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The substantial heterogeneity exhibited by head and neck cancer (HNC),

encompassing diverse cellular origins, anatomical locations, and etiological

contributors, combined with the prevalent late-stage diagnosis, poses

significant challenges for clinical management. Genomic sequencing

endeavors have revealed extensive alterations in key signaling pathways that

regulate cellular proliferation and survival. Initiatives to engineer therapies

targeting these dysregulated pathways are underway, with several candidate

molecules progressing to clinical evaluation phases, including FDA approval for

agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-

type, EGFR-mutant HNSCC treatment. Non-coding RNAs (ncRNAs), owing to

their enhanced stability in biological fluids and their important roles in

intracellular and intercellular signaling within HNC contexts, are now

recognized as potent biomarkers for disease management, catalyzing further

refined diagnostic and therapeutic strategies, edging closer to the personalized

medicine desideratum. Enhanced comprehension of the genomic and

immunological landscapes characteristic of HNC is anticipated to facilitate a

more rigorous assessment of targeted therapies benefits and limitations,

optimize their clinical deployment, and foster innovative advancements in

treatment approaches. This review presents an update on the molecular

mechanisms and mutational spectrum of HNC driving the oncogenesis of

head and neck malignancies and explores their implications for advancing

diagnostic methodologies and precision therapeutics.
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1 Introduction

From the very heterogeneous group of head and neck cancers

(HNC) (1), the head and neck squamous cell carcinomas (HNSCC)

produced by the transformation of the squamous cell epithelia

lining the oral cavity, pharynx and larynx are the sixth most

common type of cancer (2–4), with 700,000 - 900,000 new cases

recorded annually (2, 4), responsible for 0.5% (in case of

oropharynx cancers) to 1.9% (for lip and oral cavity cancers) of

deaths from all cancers combined (2).

The most invoked etiological factors are smoking, alcohol

consumption (5, 6) and HPV (human papillomavirus) infections

(7a; 7b; 8–14). In addition, several factors contribute more or less to

HNC development, including EBV (Epstein-Barr virus) infections

(15, 16), laryngopharyngeal reflux (17), chewing betel quid (Areca

nuts) (18, 19), poor oral hygiene (20), oral dysbiosis (21), pro-

inflammatory diet (22, 23), and inhalation of airborne pollutants

(24, 25). With the development of molecular diagnostic techniques,

many genetic aberrations (4, 26–28) and epigenetic factors (29)

have been revealed.

HNC presents significant challenges in terms of both diagnosis

and treatment. Late diagnosis due to the lack of effective screening

strategies often complicates treatment options and reduces overall

survival rates (30). The heterogeneous nature of HNC further adds

to the complexity, requiring tailored approaches for different

subtypes (24, 31–34). Moreover, the aggressive nature of

traditional treatments like chemoradiotherapy can lead to

significant side effects and reduced quality of life for patients (35).

The choice of the appropriate therapeutic strategy must

consider the anatomical site, tumor stage, and etiological factors

and could include surgery, radiotherapy, chemotherapy,

immunotherapy, and, more recently, targeted therapies. Despite

the poor outcomes in the advanced stages (36), the latter is expected

to appropriately address the high heterogeneity of HNC.

Consequently, it will contribute to better patient outcomes and

improved 5-year survival rates, which currently average is around

50% (2, 33, 37).

Various clinical trials have been undertaken around the world

on patients with HNSCC. In the clinicaltrials.gov database, 1266

clinical studies with the condition/disease ‘HNSCC’ have been

registered since 2022. Recently, Goel and collaborators

summarized the results of a large number of clinical trials

examining the efficacy of immunotherapy and molecular-targeted

treatments. A total of 393 studies were completed out of 1266 trials

registered, while 590 studies were still recruiting. Docetaxel,

cisplatin, and 5-fluorouracil (5-FU) have been identified as the

most often used medications in clinical trials worldwide (38), but

monoclonal antibody-based medicines such as nivolumab,

pembrolizumab, cetuximab, panitumumab, zalutumumab, and

nimotuzumab also hold significant promise for future therapeutic

applications (39–41). However, the poor prognosis for many HNC

patients and high rates of locoregional recurrence and metastasis

advocate for better screening methods, more effective and tolerable,

personalized treatment strategies (42). This paper reviews the
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molecular mechanisms involved in HNC, summarizing the

signaling pathways harboring genetic aberrations (RAS–RAF–

MEK–ERK, PIK3–AKT–mTOR, WNT/beta-catenin, JAK-STAT,

NOTCH, and HIF–VEGF), epigenetic mechanisms and the roles

of ncRNAs and tumor microenvironment in neoplastic progression.

We also tried to summarize the therapies targeting the abnormal

functioning of these signaling pathways and their efficacy.
2 HNC molecular pathogenesis

The development of HNC is a multistep process in which

mutations are accumulating in the main cellular signaling

pathways that regulate proliferation, cell death, angiogenesis and

immune system functions (3) (Figure 1).
2.1 Cell cycle deregulation in HNSCC

The most affected cell cycle regulating genes in HNC are TP53,

RB, CCND1, CDKN2A/INK4, and CDK6, unblocking the G1/S

transition. Thus, TP53 protein function is impaired in 50–80% of

cases, the mutations in the TP53 gene in HNSCC being the seventh

most frequent in cancer diagnosis worldwide (43). Several types of

mutations (deletions, insertions, and frameshift mutations, and

point mutations) in the TP53 protein are associated with

increased risk of progression from mild dysplasia to invasive

carcinoma and unfavorable tumor progression (33, 44–47).

Specifically, TP53 missense mutations in the DNA binding region

are significantly enriched in metastases and are associated with a

common fragile site in chromosome 11, leading to amplification

and overexpression of genes with established role in metastasis (45).

In HPV-positive HNC, TP53 mutations are sporadic, as the

function of this gene is selectively abrogated by viral proteins E6

and E7.

The RB1 gene function is altered by unilateral or bilateral

deletions, methylation of the RB1 promoter, or point

mutations (48).

The CCND1 gene is overexpressed in 30%-46% of cases, leading

to G1 phase shortening and rapid entry into the S phase, bypassing

the influence of growth factors and increasing the proliferation rate

of gene-defective cells. These alterations are reported in cancers

with frequent recurrence, lymph node metastasis, and reduced

survival rate (49, 50).

