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Background: Accurate tumor target contouring and T staging are vital for

precision radiation therapy in nasopharyngeal carcinoma (NPC). Identifying T-

stage and contouring the Gross tumor volume (GTV) manually is a laborious and

highly time-consuming process. Previous deep learning-based studies have

mainly been focused on tumor segmentation, and few studies have specifically

addressed the tumor staging of NPC.

Objectives: To bridge this gap, we aim to devise a model that can simultaneously

identify T-stage and perform accurate segmentation of GTV in NPC.

Materials andmethods:We have developed a transformer-basedmulti-task deep

learning model that can perform two tasks simultaneously: delineating the tumor

contour and identifying T-stage. Our retrospective study involved contrast-

enhanced T1-weighted images (CE-T1WI) of 320 NPC patients (T-stage: T1-T4)

collected between 2017 and 2020 at our institution, which were randomly

allocated into three cohorts for three-fold cross-validations, and conducted the

external validation using an independent test set. We evaluated the predictive

performance using the area under the receiver operating characteristic curve

(ROC-AUC) and accuracy (ACC), with a 95% confidence interval (CI), and the

contouring performance using the Dice similarity coefficient (DSC) and average

surface distance (ASD).

Results: Our multi-task model exhibited sound performance in GTV contouring

(median DSC: 0.74; ASD: 0.97 mm) and T staging (AUC: 0.85, 95% CI: 0.82–0.87)

across 320 patients. In early T category tumors, the model achieved a median

DSC of 0.74 and ASD of 0.98 mm, while in advanced T category tumors, it

reached a median DSC of 0.74 and ASD of 0.96 mm. The accuracy of automated

T staging was 76% (126 of 166) for early stages (T1-T2) and 64% (99 of 154) for

advanced stages (T3-T4). Moreover, experimental results show that our

multi-task model outperformed the other single-task models.
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Conclusions: This study emphasized the potential of multi-task model for

simultaneously delineating the tumor contour and identifying T-stage. The

multi-task model harnesses the synergy between these interrelated learning

tasks, leading to improvements in the performance of both tasks. The

performance demonstrates the potential of our work for delineating the tumor

contour and identifying T-stage and suggests that it can be a practical tool for

supporting clinical precision radiation therapy.
KEYWORDS

nasopharyngeal carcinoma, deep learning, tumor segmentation, T-stage identification,
multi-task
1 Introduction
Nasopharyngeal carcinoma (NPC), a frequently occurring

malignant tumor in the head and neck region (1), primarily

receives intensity-modulated radiation therapy (IMRT) as the

standard treatment (2). The close proximity of NPC to critical

neural and other organs necessitates precise delineation of the

primary gross tumor volume (GTV) to minimize the risk of

radiation-induced toxicities (3). Typically, early-stage NPC is

managed with radiotherapy alone, whereas advanced local-

regionally advanced disease often requires a combined approach of

radiotherapy and chemotherapy (1, 4). Significantly, errors in

contouring and T-staging adversely affect survival rates in head and

neck cancer patients (5). Therefore, accurate tumor target contouring

and T staging are vital for precision radiation therapy in NPC.

The complex anatomy of the nasopharynx and skull base

complicates the precise identification of tumor invasion areas

through surgical resection. NPC staging predominantly relies on

physician interpretations of diagnostic images (1). Consequently,

GTV contouring and T-staging for NPC are not only laborious but

also highly time-consuming, requiring meticulous review of multi-

modal or multi-parametric imaging data slice-by-slice, even by

experienced physicians. Furthermore, GTV contouring and T-

staging are prone to errors, particularly since NPC can infiltrate

adjacent skull base and neural structures with often subtle signal

variations in MRI scans. Thus, the NPC radiation therapy planning

process heavily depends on the expertise of the physicians. Therefore,

there is a significant clinical need for automatic segmentation and

identification of GTV to aid in clinical decision-making, treatment

planning, and ongoing tumor monitoring.

Recent advancements in deep-learning-based automatic methods

have facilitated automatic NPC GTV segmentation (3, 6–9) and NPC

staging (10–12). Lin et al. (3) pioneered the application of deep

learning techniques for automating the contouring of primary tumor

volumes in NPC patients using MRI. Chen et al. (6) introduced a

multi-modality MRI fusion network to achieve precise segmentation

of NPC by leveraging T1, T2, and contrast-enhanced T1 MRI images
02
(CE-T1WI). Tang et al. (7) proposed a dual attention mechanism for

feature refinement to enhance NPC segmentation accuracy. Tao et al.

