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radiomics, and deep transfer
learning features for automatic
classification of ovarian masses
according to O-RADS
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Ting Wang1, Yi Hao1* and Guanghui Yue3*

1Department of Ultrasound Medicine, South China Hospital, Medical School, Shenzhen University,
Shenzhen, China, 2Department of Ultrasound, Shenzhen University General Hospital, Medical School,
Shenzhen University, Shenzhen, China, 3National-Regional Key Technology Engineering Laboratory
for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound
Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen
University, Shenzhen, China
Background: Accurate and rapid discrimination between benign and malignant

ovarian masses is crucial for optimal patient management. This study aimed to

establish an ultrasound image-based nomogram combining clinical, radiomics,

and deep transfer learning features to automatically classify the ovarian masses

into low risk and intermediate-high risk of malignancy lesions according to the

Ovarian- Adnexal Reporting and Data System (O-RADS).

Methods: The ultrasound images of 1,080 patients with 1,080 ovarian masses were

included. The training cohort consisting of 683 patients was collected at the South

China Hospital of Shenzhen University, and the test cohort consisting of 397 patients

was collected at the Shenzhen University General Hospital. The workflow included

image segmentation, feature extraction, feature selection, and model construction.

Results: The pre-trained Resnet-101model achieved the best performance. Among

the different mono-modal features and fusion feature models, nomogram achieved

the highest level of diagnostic performance (AUC: 0.930, accuracy: 84.9%,

sensitivity: 93.5%, specificity: 81.7%, PPV: 65.4%, NPV: 97.1%, precision: 65.4%). The

diagnostic indices of the nomogram were higher than those of junior radiologists,

and the diagnostic indices of junior radiologists significantly improved with the

assistance of the model. The calibration curves showed good agreement between

the prediction of nomogram and actual classification of ovarian masses. The

decision curve analysis showed that the nomogram was clinically useful.

Conclusion: This model exhibited a satisfactory diagnostic performance compared

to junior radiologists. It has the potential to improve the level of expertise of junior

radiologists and provide a fast and effective method for ovarian cancer screening.
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1 Introduction

Ovarian masses comprise a remarkably diverse group of benign,

borderline, and malignant lesions (1). The prognosis varies greatly

depending on the histopathological type of lesions (2). Among

these, ovarian cancer is the most lethal gynecological tumor (3) as

more than 75% of patients with ovarian cancer are initially

diagnosed at a late stage with a 5-year relative survival rate of

only 29% (4). The treatment strategy for benign and malignant

ovarian lesions is completely different. Conservative management

or simple fertility-sparing resection is more appropriate for masses

that are likely to be benign (5). Conversely, patients with suspicious

malignant masses should be referred to a gynecologic oncologist

and may require a more aggressive surgical approach (6). Therefore,

the accurate preoperative classification of benign and malignant

ovarian masses is crucial for optimal patient management.

Ultrasound scan is currently the first-line imaging modality for

the screening of ovarian masses. With the extensive morphological

characteristics displayed by ovarian masses, the interpretation of

ultrasound images of these lesions is complex, and the accuracy of

diagnosis is influenced by the experience and subjective judgment of

radiologists. To establish standardized assessment procedures for

adnexal masses, various evidence-based risk classification systems

have been proposed to differentiate between benign and malignant

adnexal masses (7–13). However, due to various reasons, their

acceptance has been limited in clinical practice (14).

The Ovarian-Adnexal Reporting and Data System (O-RADS) risk

stratification and management system for ultrasound, developed by the

American College of Radiology (ACR) in 2020 and updated in 2022,

classifies adnexal masses into six categories (O-RADS 0–5) representing

the range of normal to high risk of malignancy. It provides a

management recommendation for each risk category (14, 15). The

clinical use of O-RADS is becomingmore widespread, and its diagnostic

performance has been validated for classifying benign and malignant

lesions. AnO-RADS 4 score has been identified as the optimal cutoff for

malignancy characterization (16–18). Multiple retrospective studies

have demonstrated that O-RADS has high sensitivity and specificity

for classification (16–19). Although O-RADS has demonstrated

excellent performance compared with other risk classification systems

(20, 21), its apparent complexity and diverse presentation of ovarian

lesions still pose a challenge for radiologists especially those in health

resource-lacking regions with limited experience.