After CCND1, the third most frequent alteration in HNC is the

potent inhibitor CDKN2A, a regulator of cyclin activity and

progression to S phase. CDKN2A alterations including deletions

(more common in HPV-negative tumors), hypermethylation, and,

less commonly, mutations in exon 2 (rarest in oropharyngeal

tumors) are associated with metastatic cancers with poor

prognosis (51). In laryngeal squamous cell carcinomas, mutations

in the CDKN2A gene occur in approximately 14% of cases (52).

CDK6 is overexpressed in some oral tumors and correlates with

tumor stage advancement and progression (36).
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2.2 DNA repair pathway

The DNA repair pathway is a mechanism by which cells in the

G1 or G2 phase are halted at checkpoints to identify and correct

errors in the nucleotide sequence of nuclear genetic material. This

process is initiated by the detection of DNA lesions and is activated

by the ATM (ataxia-telangiectasia mutated) and ATR (ataxia-

telangiectasia and Rad3 related) kinases, along with proteins such

as BRCA1, BRCA2, (Mediator of DNA Damage Checkpoint 1) and

T53BP1 (Tumor Protein P53 Binding Protein 1). Additionally, the

synthesis of PALB2 (partner and locator of BRCA2), which

interacts with BRCA1 and BRCA2, plays a crucial role in the

DNA repair process.

In HNC, the most mutated genes in this signaling pathway are

ATM (25%), BRCA2 (9.2%), BRCA1 (5.75%), and ATR (4.36%) (53–

56). Recent studies have revealed that the disrupted expression of

specific components within the DNA repair machinery, stemming

from mutations in key pathway genes like ATM and BRCA1, can

yield valuable prognostic insights for HNC patients (56, 57).

The alterations in critical cellular signaling pathways governing

proliferation and cell survival have been exploited to create
Frontiers in Oncology 03
customized treatments for HNC individuals. The increasing

interest in exploring the cell cycle (CDK4/6, CCND1, CDKN2A)

and the DNA repair pathways (BRCA, ATM, ATR) is demonstrated

by clinical trials (NCT03356223, NCT03065062, NCT03024489,

NCT05878964, NCT04576091, NCT04491942, NCT02567422)

actively investigating their potential in the broader context of

HNC such as CDK4/6 inhibitors for HPV-negative tumors (42).
2.3 RAS–RAF–MEK–ERK signaling pathway

This pathway involves numerous proteins and receives

biological signals from the extracellular space through various

ligand-receptor pairs, including TGFa and EGF–EGFR/ERBB1/

HER1, ERBB2/HER2, PDGF–PDGFRA and PDGFRB, IGF–

IGF1R, FITL–KIT/c-KIT, FLT3L–FLT3, HGF–MET, and FGF–

FGFR. These signals are transmitted into the nucleus, where they

activate genes involved in cell proliferation and differentiation,

inflammation, evasion of apoptosis, and support of angiogenesis

(58–63). Interaction with cytokine ligands activates transmembrane

receptors and recruits the growth factor receptor-bound protein 2
FIGURE 1

Main signaling pathways disregulated in HNC at the genomic or transcriptional level. Black arrow-ended lines indicate activation and red bar-ended
lines indicate inhibition. RAS–RAF–MEK–ERK (A, B) and PIK3–AKT–mTOR (C) signaling pathways are involved in promoting cell survival and
proliferation (D), antagonistically to the WNT pathway (E), in which AXN1/2 blocks beta-catenin activity. By enhancing JAK/STAT signaling (F), VEGF
proteins (G), the main angiogenic molecules, are activated. Alternatively, VEGF expression is also modulated by hypoxia-induced factor 1A (H).
Frequently reported in HNCs, angiogenesis builds the vasculature through which the tumors are supplied with oxygen and allows their progression
and a worse prognosis. On the other hand, the NOTCH signalling pathway is involved in cell growth and evasion of apoptosis (I). Very important in
the control of tumour processes in head and neck cancers is the Hippo pathway (J), which, when activated, phosphorylates YAP/TAZ, causing its
intracytoplasmic sequestration and degradation, preventing its translocation to the nucleus and activation of TEAD. TEAD activation leads to cell
proliferation. For further details, please see the text.
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(GRB2) adaptor protein, which interacts with SOS1 protein (the

human homolog of Drosophila son of sevenless 1). This is a RAS-

specific guanine nucleotide exchange factor and reacts with RAS

family members, the core proteins of this signaling pathway (64,

65). The RAS family of GTPases comprises three members, KRAS

(Kirsten RAS oncogene homolog), HRAS (Harvey RAS oncogene

homolog), and NRAS (Neuroblastoma RAS oncogene homolog),

which transmit the signals downstream to RAFs (from the

canonical RAS–RAF–MEK–ERK pathway), RALGDS (from

the RALGDS–RAL–PLD1 signaling pathway), RASSF1 (from the

RASSF1–MST1 signaling pathway) or PI3K (from the PI3K–AKT–

mTOR signaling pathway) (66, 67). In the canonical RAS–RAF–

MEK–ERK pathway, RAS proteins are the first members of a four-

step cascade of cytoplasmic protein kinase kinases, which include:

(1) RAF (rapidly accelerated fibrosarcoma kinase), RAF1/c-RAF,

BRAF and ARAF family of kinases, designated MAPKKK or

MAP3K; (2) MEK (mitogen-activated protein kinases); (3) ERK

(extracellular signal-regulated kinase) (68, 69). In the RAS–RAF–

MEK–ERK signaling pathway, overexpression of EGFR/ERBB1

occurs early in the progression of HNSCC, leading to poor

prognosis (70). In tumor xenografts of HPV-positive HNSCC, it

enhances the response to radiotherapy by decreasing the expression

of the HPV protease E6 and affecting DNA repair mechanisms (71).

In most HNC, members of the RAS gene family are most

frequently mutated, followed at a long distance by those of the

RAF gene family (72). In a study of 51 patients with HNSCC
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(with higher prevalence in the larynx and trachea area),

mutations of the KRAS gene (sometimes designated KRAS1 or

KRAS2) were detected in 35% of cases, and mutations of the

HRAS gene in 33% of cases, with the caveat that KRASmutations,

HRAS mutations, and HPV infection are mutually exclusive (68).