(8) devised a sequential method for NPC segmentation in MR

images, effectively addressing inherent background dominance

issues at both the instance and feature levels. Regarding NPC

staging, Yang et al. (10) proposed a weakly supervised deep

learning model for NPC T-staging. Wong et al. (11) employed a

CNN to automatically discriminate early-stage NPC from benign

hyperplasia based solely on a non-contrast-enhanced MRI sequence.

Huang et al. (12) proposed a two-stage classification framework for

predicting locoregionally advanced NPC (stages III and IVa). In

clinical practice, sizes and shapes of tumors are various and

heterogeneous, assist the radiologists in identifying the four stages

of T staging. This important characteristic of positional information

is useful for both tumor segmentation and classification. However,

existing deep learning-based studies have predominantly focused on

either tumor segmentation or tumor staging of NPC alone,

overlooking the inherent correlation between tumor segmentation

and classification. Recent studies have highlighted the potential of

deep learning models, especially those with refined multi-task

features, in managing complex clinical tasks related to diseases like

breast cancer (13), COVID-19 (14), gastric cancer (15), and thyroid

nodules (16). Consequently, an integrated approach for training GTV

contouring and T-staging within a unified network, promoting

information sharing between these tasks, holds promise.

Convolutional Neural Network (CNN) are particularly adept at

capturing spatial hierarchies in images, which makes them highly

effective for image segmentation tasks (3, 6–8). The local connectivity

and weight sharing in CNNs allow them to excel in extracting features

from images that are spatially correlated, making them suitable for

delineating complex structures like tumors in medical images.

Additionally, the Transformer architecture, equipped with its Multi-

Head Self-Attention (MHSA) mechanism (17), has demonstrated

outstanding performance in analyzing long sequence correlations.

This ability allows Transformers to learn expressive representations

and filter out irrelevant signals, thereby significantly enhancing image

analysis capabilities. Given the intricacy and distinctiveness of our task,

we aim to develop a multi-task model that leverages the strengths of
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both architectures using contrast-enhanced T1-weighted images

(CE-T1WI) that can simultaneously identify T-stage and perform

accurate segmentation of GTV in NPC. Specifically, we employ the

3D U-Net architecture for the GTV segmentation task. For T-stage

identification, we design a Transformer-style prediction network that is

adept at processing complex sequential information. To connect these

two distinct tasks, we introduce a feature-fusion-awaremodule which is

designed to analyze correlations among long sequences and learn

expressive representations, improving the aggregation of features

between the segmentation and staging tasks.
2 Materials and methods

2.1 Dataset

This retrospective study received approval from the ethics

committee of our institution (No. NFEC-2023-417), and the

requirement for informed consent was waived. The research was

conducted in strict adherence to the guidelines and regulations set by

the ethics committee.

Two independent datasets were used in this study. The

inclusion criteria was as follows: (1) a definitive histopathological

diagnosis of NPC; (2) absence of distant metastasis prior to

treatment; (3) no previous history of radiotherapy; and (4)

availability of a CE-T1WI sequence.

The first dataset included 356 cases of nasopharyngeal

carcinoma. All patients were imaged using MRI platforms from

different manufacturers using dissimilar imaging protocols: Optima

MR360, GE Medical Systems, USA (n=280); Signa HDxt, GE

Medical Systems, USA (n=43); Ingenia, Philips Medical Systems,

USA (N=4); Achieva, Philips Medical Systems, USA (n=5); and

Avanto, Siemens, Germany (n=24). The image size is (256 - 672) ×

(256 - 672) × (16 - 120), with in-plane resolution as 0.34 - 1.09 mm,

and slice thickness as 3.5 - 7 mm. We excluded 36 cases because of

poor image quality (n = 16) or missing data (n = 20). Finally, 320

cases were retrospectively included as Dataset 1. These images were

collected using different scanners with different image sizes and

resolutions, thus increasing the diversity of the acquired MR

images, and further improving the generalization of models.

The second dataset included 172 cases of nasopharyngeal

carcinoma. The image size is 512 × 512 × (40 - 76), with in-plane

resolution as 0.4688 - 0.5078 mm, and slice thickness as 3 - 6.7 mm.

We excluded 22 cases because of poor image quality (n = 16) or

missing data (n = 6). Finally, 150 cases were retrospectively included

as Dataset 2.