To provide rapid ultrasound image screening for ovarian

cancer, address the shortage of medical resources, and assist less

experienced radiologists in enhancing professional skills, intelligent

diagnostic tools are needed to automatically classify the ovarian

masses. Recently, with the development of artificial intelligence

technology, the computer-assisted medical image analysis has

enabled more accurate and reproducible evaluation for diseases,

including ovarian diseases (22). In this study, we developed a

nomogram combining radiomics, deep transfer learning (DTL),

and clinical features to automatically categorize the ovarian masses

into low risk of malignancy lesions (O-RADS 1–3) and

intermediate-high risk of malignancy lesions (O-RADS 4–5)

according to O-RADS. To the best of our knowledge, this specific

subject has been rarely investigated until now.
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2 Materials and methods

2.1 Ethical approval

This retrospective study was approved by the ethical

committees of the South China Hospital of Shenzhen University

(approval number: HNLS20230112101-A). As the study was

conducted retrospectively, the requirement for patient informed

consent was waived.
2.2 Patients and data acquisition

Between July 2021 and December 2023, we retrospectively

collected transvaginal or transrectal ultrasound images of patients

with ovarian masses who underwent ultrasound examination at the

South China Hospital of Shenzhen University as the training cohort.

Meanwhile, the ultrasound images of ovarian masses collected from

the Shenzhen University General Hospital were regarded as the test

cohort. Both hospitals are general hospitals rather than reference

oncology centers. According to the O-RADS ultrasound risk

stratification and management system, two senior radiologists

(W.C. and H.T.) with over 20 years of experience in gynecological

ultrasonography classified these ultrasound images of ovarian masses

into five categories (O-RADS 1–5). As O-RADS 4 has been shown to

be an appropriate cutoff for malignancy (16, 18), ovarian mass

classified as O-RADS 1–3 was considered as benign probable lesion

with low risk of malignancy (<10%), while ovarian mass classified as

O-RADS 4–5 was considered as malignant probable lesion with

intermediate-high risk of malignancy (≥10%). Therefore, these

ultrasound images were divided into the following two groups: a

low risk of malignancy group (O-RADS 1–3) and an intermediate-

high risk of malignancy group (O-RADS 4–5) based on the judgment

of senior radiologists. The senior radiologists’ consistent classification

of the images served as the diagnostic criterion for validating the

diagnostic performance of the models and junior radiologists. If they

disagreed on the classification of an ovarian mass, they would consult

with the third senior radiologist (L.L.) for resolution (Figure 1).

The inclusion criteria were as follows: (1) Patients with ovarian

masses who underwent transvaginal or transrectal sonography scan

at the South China Hospital of Shenzhen University or Shenzhen

University General Hospital. (2) Patients over 18 years old. (3) We

only included one ovarian mass per patient. If there were more than

one mass, the mass with the most complex morphology or the

largest diameter was included. The exclusion criteria were as

follows: (1) Adnexal or pelvic mass that is uncertain whether it

derives from the ovary; (2) Ultrasound images with low quality that

were unsuitable for further analysis; (3) The clinical information of

patient was incomplete.
2.3 Clinical characteristics

The clinical characteristics of the patients with ovarian masses

we collected included the age of patients, maximum diameter of the

lesion, presenting symptoms, menopause status, and presence or
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absence of ascites. The symptoms included dysmenorrhea,

dyspareunia, chronic pelvic pain, abdominal pain, and abdominal

fullness. The frequency of symptoms was at least three times

a month.
2.4 Ultrasound image acquisition

Ultrasound scans were conducted using different machines

equipped with transvaginal probes, including GE Voluson E10,

GE Logiq E9, Mindray DC-80, and Samsung HERA XW10. All

transvaginal or transrectal ultrasound scans were performed by

certified radiologists with more than 3 years of experience in

gynecological ultrasonography. Typically, an ovarian mass may

have multiple images, and the one with the maximum lesion

diameter was selected. However, if a patient had more than one

mass, the one with the most complex morphology or the largest

diameter was chosen for analysis. After image quality control

conducted by three radiologists (B.W., J.Z., and T.W.), images

that met the inclusion criteria were extracted from the Picture

Archiving and Communication Systems in JPEG format.
Frontiers in Oncology 03
2.5 Image segmentation, feature
extraction, and feature fusion

The workflow of the ultrasound-based deep learning radiomics

nomogram analysis included image segmentation, feature

extraction, feature selection, and model construction (Figure 2).