The most frequent mutations (7%) occur in the HRAS gene

(mainly in the oral cavity and salivary gland tumors and

associated with advanced stages of tumors), with the other two

family members, KRAS, at 2.89% (mostly in syn-nasal tumors and

often associated with HPV infection), and NRAS, at 2.20%

(predominantly in nasopharyngeal tumors) (69). Members of

the RAF gene family undergo fewer mutations (in about 3% of

cases) compared to RAS genes, with the most known mutations

reported in the BRAF gene (V599/600E, G468/469A, and Q257R)

(58). In HNC, 6% of cases have heterozygous mutations in exons

12 and 13. Because KRAS activates only the wild-type BRAF gene,

mutations in KRAS and BRAF genes never occur together in HNC

and are redundant (58).

Many inhibitors targeting this pathway have been developed,

essentially modifying the therapeutic strategy of cancers. Starting

from compound 12, first reported by the Schokat group in 2013 (73),

a series of inhibitors based on the compound 12 structure are

developed, such as ARS-853 and ARS-1620 (74, 75). The

KRASG12C-specific drug, AMG510 (storasib), first went into

clinical trial in 2019 and was subsequently proven by the FDA in

2021 (76, 77) (Table 1).
TABLE 1 Clinical trials for HCN targeted therapies.

No. Drug
Mechanism
of action

Disease
Outcomes/

Expected results
Patients
enrolled

Year
Clinical
trials

References

1 Storasib KRASG12C

inhibitor
Metastatic
NSCLC

Potential effective first-line therapy
for subgroups of NSCLC patients

42 2022 NCT04933695 77

2 Dacomitinib EGFR inhibitor (EGFR)-driven
advanced

solid tumors

Progression free survival, duration
of response

104 2021 NCT04946968 –

3 Vandetanib antineoplastic
kinase inhibitor

Precancerous
head and

neck lesions

Effect of vandetanib compared to
placebo on microvessel density

20 2012 NCT01414426 Awaiting
for results

4 Panitumumab human
monoclonal
antibody

against EGFR

Unresected
LA-HNSCC

Panitumumab cannot replace
cisplatin in the unresected stage III-

ivb HNSCC treatment

152 2012 NCT00547157 78

5 Panitumumab human
monoclonal
antibody

against EGFR

LA-HNSCC Panitumumab did not durably
improve quality of life swallowing

as compared with standard
with cisplatin

320 2017 NCT00820248 79

6 Gefitinib tyrosine
kinase inhibitor

Advanced-stage
or

recurrent HNC

Gefitinib had marginally better
results in terms of overall response

and safety as compared
to methotrexate

200 2021 – 80

7 Erlotinib EGFR inhibitor Hnscc Feasible and safe therapeutic option 35 2022 NCT: CTRI/
2020/

02/023378

81

(Continued)
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Another KRASG12C-specific covalent inhibitor, MRTX849

(adagrasib), developed by the Mirati group, also went into clinical

trial in 2019 (92). Cetuximab is a chimeric mouse-human

monoclonal IgG1 antibody against the extracellular domain of

EGFR that can inhibit the functions of EGFR and induce cancer

cell death via antibody-dependent NK cell-mediated cytotoxicity

(93). In 2006, FDA approved the combination of cetuximab with

radiotherapy for the treatment of locally advanced (LA) - HNSCC

(94). In a study published in 2023, the conjugate of cetuximab with

IRdye700DX, which is activated by illumination at 690 nm, has

been used successfully on near infrared photoimmunotherapy to a
Frontiers in Oncology 05
patient with local recurrence of nasopharyngeal squamous cell

carcinoma (95). Cetuximab, received full FDA approval for the

treatment of patients with K-RAS wild-type, EGFR-mutant HNSCC

following reports that its addition to radiation therapy results in

significant improvements in disease control and overall survival (96,

97). Other inhibitors of EGFR/ERBB1 tested for HNC treatment are

dacomitinib and vandetanib. When used with radiotherapy,

dacomitinib reduces tumor volume in HNSCC, while vandetanib,

and cisplatin radiosensitizes tumor cells. Combining vandetanib

with radiotherapy is more efficient than other monotherapies or

combination therapies (98, 99).
TABLE 1 Continued

No. Drug
Mechanism
of action

Disease
Outcomes/

Expected results
Patients
enrolled

Year
Clinical
trials

References

8 Afatinib
and

pembrolizumab

irreversible EGFR
tyrosine

kinase inhibitor

Platinum-
refractory,
recurrent, or
metastatic
HNSCC

Afatinib may augment
pembrolizumab therapy and
improve the ORR in patients

with HNSCC

29 2022 NCT03695510 82

9 Everolimus and
carboplatin-
paclitaxel

mTOR inhibitor La t3–4/n0
3 hnscc

Safe, major tumor responses,
impacting tumor microenvironment

49 2013 NCT01333085 83

10 Taselisib PI3K
pathway

suppression

Metastatic
solid tumors

Favorable safety profile and early
signs of promising activity

34 2017 – 84

11 Alpelisib PI3K
pathway
inhibitor

Hpv-
associated hnscc

Safety and preliminary
efficacy evaluation

9 2022 NCT03601507 Awaiting
for results

12 Alpelisib PI3K
pathway
inhibitor

Recurrent/
metastatic
HNSCC

Assesing early antitumor activity 40 2024 NCT04997902 Awaiting
for results

13 Buparlisib class I
PI3K inhibitor

Recurrent/
metastatic
HNSCC

Significant promise as a
treatment strategy

53 2014 NCT01527877 85

14 WNT974 WNT- porcupine
enzyme inhibitor

Advanced
solid tumors

WNT974 influence immune cell
recruitment to tumours; enhance
checkpoint inhibitor activity

94 2024 NCT01351103 86

15 Ruxolitinib clinical JAK1/
2 inhibitor

Operable
HNSCC

Anti-cancer effects 16 2023 NCT03153982 87

16 Pembrolizumab
combined with

tacitinib/
parsaclisib

Janus kinase
1 inhibitor

Advanced
solid tumors

Modest clinical activity; little effect
on T-cell infiltration in the tumor

159 2020 NCT02646748 88

17 Crenigacestat
(LY3039478)

Notch inhibitor Advanced or
metastatic

solid tumors

Poorly tolerated; lowered dosing
and disappointing clinical activity

94 2020 NCT02784795 89

18 Cetuximab
plus

bevacizumab

EGFR and VEGF
monoclonal
antibodies

HNSCC Significant reduction in
tumor vascularization

48 2012 NCT00409565 90

19 Bevacizumab VEGF
monoclonal
antibody

Recurrent or
metastatic

solid tumors

Improved the response rate and
progression-free survival with

increased toxicities

403 2025 NCT00588770 91

20 IK-930 Oral TEAD
Inhibitor

Targeting the
Hippo Pathway

Advanced
solid tumors

Evaluation of the safety, tolerability,
pharmacokinetics,

pharmacodynamics, and
preliminary antitumor activity

198 2025 NCT05228015 –
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Several monoclonal antibodies of EGFR are still under intensive