In this study, a three-fold cross-validation strategy was used in

Dataset 1 to select the best hyper-parameters. All subjects within

Dataset 1 were divided into three subsets with the same proportion

of each T-stage. Specifically, in each round, one subset was used for

validation and the remaining two subsets were used for training. We

repeated this process three times until all three data subsets had served

as the validation set. Finally, the best hyper-parameters were obtained,

and the models obtained by this three-fold cross-validation strategy

were tested on the independent testing set. The research design is

illustrated in Figure 1.
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2.2 GTV manual delineation and patient
re-staging

Manual segmentation of GTVs on CE-T1WI images were

performed by a radiologist with 7 years of experience and

checked by a radiation oncologist with more than 10 years of

experience. All delineations were performed using the ITK-SNAP

software (version 3.8.0, http://www.itksnap.org). These Manual

segmentation of GTVs served as the basis for training, validating

and testing our multi-task model.

To enhance data consistency and mitigate inter-observer

variability, two experienced radiation oncologists (more than 10

years of experience in the field) independently reviewed the MR

images and clinical data. Any discrepancies were resolved through a

consensus-based approach. The T stages of the patients with NPC were

reassessed according to the 8th edition of the Union for International

Cancer Control/American Joint Committee on Cancer (UICC/AJCC)

staging system (18).
2.3 Network architectures

We propose a multi-task model designed to simultaneously

identify T-stage and accurately segment GTV in NPC. Illustrated in

Figure 2, the proposed model comprises two primary components:

a segmentation network for delineating the regions of interest (ROI)

of the GTV, and a T-stage predictor for automated prediction of T-
FIGURE 1

Study flow diagram. NPC, nasopharyngeal carcinoma; DSC, dice
similarity coefficient; ASD, average surface distance; ACC, accuracy;
SEN, sensitivity; SPE, specificity; ROC-AUC, the area under the
receiver operating characteristic curve.
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stage probability scores. Within the segmentation network, a

modified 3D U-Net is employed to perform GTV segmentation.

Additionally, the segmented map is multiplied by the original MR

image to generate a GTV region, serving as input for the T-stage

predictor. In the T-stage prediction network, the tumor region is

taken as input, initiating with a Bottleneck Transformer as the

backbone to extract relevant features pertaining to the tumor.

Notably, we adapt the network to accommodate and process 3D

inputs. Furthermore, a feature-fusion-aware module is devised to

connect and synchronize features derived from both GTV

segmentation and T-staging processes. Finally, a classifier is

employed to predict the probability scores of the four T stages.
2.3.1 3D segmentation network
The architecture of the 3D segmentation network encompasses

a U-shaped encoding-decoding network comprising eight encoder

units and seven decoder units. Traditionally, lower network layers

extract feature maps delineating spatial structure information, while

higher network layers furnish rich semantic information.

Consequently, we posit that the most representative features

learned by the segmentation network reside at the bottom of the

U-shaped structure, specifically the seventh and final encoder units

and the initial decoder unit. These features are subsequently fed into

the T-stage prediction network.

The encoder part constitutes a contracting path facilitating

down-sampling of the input image through eight encoder units,

each succeeded by a 3D max pooling or average pooling operation

with a stride of 2. Conversely, the decoder part embodies an

expansive path, where feature maps are up-sampled through

seven decoder units employing up-convolution layers. Notably,

skip connections play a pivotal role. By establishing connections

between feature maps from the compression path to the expansion
Frontiers in Oncology 04
path, the network assimilates spatial information and refines

segmentation predictions.

Subsequently, the output of the last decoder unit undergoes

processing by a 1×1×1 convolution followed by a sigmoid function.

The generated segmentation map is then multiplied by the original

MR image, yielding the input for the T-stage prediction network.

2.3.2 T-stage prediction network
The Transformer architecture, with its Multi-Head Self-

Attention (MHSA) mechanism (17), has shown exceptional

performance in analyzing long sequence correlations, learning

expressive representations, and filtering out irrelevant signals,

thus enhancing image analysis capabilities. Motivated by these

findings, we design a transformer-style prediction network for T

staging of NPC. As illustrated in Figure 2, the structure of T-stage

prediction network consists of three modules: the 3D bottleneck

transformer, the feature-fusion-aware module and a classifier.

3D Bottleneck Transformer. We adopt a backbone architecture

called Bottleneck Transformer (19), which integrates self-attention

mechanisms tailored for our T-stage prediction task. Its conception

is simple: replace the final three spatial convolutions in a ResNet

(20) with MHSA layers. As we all known, the ResNet structure

typically has four stages. Our network just replaces the final three

bottleneck blocks of ResNet-50 with MHSA layers.