The included ultrasound images were converted to the NII format.

Two independent investigators (L.L. andW.C.) who were blinded to

the classification results reviewed these images and used ITK-SNAP

software (Version 3.8.0, USA) to manually segment the regions of

interest (ROIs) of target lesions. The interclass correlation

coefficient (ICC) was used to evaluate the intra-/inter-observer

agreement and reproducibility of the feature extraction. An ICC

value of ≥0.75 was considered indicative of a satisfactory agreement.

The radiomics features were handcrafted features extracted

using the Pyradiomics analysis program, a web-based tool for

radiomics analysis (http://pyradiomics.readthedocs.io). Filters

were used to generate derived images. The extracted features can

be categorized into geometry, intensity, and texture features. There

are five types of texture features, including gray-level co-occurrence

matrix (GLCM), gray-level dependence matrix (GLDM), gray-level
FIGURE 1

Flowchart of the study subjects’ screening based on inclusion and exclusion criteria.
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size zone matrix (GLSZM), gray-level run length matrix (GLRLM),

and neighboring gray tone difference matrix (NGTDM). Geometry

features describe the shape characteristics of the lesions. Intensity

features depict the first-order statistical distribution of the voxel

intensities within the lesions. Texture features describe the patterns

or the second- and high-order spatial distributions of the intensities.

Deep learning features refer to the features extracted using deep

learning networks, which are manifested as learned weights from

networks. The deep learning features were extracted from pre-

trained convolutional neural networks (CNN) via transfer learning

to overcome the overfitting problems that deep learning models

usually suffer from due to insufficient training data. The parameters

of several CNNs were trained, including Resnet-50, Resnet-101,

Resnet-152, Densenet-121, Densenet-201, and Inception v3. Then,

these pre-trained DTL networks were used to extract deep learning

features, and the optimal model was selected. The image files were

converted from JPEG to PNG format for further analysis. The

penultimate layer output features, expressed as activation values,

were extracted as deep learning features representing the high-level

visual patterns from the images by the pre-trained CNN. The

principal component analysis (PCA) was used to reduce the

dimension of DTL features, improve the generalization ability of

the model, and reduce the risk of overfitting.

The extracted radiomics features were used to establish the

radiomics model, and the extracted DTL features were used to

establish the DTL model. To improve the performance of

classification for ovarian masses, we fused clinical features, radiomics

features, and DTL features to obtain the optimal subset of fusion

features. The fusion strategy of concatenation sum was used to fuse
Frontiers in Oncology 04
these different features. The fusion scheme included clinical features

combined with radiomics features, radiomics features combined with

DTL features, and clinical features combined with radiomics features

and DTL features. First, we combined clinical features with radiomics

features. Then, we combined radiomics features with DTL features.

Finally, the clinical features, radiomics features, and DTL features were

all combined to establish the nomogram.
2.6 Feature selection and
model construction

All mono-modal and fusion features were standardized using

the Z-score method, and the mean and variance of each feature was

calculated. Each feature was then subtracted from the mean, divided

by variance, and transformed into a standard normal distribution.

To select the features most correlated with the classification

outcome of ovarian masses, we used the t-test or Mann–Whitney

U-test for feature screening. Only radiomic features with a p-value

<0.05 were kept to select the features with significant differences

between two groups. To delete the redundant features, we calculated

the correlation between features using Spearman’s rank correlation

coefficient to evaluate their multi-collinearity. We retained only one

of the features with a correlation coefficient greater than 0.9 between

any two features to delete those with high repeatability.