investigation, including panitumumab, nimotuzumab, and

zalutumumab. According to the results from CONCERT-2 and

HN.6 trials, panitumumab cannot replace cisplatin when combined

with radiotherapy for LA-HNSCC (78, 79). In addition, combining

panitumumab with the standard chemoradiotherapy strategy failed

to provide any benefit (100). Adding nimotuzumab to radiotherapy

with or without cisplatin provided long-term survival benefits for

up to five years and improved the complete response rate in LA-

HNSCC patients (101). In a phase 3 clinical trial involving 536 LA-

HNSCC patients, nimotuzumab plus cisplatin and radiotherapy

significantly improved the locoregional control rate without

negatively impacting the quality of life (102). The promising

results strongly supported the addition of nimotuzumab to LA-

HNSCC patients who are treated with cisplatin and radiotherapy.

Another monoclonal antibody, zalutumumab, extended the survival

time from 8.4 to 9.9 weeks in recurrent or metastatic (R/M) HNSCC

patients who had failed platinum-based chemotherapy (103).

Meanwhile, moderate-to-severe skin rash during zalutumumab

treatment was related to superior OS, independent of HPV

infection and p16 status (104).

Some small molecular inhibitors of EGFR are also under

investigation for the management of HNSCC, including selective

inhibitors (e.g., gefitinib, erlotinib) (80, 81, 105, 106) and dual-

target inhibitors (e.g., afatinib, lapatinib, and dacomitinib)

(82, 107).
2.4 PIK3–AKT–mTOR signaling pathway

The PIK3–AKT–mTOR signaling pathway is very complex,

being activated by extracellular signals represented by hormones,

cytokines, and growth factors via receptors common with those of

the RAS–RAF–MEK–ERK signaling pathway or via the enzyme

PI3K (Phosphatidylinositol-4,5-Bisphosphate 3-Kinase), directly or

indirectly, after PI3K activation by the GRB2, SOS, and RAS. This

pathway is involved in cell growth, differentiation, survival,

migration and proliferation, apoptosis evasion, and glucose

metabolism (108). The central actor of this signaling pathway is

the class I PI3K enzyme, which is part of the PI3K family of lipid

and protein kinases, classified into three classes (I, II, and III). The

class I enzymes function as secondary messengers in the

intracellular transduction of biological signals and are more

commonly associated with cancer (109, 110). The PI3K signals

are transmitted through a phosphorylation cascade, represented by

PIP2 (phosphatidylinositol-4,5-bisphosphate), which becomes PIP3

(phosphatidylinositol-3,4,5-trisphosphate), AKT/PKB (Serine/

Threonine Kinase), and mTOR–RICTOR (Mechanistic Target Of

Rapamycin Kinase–Rapamycin Insensitive Companion of mTOR)

complex. Phosphorylation of AKT/PKB is antagonized by PTEN

(phospha ta s e and tens in homolog ) ac t i v i t y , wh i ch

dephosphorylates the latter (111) and functions as an essential

tumor suppressor (112). Subsequently, the phosphorylated AKT/

PKB activates multiple downstream targets, promoting cell survival,

activating anti-apoptotic pathways, and blocking apoptotic ones.

PI3K and AKT can induce chromosome instability MET-
Frontiers in Oncology 06
dependently, an event suppressed by PI3K/mTOR inhibition,

AKT depletion or PTEN overexpression (113). Interacting with

HGF (Hepatocyte Growth Factor), MET can activate the PI3K–

AKT–mTOR signaling pathway in endosomes independently of

EGFR (114) or in the presence of TP53 mutants, as is mainly the

case in patients with HPV-positive tumors (115). The MET gene is

overexpressed in over 75% of HNSCC and has an increased copy

number of 13%, associated with tumor progression and tumor

dissemination in the early stages (116). Mutations of the MET gene

are reported less frequently, but they seem to be involved in lymph

node metastasis (117, 118). HNC may also carry somatic mutations

in PIK3R1 (~7%) and PTEN genes (51, 119), with loss of function in

approximately 30% of HNC (more common than other cancers)

due to mutations, loss of heterozygosity in the 10q region (which

includes PTEN), detected in more than 70% of HNSCC, or

hypermethylation, reported in ∼5% of these. In addition, TSC1/2

and LKB1 genes could be inactivated by loss of heterozygosity

(TSC1/2), methylation (TSC2) and somatic mutations (LKB1)

(119) (Figure 2).

Although Akt is recognized as a key player in cell migration and

metastasis, its role remains controversial. Akt1 promotes cell

migration in fibroblasts but inhibits it in breast cancer, while

Akt2 has the opposite effects. The deletion of Akt isoforms can

impact cancer progression differently depending on whether it is

systematic or cell-autonomous (120, 121). Akt regulates cell

migration through various mechanisms, such as phosphorylating

PAK1, Girdin/APE, and ACAP1, which are involved in cytoskeletal

dynamics and integrin trafficking, crucial for cell motility (122,

123). Further research is needed to fully understand these

phosphorylation events and their implications in cancer metastasis.

Currently, drugs that target PI3K for NOTCH1-mutant tumors

(124) or mTOR are undergoing clinical trials. Everolimus (RAD001),

an allosterically inhibitor of only mTORC1 but not of mTORC2, is

clinically used to treat various cancers, including previously treated

recurrent or metastatic HNSCC (38, 83). BKM120, an oral, highly

specific pan-Class I PI3K inhibitor, has strong antiproliferative

characteristics in tumor cell lines (125). Previous studies with the

PI3Ka inhibitors taselisib, TAK-117, and alpelisib in patients with

solid tumors have reported promising clinical results (84, 126).