Feature-fusion-aware Module. In Figure 3A, our feature-fusion-

aware module combines the convolutional layer in CNNs with the

MHSA layer in Transformer, which can take into account the

features across different tasks. The MHSA layer consists of four

parallel self-attention layers, each referred to as a head. For each

head, query, key, and value are mapped into three current layers

before attention calculation. The output of the four attention heads

is then concatenated and input into the last linear layer for

integration. In the self-attention layer (Figure 3B), the input is
FIGURE 2

The architecture of our proposed transformer-based multi-task model for simultaneous GTV segmentation and T-stage identification.
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mapped to q, k, and v. Subsequently, the spatial position encoding

vector is multiplied by q as a spatial prior, and content information

is acquired by multiplying q and k. Then, the spatially sensitive

similarity feature is obtained by adding the two. Finally, the

corresponding attention coefficient of the feature is multiplied by

v to yield the final output z. Note that, the symbols ⊕ and ⊗
represent element-wise sum and matrix multiplication respectively,

while 1 × 1 × 1 represents a point-wise convolution. And q, k, v and

p represent query, key, value and position respectively.

In the final stage of the network, a classifier is deployed to

accurately estimate the probability scores for the four distinct T stages.

2.3.3 Loss function
Our proposed method is a multi-task learning model that

involves T-staging and tumor segmentation. T-staging can be

considered as a classification task. As such, the overall loss

function in Equation 1 consists of two components: the

classification loss LCls for T-staging and the segmentation loss LSeg
for GTV segmentation:

L = lSegLSeg p, p
⌢n o

+ lClsLCls y, y
⌢n o

(1)

where lCls and lSeg are flexible hyper-parameters updated

during network training. In this study, the parameters lCls and
lSeg are initially set as two tensors with a value of 1, and they are

subsequently iteratively updated during the training phase. LSeg
represents a hybrid loss function which is combined by the Jaccard

loss and the Focal loss, p denotes the ground-truth mask and p
⌢

denotes the predicted segmentation map; LCls is defined as cross-

entropy loss aimed to compare the predicted probability of class

with the ground-truth label, y denotes the ground-truth label and y
⌢

is the prediction probability.
2.4 Implementation details

Image processing: We resampled the images to a targeted

resolution of 0.4688×0.4688×6 mm³, which represents the median

spacing of all image data. This resampling utilized third-order

spline interpolation for in-plane adjustments and the nearest

neighbor approach for out-of-plane interpolation, as per the
Frontiers in Oncology 05
methodology described in (21). To address potential issues in

deep network signal propagation caused by large signals, we

normalized each input by subtracting the mean and then dividing

by the standard deviation. For the inputs to our multi-task model,

we cropped the original MR images to a size of 21×224×224.

Training detail: The model was trained on Pytorch, utilizing an

NVIDIA RTX 3090 Ti graphics processing unit (GPU), with axial

T1CE. The training employed the ‘Adam’ optimizer, which was tasked

with optimizing the combined loss. Training parameters included a

batch size of four and an initial learning rate of 2 × 10-4. To enhance the

model’s generalizability and stability, data augmentation techniques

(22) and a ReduceLROnPlateau learning rate scheduling strategy (23)

were employed. The training process was concluded either when the

learning rate fell below 10-9 or after completing 300 epochs.
2.5 Performance evaluation

The performance of the models was assessed using the Dice

similarity coefficient (DSC) and the average surface distance (ASD).

The DSC quantifies the spatial overlap between the model-

generated contour (A) and the ground truth contour (G), which

is defined as DSC(A,G) = 2 A∩Gj j
Aj j+ Gj j . ASD measures the average

distance between the surfaces of two contours. Additionally, The

predicted accuracy (ACC), sensitivity (SEN), specificity (SPE) of the

model and the radiologists for identifying T-stage were evaluated by

calculating the 95% confidence intervals (CIs) using the Clopper-

Pearson method. Moreover, the area under the receiver operating

characteristic curve (ROC-AUC) was employed to evaluate the

algorithm’s capability in predicting the T-stage. This metric is

crucial for determining the effectiveness of our multi-task model

in classifying the stages of nasopharyngeal carcinoma accurately.
2.6 Statistical analyses

For our study, categorical variables across the combined three

cross-validation cohorts were compared using the chi-square test.