Additionally, we performed a greedy recursive deletion strategy

(the feature with the greatest redundancy in the current set is

deleted each time) for feature filtering to retain the ability to

accurately describe features to the greatest extent.
FIGURE 2

Workflow of ultrasound-based nomogram construction. ROI, regions of interest. CNN, convolutional neural network.
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Subsequently, employing the scikit-learnpackage inPython (version

3.70), the least absolute shrinkage and selection operator (LASSO)

regression model was used to select and reduce the number of features

for model construction. Depending on the regulation weight l, LASSO
shrinks all regression coefficients toward zero and sets the coefficients of

the irrelevant features exactly to zero.Using 10-fold cross-validationwith

minimumcriteria, the optimallwasdetermined,where thefinal valueof

l resulted in theminimumcross-validation error. Themost robust non-

redundant retained features with non-zero coefficients were used for

regression model fitting and combined into a radiomics signature. The

retained features with non-zero coefficients were selected to establish the

score using a LASSO logistic regression model. Finally, a score for each

patient was obtained by a linear combination of the retained features

weighed by their model coefficients. Similarly, based on the

concatenation sum of radiomics features and DTL features, we also

used LASSO regression model to select the fusion features.

After feature screening with LASSO, we employed the scikit-learn

package in Python (version 3.70) to construct and assess the radiomics

model, DTL model, clinical model, and fusion model. Using the final

selected features, we input them into a variety of machine learning

models, such as logistic regression (LR), support vector machine

(SVM), k-nearest neighbor (KNN), random forest, XGBoost,

LightGBM, multi-layer perception (MLP), NaiveBayes, and

GradientBoosting to construct the models. Subsequently, we

conducted fivefold cross-verification to determine the optimal model

hyperparameters for model fitting and obtained the final signature that

is most robust and non-redundant. Finally, a nomogram model fusing

the clinical, radiomics, and DTL features was established for final

interpretation and analysis. The nomogram was constructed using

multivariate logistic regression to combine the scores of these features

developed on the training cohort. A nomogram score was then

calculated for each patient in both the training and test cohorts to

predict the risk of malignancy with this score combining the clinical,

radiomics, and DTL scores weighted by their respective coefficients.

The diagnostic efficacy of different models was comprehensively

evaluated in test cohort, and receiver operating characteristic (ROC)

curves were plotted to visually assess the diagnostic performance of

these models. Additionally, various diagnostic indices were calculated,

including area under the ROC curve (AUC), specificity, sensitivity,

accuracy, positive predictive value (PPV), negative predictive value

(NPV), and precision. The DeLong test was conducted to compare the

AUCs of different models using MedCalc software (version 20.100). To

compare the agreement between the prediction of the nomogram and

the actual classification, calibration curves were drawn to evaluate the

calibration efficiency of the nomogram, and Hosmer–Lemeshow

analysis was used to assess the calibration ability of nomogram.

Furthermore, decision curve analysis (DCA) was conducted to

evaluate the clinical utility of the predictive models.
2.7 Evaluation and comparison
with radiologists

Two senior radiologists (W.C. and H.T.) independently evaluated

and classified all ultrasound images in the training cohort and test

cohort according to O-RADS. Both of them were expert gynecological
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radiologists with over 20 years of clinical experience. Three junior

radiologists (B.W., J.Z., and T.W.) with less than 5 years of experience

in gynecological ultrasonography were assigned to independently

classify the images in the test cohort. All selected ovarian masses

were evaluated for the following ultrasound features: lesion category

(unilocular or multilocular cyst with or without solid component), size

(maximum diameters), external/outer contour (smooth or irregular),

internal contents (hypoechoic/isoechoic/hyperechoic, calcification, and

acoustic shadowing), internal content (anechoic fluid, hyperechoic

components, scattered low-level echoes, and fluid level), septations

(complete and incomplete), and solid or solid/appearing component

(papillary projection or nodule). All radiologists were blinded to the

prediction results of the models and original ultrasound reports. After a

period of time, the junior radiologists were instructed to reevaluate and

reclassify each image with the assistance of the nomogram. The junior

radiologists may refer to the results from the nomogram to make a

change in their classification especially when they were not sure of how

to classify them.
2.8 Statistical analysis

Statistical package IBM SPSS (version 21.0) was used to compare

the clinical characteristics of the patients between two groups. The

continuous variables, such as patients’ age and maximum diameter of

the lesions, were described as mean ± standard deviation and analyzed

using t-test or Mann–Whitney U-test. The categorical variables,

including presenting symptom, menopause status, and presence or

absence of ascites, were described as frequencies and percentages and

analyzed using Chi-square test. Statistical significance was defined as a

two-sided p-value <0.05. The 95% confidence interval (CI) of AUC was

calculated. Additionally, Python (version 3.70) was used to perform the

ICCs, Spearman rank correlation test, Z score normalization, and

LASSO regression analysis.
3 Results

3.1 Comparison of patients’
clinical characteristics

In this study, we included 1,080 patients with 1,080 ovarianmasses.