Taselisib treatment showed an overall rate response (ORR) of 36%

in patients with PIK3CA mutations but 0% in patients without

PIK3CA mutations (84). The phase I trial with alpelisib specifically

enrolled patients with PIK3CAmutations and showed an ORR of 6%

and a stable disease rate of 52% (127, 128). Two phase II clinical trials,

including to date 47 patients, are currently evaluating the

clinical efficacy of alpelisib as monotherapy in HPV-positive

HNSCC (NCT03601507) and alpelisib in combination with the

farnesyltransferase inhibitor tipifarnib in HRAS- and PIK3CA-

mutant HNSCC (NCT04997902; 129). Buparlisib (BKM120),

another pan-PI3K inhibitor, exhibited limited antitumor activity in

patients with HNSCC, with a disease control rate of 49% and an ORR

of only 3% (NCT01527877; NCT01737450) (85, 130). Another phase

II trial, including patients with HNSCC, revealed a modestly longer

median in patients receiving a combination of buparlisib and

paclitaxel than in the paclitaxel and placebo group (NCT01852292)

(131). The buparlisib/paclitaxel combination is currently in phase III
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trial in patients with HNSCC (NCT04338399). Understanding the

intricate interplay between Akt, Rho GTPases, and their downstream

effectors, such as PAK1, as well as the regulatory networks controlling

RhoA expression, is essential for uncovering novel therapeutic targets

and strategies for combating metastatic cancer.
2.5 WNT/beta-catenin signaling pathway

TheWNT(Wingless-Type)/beta-catenin signaling pathway is an

alternative to the PIK3–AKT–mTOR pathway for promoting cell

proliferation and avoiding apoptosis that includes three main

pathways, the canonical WNT/b-catenin signaling pathway and

the WNT/Ca2C and WNT/PCP non-canonical pathways (132–

134). They also promote dysplastic transformation [WNT3, in oral

leukoplakia (135), deterioration in histological grade, progression of

clinical stage, and heightened metastatic potential in cervical lymph

nodes [WNT3A, in laryngeal squamous cell carcinoma (136)],

amplification of migration and invasiveness [WNT5A (137) and

WNT5B (138), in OSCC], tumorigenesis and metastasis [WNT5A,

in nasopharyngeal carcinoma (139) and laryngeal squamous cell

carcinoma (137)], migration [WNT7A, in OSCC (140)],

proliferation and invasiveness [WNT7B, in OSCC (141)], cell

growth and survival and inhibition of apoptosis [WNT10B, in

HNSCC (142)]. In some OSCC, WNT11 is involved in tumor

suppression (143). Defects in the WNT11 gene are found in 5% of

OSCC, consisting of duplications, deep deletions or punctiform

mutations affecting its tumor suppressor function. Other WNT

genes are affected in smaller proportions (144).

Porcupine (Porc) is a membrane-bound O-acyltransferase

(MBOAT) by whose Wnt ligands palmitoylation takes place, a

process allowing them to be further secreted and recognized (145,

146). Therefore, repressing Porc can be a promising solution against

tumors with aberrant Wnt/b-catenin activation (147). WNT974 is a
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potent, selective, and orally bioavailable first-in-class inhibitor of

Porcupine with preclinical activity in Wnt-dependent HNC (86).

Recently, Rodon and collaborators conducted a phase 1 study

(NCT01351103) to investigate the safety and efficacy of the

WNT974 in patients with solid tumors. The results of this clinical

trial revealed that this inhibitor could be tolerated and may

influence immune cell recruitment to tumors and enhance

checkpoint inhibitor activity (86). In a phase I clinical trial, OMP-

18R5 (vantictumab), a monoclonal antibody targeting FZD

receptors, inhibited tumor growth in HNC (148). In a phase Ib

clinical trial, 54 patients with locally recurrent or metastatic HER2-

negative breast cancer who were treated with weekly paclitaxel in

combination with escalating doses of vantictumab were enrolled.

The combination of vantictumab and paclitaxel was generally well

tolerated and had promising efficacy. However, the incidence of

fractures limits future clinical development of this particular WNT

inhibitor in metastatic breast cancer (149). XAV939, a tankyrase

inhibitor, inhibited b-catenin signaling attenuated cancer stem cells

progression, consequently eliminating the chemical resistance in

HNSCC (60, 150).
2.6 JAK–STAT signaling pathway

The JAK–STAT signaling pathway is involved in diverse

physiological processes such as hematopoetic cell responses to

cytokines (151), cell growth, proliferation and differentiation,

survival, angiogenesis, and inflammatory or immune responses,

but also in pathological conditions like tumor processes (152–154).

The main proteins are JAKs (Janus kinases, named after the Roman

god Janus, known to have two faces), with for members (JAK1,

JAK2, JAK3 and TYK2, tyrosine kinase 2), and STAT (signal

transducer and activator of transcription), with seven members

(STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6)
FIGURE 2

Carcinogenesis in HNC from normal mucinous stage to invasive carcinoma stage, highlighting each stage, chromosomal regions affected by loss of
heterozygosity and genes that may be defective.
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(155). The JAK–STAT signaling pathway is activated in many

cancers, including HNC, mainly through overexpression of

STAT1, STAT3, and STAT5, with the first correlating with

favorable outcomes and the latter two with unfavorable outcomes

(33, 156). In OSCC, overexpression of STAT3 and its accumulation

in the nucleus is associated with reduced survival or favorable

prognosis (157), promoting tumor angiogenesis by stabilizing and

modulating the activity of HIF1 (hypoxia-inducible factor 1), which

promotes the synthesis of VEGFs (158), a key protein involved in

tumor invasiveness and metastasis. However, in breast cancers and

some colorectal, spine, head, and neck cancers, activation of the

JAK–STAT signaling pathway appears to result in a more favorable

prognosis (159).

Several studies in human tumors and HNC cell lines have

identified the JAK/STAT signaling pathway as a potential

therapeutic target (160, 161). The group of Kowshik

demonstrated that astaxanthin could hinder tumor progression by

attenuating JAK/STAT signaling and its target molecules, including

VEGF, cyclin D1, and MMP in the HPV-induced tumor models

(162). The JAK1/2-selective inhibitor ruxolitinib is FDA-approved

for several diseases, including myelofibrosis and graft versus host

disease (163, 164). Currently, two multicenter, phase 1b clinical

trials are undergoing to investigate the safety and efficacy of

ruxolitinib (NCT03153982) and pembrolizumab (NCT02646748)

in patients with HNC.
2.7 NOTCH signaling pathway

The NOTCH signaling pathway is activated by two families of

ligands, Jagged (JAG1 and JAG2) and Delta-like (DLL1, DLL3 and

DLL4). Upon interaction with NOTCH receptors (NOTCH1,

NOTCH2, NOTCH3, and NOTCH4) they influence cell self-

renewal capacity, cell cycle exit, survival, proliferation, and

angiogenesis in a cell- and biological context-dependent manner

(165–167). NOTCH1 signaling suppresses tumor development by

promoting terminal keratinocyte differentiation and is probably

protective in advanced stages of HPV-induced carcinogenesis, by

reducing transcription of viral E6 and E7 genes (168). Conversely,

NOTCH signaling causes FGF1-mediated tumor invasiveness in

OSCC and increases mortality (167), probably through activation of

MDM2, which ubiquitinates TP53 and primes it for degradation

(169, 170). NOTCH function is negatively regulated by EGFR-

activated C-JUN and inhibited by TP63, the latter being

overexpressed in numerous cases of HNSCC (171). Notch

signaling pathway is altered in 66% cases of HNSCC (172),

NOTCH1 gene presenting different percentages of mutations and

genetics variants, some of which being nonsense and missense

mutations (166, 173).