Numeric variables, including comparisons of the DSC and ASD

between different subgroups, were analyzed with the Mann-Whitney
BA

FIGURE 3

The mechanism of the feature-fusion-aware module. (A) The gray ‘F’ represent the features extracted from the segmentation network and the blue
‘F’ indicates the output of the 3D backbone of prediction network. © represents the concatenation operation. (B) The detailed structure of Self-
Attention layer.
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U test. Furthermore, the Wilcoxon matched-pairs signed rank test

was employed for contrasting DSC and ASD values obtained from

our model against both manual delineation and other deep learning

methods. The DeLong test was utilized for comparing the ROC-AUC

metrics, while the McNemar test was applied for assessing the ACC.

Statistical analyses were conducted using the Statistical Product

and Service Solutions (IBM SPSS, version 26.0) and open-access

Python (version 3.6.10) statistical packages, namely “sklearn”,

“scipy”, and “statsmodels”. For all tests, statistical significance was

determined based on a two-tailed P< 0.05.
3 Results

3.1 Patient demographics

Patient demographics of Dataset1 is shown in Table 1. The

Dataset1 included 320 patients, characterized by a median age of

48 years (range: 19-80 years), comprising 235 men (73.3%) and 85

women (26.6%). Stratification according to the 8th edition of the

AJCC/UICC staging system identified 26 (8.1%), 140 (43.8%), 87

(27.2%), and 67 (20.9%) patients with T1-T4 stage disease,

respectively. No significant differences in sex, age, and T category

were observed between the combined three cross-validation cohorts.
3.2 Model performance in delineating
GTV contour

The segmentation performance of our method is summarized in

Table 2; Figure 4 illustrates the concordance level for GTV contours

between our method and other segmentation methods. The median

DSCwas 0.74 (IQR, 0.11; 95% CI: 0.73, 0.75), and the median ASDwas

0.97 mm (IQR, 0.75 mm; 95% CI: 0.9, 1.02 mm), less than the

commonly accepted 3-mm margin of systematic and random error

in radiation therapy for head and neck cancers (24). These results

indicate strong concordance with human experts in GTV contouring.
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In different T categories, our multi-task model achieved a median

DSC of 0.74 (IQR, 0.11; 95% CI: 0.73, 0.75) and a median ASD of 0.98

mm (IQR, 0.83 mm; 95% CI: 0.87, 1.16 mm) in early T category

tumors, and a median DSC of 0.74 (IQR, 0.11; 95% CI: 0.72, 0.75) and

a median ASD of 0.96 mm (IQR, 0.68 mm; 95% CI: 0.89, 1.02 mm) in

advanced T category tumors. No differences in DSC and ASD were

observed across T categories, suggesting robustness of our multi-task

model in contouring tumors of various sizes.

We also compared GTV contour accuracy of our multi-task model

against other models like 3D U-Net (25), V-Net (26), and Med3D Net

(27). As shown in Table 3, 3D U-Net showed the best DSC and ASD

compared to V-Net, and Med3D Net. However, our multi-task model-

generated contours had superior median DSC and ASD compared to

those generated with 3D U-Net (median DSC, 0.74 vs 0.73; median

ASD, 0.97 vs 1.05 mm; P = 0.013< 0.05 for DSC; Table 3).
3.3 Model performance in identifying
T-stage

The outputs of our multi-task model are the probabilities of

stages T1, T2, T3, and T4. Confusion matrices and ROC curves are

presented in Figures 5, 6, respectively. We observed an AUC of 0.85

(95% CI: 0.82, 0.87), an ACC of 0.7 (225 of 320; 95% CI: 0.65, 0.75),

a SPE of 0.89 (95% CI: 0.88, 0.9), and a SEN of 0.62 (95% CI: 0.61,

0.62) as per Table 4. Three-fold cross-validation revealed ACCs of

0.72, 0.7, and 0.68, respectively (Figure 5), and AUCs of 0.88, 0.86,

and 0.81, respectively (Figures 6A–C). For early T1-2 stages,

automated T staging accuracy was 0.76 (126 of 166), while for

advanced T3-4 stages, it was 0.64 (99 of 154), indicating a significant

difference between early and advanced stages (P< 0.05).

Additionally, we compared our multi-task model’s predictive

performance against other classification models like 3D ResNet-50

(20), RAN (28), DenseNet (29), and ResNext (30). The ROC curves

and results are presented in Figure 7; Table 4. As indicated in

Table 4, our multi-task model achieved the best AUC, ACC, SPE,

and SEN (P< 0.05 for all).
TABLE 1 Characteristics of the study population of Dataset1.