The training cohort consisted of 683 patients, 446 in the low risk of

malignancy group and 237 in the intermediate-high risk of malignancy

group based on the classification of senior radiologists according to the

O-RADS. The test cohort consisted of 397 patients, 290 in the low risk

of malignancy group and 107 in the intermediate-high risk of

malignancy group. Figure 1 illustrates the flowchart outlining the

screening process of participants according to the inclusion and

exclusion criteria. Table 1 provides a comparison of the baseline

clinical characteristics of the patients between the two groups.

Significant differences were observed in all clinical characteristics

between the two groups in both the training cohort and test cohort (p <

0.05). In the training cohort, themean age of the low risk of malignancy

group and intermediate-high risk of malignancy group was 32.38 ±

7.76 and 39.11 ± 8.93 years, respectively (p < 0.001). The maximum
frontiersin.org
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diameter of lesion was 40.45 ± 12.17 and 47.56 ± 12.41 mm in the low

risk of malignancy group and intermediate-high risk of malignancy

group, respectively (p < 0.001). In the low risk of malignancy group,

28.48% of the patients had clinical symptoms, whereas 4.22% of the

patients in the intermediate-high risk of malignancy group had clinical

symptoms (p < 0.001). The proportion of postmenopausal patients was

4.04% and 13.92% in the low risk of malignancy group and

intermediate-high risk of malignancy group, respectively (p < 0.001).

The proportion of patients with ascites was 0.45% and 2.53% in the low

risk of malignancy group and intermediate-high risk of malignancy

group, respectively (p = 0.042).

In the test cohort, the mean age was 34.16 ± 7.30 and 39.44 ± 6.90

years in the low risk of malignancy group and intermediate-high risk

of malignancy group, respectively (p < 0.001). The maximum

diameter of lesion was 40.23 ± 10.18 mm in the low risk of

malignancy group and 46.40 ± 12.64 mm in the intermediate-high

risk of malignancy group (p < 0.001). In the low risk of malignancy

group, 22.41% of the patients had clinical symptoms, whereas 7.48%

of the patients in the intermediate-high risk of malignancy group had

clinical symptoms (p = 0.001). The proportion of postmenopausal

patients was 2.41% and 11.21% in the low risk of malignancy group

and intermediate-high risk of malignancy group, respectively (p <

0.001). The proportion of patients with ascites was 0.34% and 3.74%

in the low risk of malignancy group and intermediate-high risk of

malignancy group, respectively (p = 0.029).
3.2 Feature extraction and selection

In this study, a total of 107 handcrafted radiomics features were

extracted, including 75 texture features (GLCM: 24, GLDM: 14,
Frontiers in Oncology 06
GLSZM: 16, GLRLM: 16, NGTDM: 5), 14 shape features, and 18

first-order features. The pre-trained DTL networks extracted 2,048

DTL features and compressed into 32 features after PCA. All

features were analyzed using the Spearman rank correlation test

and LASSO regression, and all features with non-zero coefficients

were selected to construct classification models. Through a LASSO

logistic regression model, 23 radiomics features, 32 DTL features,

and 42 features obtained by combining radiomics features and DTL

features through a fusion method with non-zero coefficients were

selected for the establishment of the models. Details of feature

extraction and selection of radiomics features, DTL features, and

radiomics combined with DTL features can be found in Figures 3–5.

To investigate the interpretability of the DTL features, we

visualized the network using the gradient-weighted class

activation mapping (Grad-CAM), which could provide a rough

localization map to highlight the importance of the ROI for the

classification of ovarian masses. The most important regions were

marked in red, and the least important regions were marked in blue.

Figure 6 displays the Grad-CAM visualization for an ovarian mass.
3.3 Performance comparison of
DTL models

To find the best CNN model for extracting DTL features, we

compared the performance of Resnet-50, Resnet-152, Resnet-101,

Densenet-121, Densenet-201, and Inception v3. After feature

extraction and selection, different machine learning models were

constructed. We trained and evaluated these machine learning

models based on the selected DTL features. Several models,

including LR, SVM, KNN, random forest, XGBoost, LightGBM,
TABLE 1 Baseline clinical characteristics of participants between two groups.