Several clinical trials were designed to target Notch signaling in

patients with advanced solid tumors. An open-label phase 1a dose

escalation clinical trial study (NCT01778439) of brontictuzumab, a

monoclonal antibody, was designed to assess the safety,

immunogenicity, pharmacokinetics, biomarkers, and efficacy of

brontictuzumab in subjects with relapsed or refractory solid
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tumors. The group around Ferrarotto, who contributed to this

clinical trial, reported significant clinical benefits in 6 of 36 patients,

with four subjects having prolonged (≥ 6 months) disease

stabilization. In addition, brontictuzumab was well tolerated at the

maximum tolerated dose (174). More recently, two phase 1b studies

with parallel dose-escalations (NCT02784795; NCT02836600) were

designed to investigate the Notch inhibitor crenigacestat in patients

with advanced or metastatic cancer from a variety of solid tumors.

These clinical trials revealed that crenigacestat was poorly tolerated,

leading to lowered dosing and limited clinical activity in patients

with advanced or metastatic solid tumors (89, 175, 176).
2.8 Hypoxia and angiogenesis (HIF-
VEGF) pathway

The hypoxia and angiogenesis (HIF-VEGF) pathway is essential

for oxygen supply supplementation in solid tumors. The intense

metabolic activities of solid tumors require an increased oxygen

supply, which cannot be provided by the physiologically existing

capillary structure of tissues. Thus, small tumors a few millimeters

in diameter can be supplied by diffusion, but larger tumors with

increased oxygen requirements rapidly enter hypoxia (177). In

HNSCC, hypoxia is a common condition associated with poor

prognosis and 5-year survival approaching 0% (178). Recently,

Matic and collaborators searched potential biomarkers in HNSCC

by examining mRNA expression of five highly upregulated (CA9,

CASP14, LOX, GLUT3, SERPINE1) and four highly downregulated

(AREG, EREG, CCNB1, and KIF14) hypoxia-responsive genes in 32

HNSCC tumors and six adjacent normal oral tissue. The results

showed a significantly higher mRNA expression of the hypoxia

marker CA9 and SERPINE1 in all tumor biopsies compared to

normal tissue. Regarding the hypoxia-downregulated genes, the

authors observed higher KIF14 and AREG mRNA expression in

HNSCC patients than in the the control group. In conclusion, the

mRNA expression of KIF14 could be a potential diagnostic marker

and might serve as a predictor of treatment response in HNSCC

(Matic et al., 2024). Signaling via the hypoxia and angiogenesis

pathway begins with HIF1–2 proteins (hypoxia-inducible factors 1–

2), which heterodimerize, and the HIF1–HIF2 heterodimers are

translocated to the nucleus, where HIF1 promotes transcription of

some genes, including the angiogenesis inductors VEGFA-D

(Vascular Endothelial Growth Factors A-D) (67). Activation of

HIF1 and HIF2 and overexpression of VEGFA-D in HNSCC result

in carcinogenesis progression, increased aggressiveness, and poor

prognosis, with a 2-fold increase of 2-year mortality risk (161).

Bevacizumab, a monoclonal antibody, is an FDA-approved

VEGF inhibitor used in treating numerous cancers, either as a

single agent or combined with chemotherapy or radiotherapy (179).

In a phase III trial including 403 patients with HNSCC, adding

bevacizumab to platinum-based chemotherapy significantly

improved the response rate and progression-free survival.

However, it did not increase the median survival rate (91).

Several clinical trials have recently investigated the benefits of

bevacizumab in combination with immune and chemotherapy. A
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phase II multicenter study (NCT03818061) aims to assess the effects

of atezolizumab, a PD-L1 inhibitor, and bevacizumab in recurrent

or metastatic HNSCC, considering the ORR. Another phase II trial

(NCT00409565) compared bevacizumab with cetuximab, which has

an immune-mediated activity. The results published by Argiris and

collaborators revealed a significant reduction in tumor

vascularization, with an ORR of 16%, a disease control rate of

73%, and a generally well-tolerated response (90). Three phase II

trials are currently investigating the combination of bevacizumab,

cetuximab, and chemoradiation in HNSCC (NCT00968435;

NCT00703976; NCT01588431).

Tyrosine kinase inhibitors are small molecules acting by

inhibiting several targets within angiogenic signaling pathways,

including VEGFRs, EGFR, FGFR, and PDGFRs. In two phase II

clinical trials, sorafenib and sunitinib, a multi-kinase inhibitor, were

investigated in HNSCC patients and revealed minimal response

rates (180, 181). A phase II trial of axitinib demonstrated a low

objective response rate but a favorable disease control rate of 77%

and median overall survival (OS) of 10.9 months with an acceptable

toxicity profile (182, 183). Aurora kinase inhibitors are tested for

RB-deficient, HPV-positive HNSCCs (184).
2.9 Hippo signaling pathway

Identified nearly three decades ago during tissue growth

screening in Drosophila melanogaster, the Hippo signaling pathway

is evolutionarily conserved in mammals (185, 186). Under

physiological conditions, the Hippo signaling pathway restricts

tissue growth in adult organisms by modulating cell proliferation,

differentiation, and migration in growing organs (185). Its

deregulation plays an important role in several diseases, including

cancer and various organ-specific diseases (187, 188). In mammals,

the pathway involves over 30 proteins, such as MST1/2, SAV1,

MOB1A/B, and LATS1/2. These proteins phosphorylate YAP and

TAZ, tagging them for cytoplasmic degradation and preventing their

nuclear translocation, thus inhibiting transcription via TEADs and

SMADs. Activation occurs through FAT1, KIBRA, AJUBA, NF2,

RHO, AMPK, or by inactivation of STRIPAK complexes, which

regulate MST1/2 and MAP4Ks (189, 190). In head and neck

squamous cell carcinoma, common aberrations include mutations

in FAT1, WWTR1/TAZ, YAP1, and MST2 (191, 192). Since 2016,

several molecules targeting the Hippo pathway have been developed.