Characteristic
Total

(n = 320)
Cohort 1
(n = 105)

Cohort 2
(n = 105)

Cohort 3
(n = 110)

P Value

C1 vs C2 C1 vs C3 C2 vs C3

Sex, No (%) 0.541 0.407 0.148

Male 235 (73.3) 77 (73.4) 73 (69.5) 85 (77.3)

Female 85 (26.6) 28 (26.7) 32 (30.5) 25 (22.7)

Age, median (range), y 48 (19-80) 48 (19-80) 49 (20-74) 48 (19-80) 0.696 0.633 0.925

T stage, No (%) 1 0.962 0.962

T1 26 (8.1) 8 (7.6) 8 (7.6) 10 (9.1)

T2 140 (43.8) 47 (44.8) 47 (44.8) 46 (41.8)

T3 87 (27.2) 28 (26.7) 28 (26.7) 31 (28.2)

T4 67 (20.9) 22 (20.9) 22 (20.9) 23 (20.9)
Data are either number of patients, with the percentage in parentheses, or median, with the range in parentheses. We calculated P values by using the c2test for category variables and the Mann-
Whitney U test for numeric variables. Two-tailed P< 0.05 indicated a significant difference. C1, Cohort1; C2, Cohort2; C3, Cohort3.
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3.4 Ablation study

In investigating the contribution of our multi-task design for

simultaneously identifying T-stage and segmenting GTV, we have

designed two ablation studies: 1) we adopted a 2-step training

process (i.e., by first training the segmentation network, then

training the T-stage prediction network using the tumor region

generated by the segmentation map) and 2) we compared the multi-

task model with its degraded version lacking the feature-fusion-
Frontiers in Oncology 07
aware module (wo-FFA module). In the degraded version, features

extracted from segmentation and T-stage prediction tasks were

directly concatenated. Employing separate training reduces T-stage

prediction performance greatly (see Separate-training in Table 5).

This reduction may be attributed to the independent nature of

segmentation of tumor region, which limits the information

transfer between the two related learning tasks, thereby

potentially hindering prediction performance. We can observe

that the multi-task model trained without feature-fusion-aware
FIGURE 4

Example contrast-enhanced T1-weighted MRIs show the level of concordance for primary gross tumor volume contours between our proposed
multi-task model and 3D U-Net, V-Net, and Med3D Net.
TABLE 2 Performance of our multi-task model in delineating GTV contour using Dataset1.

Total (n = 320)

T Category

P ValueT1 and T2
(n = 166)

T3 and T4
(n = 154)

DSC 0.648

Median 0.74 0.74 0.74

IQR 0.11 0.11 0.11

95% CI 0.73, 0.75 0.73, 0.75 0.72, 0.75

ASD (mm) 0.984

Median 0.97 0.98 0.96

IQR 0.75 0.83 0.68

95% CI 0.90, 1.02 0.87, 1.16 0.89, 1.02
fro
We calculated the P value by using Mann-Whitney U test. Two-tailed P< 0.05 indicates a significant difference. DSC, Dice similarity coefficient; ASD, average surface distance; IQR, Inter-quartile
range; CI, confidence interval.
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module improve the performance compared with the Separate-

training in Table 5, which indicated the effectiveness of our multi-

task design for simultaneously identifying T-stage and segmenting

GTV. Upon incorporating the proposed feature-fusion-aware

module, our multi-task model achieved best performance (ACC:

0.7 vs 0.61, AUC: 0.85 vs 0.80, SPE: 0.89 vs 0.86, SEN: 0.62 vs 0.57;

median DSC: 0.74 vs 0.73, median ASD: 0.97 vs 0.98). This

underscores the advantage of the feature-fusion-aware module in

refining and fusing features across different tasks and scales.
Frontiers in Oncology 08
3.5 Result on the independent dataset

To show the generalization ability of our proposed method, we

further conducted experiments on the independent dataset with

other 150 subjects. Note that, we used the 150 subjects for testing

three proposed multi-task models which were trained on three-fold

cross-validation using 320 subjects, and obtained the average result.

To quantitatively evaluate classification performance, we reported

the results in terms of ACC, AUC, SPE, SEN for T-stage prediction
TABLE 3 Accuracy of contours generated by our proposed multi-task model and the 3D U-Net, V-Net, and Med3D Net.