Clinical
features

Training
All (n = 683)

Training
Low risk of
malignancy
group
(n = 446)

Training
Intermedi-
ate-high risk
of malig-
nancy group
(n = 237)

p-
Value

Test
All (n =397)

Test
Low risk of
malignancy
group
(n = 290)

Test
Intermedi-
ate-high risk
of malig-
nancy group
(n = 107)

p-
Value

Age (years) 34.71 ± 8.78 32.38 ± 7.76 39.11 ± 8.93 <0.001 35.58 ± 7.56 34.16 ± 7.30 39.44 ± 6.90 <0.001

Diameter
(mm)

42.92 ± 12.70 40.45 ± 12.17 47.56 ± 12.41 <0.001 41.90 ± 11.22 40.23 ± 10.18 46.40 ± 12.64 <0.001

Symptom <0.001 0.001

0 546 (79.94%) 319 (71.52%) 227(95.78%) 324 (81.61%) 225 (77.59%) 99 (92.52%)

1 137 (20.06%) 127 (28.48%) 10 (4.22%) 73 (18.39%) 65 (22.41%) 8 (7.48%)

Menopause <0.001 <0.001

0 632 (92.53%) 428 (95.96%) 204 (86.08%) 378 (95.21%) 283 (97.59%) 95 (88.79%)

1 51 (7.47%) 18 (4.04%) 33 (13.92%) 19 (4.79%) 7 (2.41%) 12 (11.21%)

Ascites 0.042 0.029

0 675 (98.83%) 444 (99.55%) 231 (97.47%) 392 (98.74%) 289 (99.66%) 103 (96.26%)

1 8 (1.17%) 2 (0.45%) 6 (2.53%) 5 (1.26%) 1 (0.34%) 4 (3.74%)
front
Symptom, menopause, and ascites 0 mean the participants were asymptomatic, non-menopausal status, and absence of ascites, respectively. Symptom, menopause, and ascites 1 mean the
participants were symptomatic, menopausal status, or presence of ascites.
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MLP, NaiveBayes, and GradientBoosting were constructed and

compared to determine the most optimal performing model. The

results showed that pre-trained Resnet-101 with SVM model

achieved the best performance in both training and test cohorts.

The AUC, accuracy, sensitivity, specificity, PPV, NPV, and

precision were 0.915 (95% CI: 0.888–0.942), 80.6%, 94.4%, 75.5%,

58.7%, 97.3%, and 58.7% in the test cohort. Table 2 presents the

diagnostic indices of these models in the training and test cohorts,

including AUC, accuracy, sensitivity, specificity, PPV, NPV,

and precision.
3.4 Performance comparison of radiomics
combined with DTL models

The radiomics features and DTL features (pre-trained Resnet-

101) were fused with concatenation sum strategy to construct

different machine learning models, and the MLP model showed

the best performance in the test cohort. The AUC, accuracy,

sensitivity, specificity, PPV, NPV, and precision were 0.913 (95%

CI: 0.885–0.940), 79.6%, 94.4%, 74.1%, 57.4%, 97.3%, and 57.4%

respectively. Table 3 presents the diagnostic indices of these models

in the training and test cohort. The ROC curves and AUC values of

the different models in the test cohort are shown in Figure 7.
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3.5 Construction of the nomogram and
performance comparison of various
feature fusions

All clinical characteristics were used to establish the clinical

model due to these characteristics with a p-value <0.05 between the

two groups in the training cohort. The clinical features with LR

model showed the best performance in the test cohort (AUC: 0.802,

95% CI: 0.756–0.849, accuracy: 69.8%, sensitivity: 85.0%, specificity:

64.1%, PPV: 46.7%, NPV: 92.1%, precision: 46.7%).

Various mono-modal features were combined to obtain the

optimal subset of fusion features. The nomogram incorporating the

clinical features, radiomics features, and DTL features with the

LightGBM algorithm demonstrated the highest level of diagnostic

performance (AUC: 0.930, 95% CI: 0.906–0.954, accuracy: 84.9%,

sensitivity: 93.5%, specificity: 81.7%, PPV: 65.4%, NPV: 97.1%,

precision: 65.4%). The diagnostic indices of the clinical,

radiomics, and nomogram models in both the training and test

cohorts are presented in Table 4. Figure 8 illustrates the ROC curves

and AUC values of the different models in the test cohort. Figure 9

depicts the nomogram for clinical use with a total score reflecting

the probability of malignancy in ovarian masses.

