the high dose region.
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