DSC ASD (mm) P Value

Median 95% CI IQR Median 95% CI IQR DSC ASD

U-Net 0.73 0.72, 0.74 0.12 1.05 0.96, 1.13 0.86 0.013 0.144

V-Net 0.69 0.68, 0.71 0.13 1.26 1.16, 1.36 1.01 < 0.05 < 0.05

Med3D Net 0.65 0.63, 0.67 0.18 1.51 1.42, 1.65 1.55 < 0.05 < 0.05

Ours 0.74 0.73, 0.75 0.11 0.97 0.9, 1.02 0.75
We calculated P value using Wilcoxon matched-pairs signed-rank test, two-tailed P< 0.05 indicates significant difference. DSC, Dice similarity coefficient; ASD, average surface distance; IQR,
inter-quartile range; CI, confidence interval.
B

C D

A

FIGURE 5

Confusion matrices of our multi-task model. (A–D) denote the performance of fold 1-3 and the average result, respectively.
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and median DSC, median ASD for segmentation in Table 6. As

shown in Table 6, our proposed method achieved reliable

performance, illustrated the good generalization ability of the

proposed multi-task model.
4 Discussion

In this research, we developed a multi-task deep learning model

that achieves simultaneous GTV segmentation and T-stage

identification in an end-to-end framework. Specifically, we tackle

GTV segmentation task with the 3D U-Net architecture and design a

transformer-style prediction network for T staging. To integrate the

tasks of GTV segmentation and T-stage identification, we introduced

a feature-fusion-aware module. We evaluated our proposed model
Frontiers in Oncology 09
using two sets of CE-T1WI images. The proposed multi-task model

has demonstrated remarkable competency in delineating and

diagnosing primary GTV in the nasopharynx, achieved comparable

contouring results, with a median DSC of 0.74 and ASD of 0.97 mm.

It also proved effective in automated T staging, exhibiting an AUC of

0.85 (95% CI: 0.82, 0.87) across 320 patient cases. In comparative

studies, our multi-task model outperformed the single-task

segmentation network U-Net, achieving better DSC and ASD

values (median DSC: 0.74 vs. 0.73; median ASD: 0.97 mm vs. 1.05

mm). Additionally, our multi-task model outperformed single-task

classification networks in T-stage prediction, achieving the best

results in AUC, ACC, SPE, and SEN. These extensive experimental

results underscore that by integrating CNN for GTV segmentation

and Transformer for T-staging, our multi-task model leverages the

strengths of both architectures, optimizing performance for each
B

C D

A

FIGURE 6

The receiver operating characteristic curves (ROCs) of our model. (A–D) denote the performance of fold 1-3 and the average result, respectively.
ROC, receiver operating characteristic; AUC, area under curve; Micro-average, calculate metrics globally by considering each element of the label
indicator as a label; Macro- average, calculate metrics for each label, and find their un-weighted mean.
TABLE 4 Accuracy of T-staging by our proposed multi-task model and the 3D ResNet-50, RAN, DenseNet and ResNext.

AUC ACC SPE SEN P* P#

ResNet 0.80 (0.77, 0.83) 0.59 (0.54, 0.64) 0.85 (0.84, 0.86) 0.48 (0.45, 0.51) <0.05 <0.05

RAN 0.80 (0.77, 0.83) 0.57 (0.51, 0.62) 0.83 (0.78, 0.88) 0.46 (0.36, 0.55) <0.05 <0.05

DenseNet 0.78 (0.75, 0.82) 0.57 (0.52, 0.63) 0.83 (0.81, 0.85) 0.46 (0.39, 0.54) <0.05 <0.05

ResNext 0.80 (0.76, 0.83) 0.59 (0.54, 0.65) 0.85 (0.83, 0.87) 0.48 (0.47, 0.50) <0.05 <0.05

Ours 0.85 (0.82, 0.87) 0.70 (0.65, 0.75) 0.89 (0.88, 0.9) 0.62 (0.61, 0.62)
We calculated P value using Wilcoxon matched-pairs signed-rank test, two-tailed P< 0.05 indicates significant difference. ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the area under
the receiver operating characteristic curve, P* for AUC; P# for ACC.
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specific task, providing a robust and reliable tool for NPC diagnosis

and treatment planning.