The DeLong test revealed that the AUC comparison between the

nomogram and clinical model, between the nomogram and radiomics
A B

C

FIGURE 3

Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) logistic regression model in the test cohort.
(A) Coefficients of 10-fold cross-validation based on LASSO algorithm. (B) MSE of 10-fold cross-validation based on LASSO algorithm. (C) Histogram
depicting the values of coefficients in the final selected non-zero features.
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A

B

C

FIGURE 5

Radiomics combined with DTL feature election using the least absolute shrinkage and selection operator (LASSO) logistic regression model in the
test cohort. (A) Coefficients of 10-fold cross-validation based on LASSO algorithm. (B) MSE of 10-fold cross-validation based on LASSO algorithm.
(C) Histogram depicting the values of coefficients in the final selected non-zero features.
A B

C

FIGURE 4

DTL feature selection using the least absolute shrinkage and selection operator (LASSO) logistic regression model in the test cohort. (A) Coefficients
of 10-fold cross-validation based on LASSO algorithm. (B) MSE of 10-fold cross-validation based on LASSO algorithm. (C) Histogram depicting the
values of coefficients in the final selected non-zero features.
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model, as well as between the nomogram and radiomics model

combined with DTL model, was statistically significant (p < 0.05) in

the test cohorts, indicating that the nomogram model outperformed

these models in the classification of ovarian masses. However, there

was no statistical difference in diagnostic performance between

the nomogram and DTL model (p = 0.129). Figure 10 displays the

p-value of the DeLong test between different models.

The Hosmer–Lemeshow test, used to evaluate the nomogram

calibration curves, showed good agreement between the prediction
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of the nomogram and the actual classification of ovarian masses in

the test cohorts (p > 0.05), indicating that the nomogram fitted

perfectly. However, the prediction of the rest of the models and the

actual classification did not fit very well (p < 0.05). Table 5 presents

the p-value of the Hosmer–Lemeshow test in the test cohorts.

Figure 11 shows the calibration curves in the test cohort.

The analysis of the DCA curve demonstrated that, when

compared to scenarios without any prediction model, all models

significantly improved the intervention outcomes for the patients,
FIGURE 6

The Grad-CAM visualization for an ovarian mass.
TABLE 2 Diagnostic performance of different DTL models.

Cohort Model AUC (95% CI) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) Precision
(%)

Training Resnet-50 0.895
(0.871–0.919)

82.1 82.3 82.1 70.9 89.7 70.9

Training Resnet-101 0.982
(0.972–0.992)

94.3 93.7 94.6 90.2 96.6 90.2

Training Resnet-152 0.907
(0.884–0.929)

81.8 85.2 80.0 69.4 91.1 69.4

Training Densenet-
121

0.907
(0.885–0.929)

81.3 88.6 77.4 67.5 92.7 67.5

Training Densenet-
201

0.975
(0.966–0.984)

91.2 92.8 90.4 83.7 96.0 83.7

Training Inception_v3 0.944
(0.927–0.961)

86.5 88.6 85.4 76.4 93.4 76.4

Test Resnet-50 0.904
(0.872–0.936)

82.4 84.1 81.7 62.9 93.3 62.9

Test Resnet-101 0.915
(0.888–0.942)

80.6 94.4 75.5 58.7 97.3 58.7

Test Resnet-152 0.885
(0.853–0.917)

81.6 83.2 81.0 61.8 92.9 61.8

Test Densenet-
121

0.885
(0.849–0.921)

80.1 89.7 76.6 58.5 95.3 58.5

Test Densenet-
201

0.905
(0.875–0.934)

83.4 82.2 83.8 65.2 92.7 65.2

Test Inception_v3 0.893
(0.861–0.924)

82.9 87.9 81.0 63.1 94.8 63.1
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and the use of nomogram for automatic classification of ovarian

masses has been shown to have the best clinical benefits. Figure 12

depicts the DCA curves for the different models in the test cohort.
3.6 Performance comparison with
junior radiologists