In nasopharyngeal carcinoma, MGH-CP1, an inhibitor of TEAD2/4

auto-palmitoylation, is in preclinical trials, reducing TEAD4-

mediated AKT signaling and inhibiting cell migration, invasion,

and resistance to cisplatin (50, 189).
3 Epigenetic mechanisms

Acetylation is the transfer of an acetyl group from acetyl-CoA to

the amino epsilon group of lysine residues by a histone

acetyltransferase, neutralizing the positive charge of lysine

residues and exposing DNA to transcriptional complexes (193).
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Other modifications consist of ubiquitination of lysine residues,

phosphorylation of serine residues, SUMOylation of lysine residues

(covalent interaction of a member of the SUMO, small ubiquitin-

like modifier, protein family through an enzymatic cascade

analogous but not similar to ubiquitination), and methylation of

lysine and arginine residues (194, 195).

In HNSCC, global hypomethylation is more common in HPV-

negative tumors. It is associated with genetic instability, including

genome-wide loss-of-heterozygosity (LOH), single nucleotide

polymorphisms (SNP), and alternative oncogenic pathways (196).

Global hypomethylation was also linked with female gender and

worse survival, predominantly for older patients with a stage I or II

AJCC (American Joint Committee on Cancer) tongue squamous

cell carcinoma without lymph node involvement and with

postoperative radiotherapy (197). Assessment of the methylation

status of CALML5, DNAJC5G, and LY6D genes identified in ctDNA

from HNSCC patients demonstrated substantial predictive value in

early cancer diagnosis (198). FAM135B (Family with Sequence

Similarity 135 Member B) methylation appears to be associated

with good prognosis, while APBA1/MINT1 (Amyloid Beta

Precursor Protein Binding Family A Member 1), MINT31

(Methylated IN Tumors locus 31) DCC (Deleted In Colorectal

Carcinoma Netrin 1 Receptor) methylation with poor prognosis,

the latter one being also associated with bone invasiveness in the

mandible (199). Binding KRAS and having a role in apoptosis

induction, RASSF2 (Ras association domain-containing protein 1)

is intensely methylated. Other intensely methylated genes are

EDNRB (Endothelin Receptor Type B), methylated in 97% of

primary HNC tissues, and RARB (Retinoic Acid Receptor Beta),

involved in transcriptional control (199, 200), and the tumor

suppressor genes PTEN, DAPK (death-associated protein kinase),

MGMT (O6-methylguanine-DNA methyltransferase), involved in

DNA repair, CDH1/ECAD (E-cadherin), involved in cell adhesion,

and RASSF1 (Ras association domain-containing protein 1),

involved in cell cycle control, apoptosis, and cell adhesion,

inactivation of which is present in several cancers (201).

Normally, cells of HNSCC are hypoacetylated (e.g., H3K9ac in

OSCC) (201) compared to normal mucosal cells, but histones in

these cells can be acetylated by factors secreted by endothelial cells,

in a paracrine manner. Consequently, acetylation induces the

amplification of BMI1, a transcriptional repressor associated with

poor survival and tumor aggressiveness, and vimentin, which marks

the epithelial-mesenchymal transition (202). Deacetylation is

mediated by histone deacetylases (HDACs), and HDACs

inhibition in vitro results in fewer cancer stem cells (CSCs) in

HNC. Thus, HDACs inhibition seems a promising strategy to

disrupt the population of CSCs in HNC to create a homogeneous

population of tumor cells characterized by well-defined biological

traits and predictable behaviors (203). Several HDAC inhibitors are

currently under evaluation in clinical trials for their efficiency in

HNC treatment. When combined with chemoradiation therapy,

vorinostat showed positive effects in HNC (NCT01064921).

Additionally, abexinostat is under evaluation with pembrolizumab

in an ongoing phase 1b dose-escalation trial for advanced solid

tumors, including metastatic HNSCC (NCT03590054).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1373821
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Constantin et al. 10.3389/fonc.2024.1373821
4 Non-coding RNAs

Non-coding RNAs do not encode proteins but have enzymatic,

structural, or regulatory functions and can control gene expression.

Depending on the number of nucleotides, they are short

(microRNA, miRNA) or long (lncRNA, long ncRNA). miRNA

are 21–23 nucleotides in size and bind partially complementary

regions of the 3’ untranslated regions of several hundred mRNAs,

potentially interfering with gene expression and cell differentiation,

proliferation, and apoptosis. Although their aberrant expression can

trigger the malignant process, miRNAs can be used as tumor

suppressors due to their function in neoplastic development

(194). In HNC, the expression of numerous miRNAs is associated

with poor prognosis, decreased survival time, metastasis, and other

tumor processes. Thus, miR34 and miR17–92 overexpression and

miR137 underexpression are involved in apoptosis. miR210

overexpression and miR29 underexpression are associated with

genetic instability, miR21 overexpression, and miR210

underexpression are involved in evasion of the immune response,

miR26, and miR218 underexpression are associated with

inflammation. miR26, and miR125b underexpression are involved

in metabolism, overexpression of miR21 and miR155 and

underexpression of miR29 and miR139 promote proliferation.

Overexpression of miR26, miR125b, miR200b, miR96 and let-7d

and underexpression of miR139, miR218, miR29 and miR200 are

associated with metastasis. Overexpression of miR31, miR96,

miR205 and miR96 and underexpression of miR210, miR125b

and let-7d induce resistance to radiotherapy and chemotherapy

(204). Polymorphisms in miR-146, miR-149, miR-196, and miR-

499 may increase the risk of non-smokers infected with HPV,

overexpression of miR-21, miR-181b, miR-184, and miR-345 is

associated with malignant transformation, and overexpression of

miR-21, miR-34c, 184 and miR-155 promotes proliferation and

evasion of apoptosis (205), with miR-21 targeting the tumor

suppressor genes PTEN (Phosphatase and Tensin Homolog) and

PDCD4 (Programmed Cell Death 4) in some cancers (206).