The Chinese Society of Clinical Oncology (CSCO) 2022 Guidelines

for NPC diagnosis and treatment advocate for “stratified

administration”, suggesting less intense treatment for patients with

lower risk of recurrence or metastasis and more aggressive treatment

for those at higher risk (31). Timely diagnosis and personalized

treatment plans are crucial for improving the long-term survival of

NPC patients. Prior studies have shown that customized target setting

for different T-stages can minimize radiation exposure to surrounding

structures without increasing recurrence risk (32, 33). Given the

scarcity of oncologists/radiologists and the labor-intensive nature of

interpreting vast amounts of imaging data, there is a pressing need for

more accurate tools to assist with the multitude of follow-up MR scans

in NPC patients. To address this need, our objective was to develop a
Frontiers in Oncology 10
computer aided design (CAD) tool using MR images for simultaneous

tumor delineation and T-staging in NPC. Notably, the accuracy of our

multi-task model in contouring GTV of NPC on CE-T1WI MR scan

was lower than that for detecting primary tumor on multi-sequence

MR scans in term of median DSC (0.74 vs 0.79), but achieved higher

median ASD (0.97 mm vs 2.0 mm) (3). We hypothesize that

integrating data from multiple sequences in future iterations of our

multi-task model could further enhance its GTV contouring

performance. In previous study focusing on T-stage prediction, a

multi-perspective information aggregation framework demonstrated

a slightly higher AUC (0.88 vs 0.85) for automatic T-staging in NPC

than our multi-task model (34). However, it is important to note that

this framework employed a multi-branch architecture with outputs

from three parallel branches integrated through major voting, which

may have contributed to its enhanced performance. In contrast, our
FIGURE 7

The receiver operating characteristic curves (ROCs) of ResNet, RAN, DenseNet, and ResNext. ROC, receiver operating characteristic; AUC, area under
curve. Red dotted line means micro-average AUC, which calculates metrics globally by considering each element of the label indicator as a label.
TABLE 5 Comparison of performance by our multi-task model and its degraded counterparts.

Classification Segmentation

ACC AUC SPE SEN DSC ASD

Separate-training 0.54 0.78 0.84 0.53 0.73 1.05

wo-FFA module 0.61 0.80 0.86 0.57 0.73 0.98

Ours 0.7 0.85 0.89 0.62 0.74 0.97
DSC, Dice similarity coefficient; ASD, average surface distance; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the area under the receiver operating characteristic curve. Separate-
training, a 2-step training process (i.e., by first training the segmentation network, then training the T-stage prediction network using the tumor region generated by the segmentation map); wo-
FFA module, lacking the feature-fusion aware module.
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multi-task model was designed as an end-to-end, multi-task network

that synchronously outputted tumor region maps and T-stage

probabilities, offering a streamlined and efficient approach to NPC

diagnosis and staging.

Despite the promising results, our study does have several

limitations. Primarily, our reliance solely on CE-T1WI MR scans

may have limited the model’s capability by not incorporating the

discriminatory power of other MR sequences. To address this, future

developments of our multi-task model will involve the integration of

data from multiple sequences, aiming to enhance both GTV

contouring and T-staging accuracy. Additionally, although our

proposed method demonstrated reliable performance on an

independent dataset, the generalizability of the model requires

further enhancement through studies involving larger and more

diverse datasets. Moreover, our model exhibited relatively weaker

performance in identifying T1 stage disease compared to other

stages. This discrepancy may be attributed in part to the category

imbalance among the four T-stages in our dataset. Addressing this

imbalance in future iterations could enhance the model’s performance

across all stages. Another limitation is that our current model does not

fully align with the latest TNM staging system (8th edition), which

underscores the importance of considering different combinations of T,

N, and M classifications for NPC treatment. Consequently, there is a

critical need to expand the model to include nodal gross tumor volume

(GTVn) contouring and N-staging, which would offer a more

comprehensive approach to NPC staging and treatment planning.

In summary, our study devises a model that can simultaneously

identify T-stage and perform accurate segmentation of GTV in NPC.

The findings emphasized the potential of multi-task model for

simultaneously delineating the tumor contour and identifying T-

stage. The multi-task model harnesses the synergy between these

interrelated learning tasks, leading to improvements in the

performance of both tasks. The impressive performance

demonstrates the potential of our work for delineating the tumor

contour and identifying T-stage and suggests that it can be a practical

tool for supporting clinical precision radiation therapy.
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TABLE 6 The performance for tumor segmentation and T-staging by our proposed multi-task model in second dataset.

Folds
Classification Segmentation

ACC AUC SPE SEN DSC ASD

Fold_1 0.69 0.83 0.87 0.48 0.76 1.23

Fold_2 0.65 0.84 0.85 0.49 0.72 1.68

Fold_3 0.62 0.81 0.86 0.75 0.71 1.50

Avg 0.65 0.83 0.86 0.53 0.73 1.42
DSC, Dice similarity coefficient; ASD, average surface distance; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the area under the receiver operating characteristic curve; Avg, Average.
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