Long ncRNAs are sequences of more than 200 nucleotides that

carry methyl-guanosine ends, are often spliced or polyadenylated,

and may be involved in chromatin remodeling. Being regulated by

associated transcription factors, they control the transcription or

can guide chromatin modification complexes to bind to specific

loci, silencing or activating gene expression (194). For example,

MIR31HG lncRNA appears to promote HIF1A and P21 expression,

inducing proliferation and tumorigenesis, and LINC00460 lncRNA

promotes the proliferation of HNSCC cells and epithelial-

mesenchymal transition-mediated metastasis. On the other hand,

SLC26A4-AS1 lncRNA interferes with cell invasiveness, migration,

and metastasis, with a tumor suppressor role (207)

Besides their utility as biomarkers, ncRNAs are also very good

therapeutic targets because they interact with numerous molecules

when altering different cellular processes within the tumor

microenvironment (208). The miRNA-based treatment relies on

the premise that diseases disrupt the miRNA profiles which can be

restored to normal (208).
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Interestingly, the use of anti-miRNAs (miRNA sponges,

miRNA masks, or miRNA antagonists) to deplete oncogenic

miRNA as well as of miRNA mimetic molecules to simulate

endogenous tumor suppressor miRNAs, showed promising results

in limiting cancer cell growth in different HNC experimental

models (208–211). Several ncRNA therapeutics have reached

clinical trials in other malignancies. For instance, MRG-106

(cobomarsen), a miR-155 inhibitor, showed remarkable efficiency

and tolerability in a phase I clinical trial (NCT02580552) involving

15 patients with cutaneous T-cell lymphoma (212). Therefore,

although a nascent field of research, administering certain RNA-

based formulations alone or in conjunction with systemic therapies

seems to be a promising strategy for combating the burden of HNC.
5 Conclusions

The highly heterogeneous nature of HNC poses significant

challenges in patient management due to cellular origin and

anatomical site diversity, multiple etiological factors, and often

late-stage diagnosis, which limits therapeutic options and affects

survival and quality of life. Recent advancements in understanding

the pathogenesis and drug resistance mechanisms have led to the

development of various therapies.

Chemotherapy, chemoradiotherapy, targeted therapy, and

immunotherapy show varied efficacy based on HNC stage,

comorbidities, age, and previous treatments. New small molecule

inhibitors, developed as monotherapies or in combination with

other treatments, have shown promising results with moderate

adverse effects by targeting specific gene expressions. These

inhibitors have demonstrated fewer side effects compared to

traditional therapies like chemotherapy and radiotherapy,

enhancing patient tolerance. Notable drugs, such as the EGFR-

directed monoclonal antibody cetuximab, pembrolizumab, and

nivolumab, have achieved full FDA approval.

Despite these advancements, the complex interplay of multiple

cell-signaling pathways limits therapeutic responses. Continuous

clinical trials are necessary to confirm the effectiveness of these

therapies in diverse patient groups and stages of HNC, and to

identify suitable prognostic biomarkers for better therapeutic

strategies. Comprehensive genomic sequencing studies have

revealed numerous mutations in key signaling pathways,

highlighting the potential of ncRNAs as biomarkers in

HNC management.

Further improvements in treatment responses are needed, and

the clinical translation of new inhibitors remains crucial.

Combining these new agents with traditional treatments holds

significant potential. Advances in molecular approaches are

expected to enhance the success rate of targeted therapies,

offering better evaluations of their efficacy and opening new

research directions in personalized medicine for HNC diagnosis

and treatment.

Ongoing studies aim to refine the use of novel compounds in

therapeutic strategies, enabling precise identification of patients
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likely to benefit from these treatments, thus improving outcomes

and innovating HNC treatment approaches.
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119. Hudeckova M, Koucký V, Rottenberg J, Gál B. Gene mutations in circulating
tumour DNA as a diagnostic and prognostic marker in head and neck cancer-A
systematic review. Biomedicines. (2021) 9:1548. doi: 10.3390/biomedicines9111548

120. Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK, et al. Akt: a key
transducer in cancer. J BioMed Sci. (2022) 29:76. doi: 10.1186/s12929–022-00860–9

121. Islam M, Jones S, Ellis I. Role of akt/protein kinase B in cancer metastasis.
Biomedicines. (2023) 11:3001. doi: 10.3390/biomedicines11113001

122. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, et al. Akt/
PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell. (2005)
9:389–402. doi: 10.1016/j.devcel.2005.08.001

123. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, et al. Deciphering the
transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat
Cell Biol. (2010) 12:457–67. doi: 10.1038/ncb2047

124. Wise-Draper TM, Bahig H, Tonneau M, Karivedu V, Burtness B. Current
therapy for metastatic head and neck cancer: evidence, opportunities, and challenges.
Am Soc Clin Oncol Educ Book. (2022) 42:1–14. doi: 10.1200/EDBK_350442

125. Liu WL, Gao M, Tzen KY, Tsai CL, Hsu FM, Cheng AL, et al. Targeting
Phosphatidylinositide3-Kinase/Akt pathway by BKM120 for radiosensitization in
hepatocellular carcinoma. Oncotarget. (2014) 5:3662–72. doi: 10.18632/oncotarget.1978

126. Jhaveri K, Chang MT, Juric D, Saura C, Gambardella V, Melnyk A, et al. Phase I
basket study of taselisib, an isoform-selective PI3K inhibitor, in patients with PIK3CA-
mutant cancers. Clin Cancer Res. (2021) 27:447–59. doi: 10.1158/1078–0432.CCR-20–
2657

127. Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, et al.
Phosphatidylinositol 3-kinase a-selective inhibition with alpelisib (BYL719) in
PIK3CA-altered solid tumors: results from the first-in-human study. J Clin Oncol.
(2018) 36:1291–9. doi: 10.1200/JCO.2017.72.7107

128. Batalini F, Xiong N, Tayob N, Polak M, Eismann J, Cantley LC, et al. Phase 1b
clinical trial with alpelisib plus olaparib for patients with advanced triple-negative
breast cancer. Clin Cancer Res. (2022) 28:1493–9. doi: 10.1158/1078–0432.CCR-21–
3045

129. Ghosh S, Shah PA, Johnson FM. Novel systemic treatment modalities including
immunotherapy and molecular targeted therapy for recurrent and metastatic head and
neck squamous cell carcinoma. Int J Mol Sci. (2022) 23:7889. doi: 10.3390/
ijms23147889

130. Fayette J, Digue L C, Ségura-Ferlay C, Treilleux I, Wang Q, Lefebvre G, et al.
Buparlisib (BKM120) in refractory head and neck squamous cell carcinoma harbouring
or not a PI3KCA mutation: A phase II multicenter trial. Ann Oncol. (2019) 30:v455.
doi: 10.1093/annonc/mdz252.012
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