Compared to the nomogram, the junior radiologists showed

lower diagnostic performance in the test cohort with an average

AUC, sensitivity, and specificity of 0.881 (95% CI: 0.857–0.908),

84.1%, and 92.1%, respectively. However, with the assistance of the

radiomic nomogram, the junior radiologists exhibited a significant
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improvement in diagnostic performance, achieving an average

AUC, sensitivity, and specificity of 0.929 (95% CI: 0.903–0.950),

91.6%, and 94.1%, respectively. Figure 13 illustrates the ROC curves

and AUC values for junior radiologists with and without the

assistance of the nomogram.
4 Discussion

O-RADS ultrasound risk stratification and management system

enables the stratification of adnexal masses based on morphologic

features to indicate the risk of malignancy and offers associated

management guidance for each risk category (15). This system has
TABLE 3 Diagnostic performance of different radiomics combined with DTL models (Resnet-101).

Cohort Model AUC
(95% CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Precision
(%)

Training LR 0.947
(0.929–0.964)

89.9 88.2 90.8 83.6 93.5 83.6

Training SVM 0.989
(0.979–0.999)

96.2 96.6 96.0 92.7 98.2 92.7

Training KNN 0.974
(0.964–0.983)

91.1 79.7 97.1 93.6 90.0 93.6

Training Random forest 1.000
(0.999–1.000)

98.8 96.6 100.0 100.0 98.2 100.0

Training XGBoost 1.000
(0.999–1.000)

99.7 99.2 100.0 100.0 99.6 100.0

Training LightGBM 0.991
(0.986–0.996)

95.3 97.9 93.9 89.6 98.8 89.6

Training MLP 0.989
(0.982–0.995)

95.8 94.9 96.2 93.0 97.3 93.0

Training NaiveBayes 0.898
(0.875–0.922)

81.3 85.7 78.9 68.4 91.2 68.4

Training GradientBoosting 0.939
(0.921–0.958)

89.2 85.7 91.0 83.5 92.3 83.5

Test LR 0.868
(0.831–0.905)

80.9 78.5 81.7 61.3 91.2 61.3

Test SVM 0.884
(0.851–0.917)

79.6 88.8 76.2 57.9 94.8 57.9

Test KNN 0.843
(0.802–0.884)

80.6 57.9 89.0 66.0 85.1 66.0

Test Random forest 0.833
(0.790–0.877)

78.8 64.5 84.1 60.0 86.5 60.0

Test XGBoost 0.822
(0.779–0.865)

70.0 88.8 63.1 47.0 93.8 47.0

Test LightGBM 0.812
(0.765–0.859)

74.8 73.8 75.2 52.3 88.6 52.3

Test MLP 0.913
(0.885–0.940)

79.6 94.4 74.1 57.4 97.3 57.4

Test NaiveBayes 0.898
(0.865–0.932)

82.1 87.9 80.0 61.8 94.7 61.8

Test GradientBoosting 0.828
(0.785–0.870)

73.0 86.9 67.9 50.0 93.4 50.0
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subsequently been validated to have good diagnostic performance

for the classification of the lesions in multiple retrospective studies

(16–19). Due to the completely different treatment for benign and

malignant ovarian diseases, accurate detection of lesions with low

risk and intermediate-high risk of malignancy is of great clinical

significance. However, as the morphology of ovarian masses in
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ultrasound image is complex and diverse, and the level of expertise

of radiologists varies widely, accurate and rapid discrimination

between benign and malignant lesions remains challenging. To

solve this problem, in this study, an ultrasound image-based

nomogram combining radiomics, DTL, and clinical features was
TABLE 4 Diagnostic performance of clinical, radiomics, DTL, radiomics combined with DTL, and nomogram models.

Cohort Model AUC
(95% CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Precision
(%)

Training Clinical 0.825
(0.794–0.856)

74.2 80.2 71.1 59.6 87.1 59.6

Training Radiomic 0.924
(0.902–0.947)

86.1 86.1 86.1 76.7 92.1 76.7

Training DTL 0.982
(0.972–0.992)

94.3 93.7 94.6 90.2 96.6 90.2

Training Clinical
+ Radiomic

0.943
(0.926–0.960)

87.7 89.0 87.0 78.4 93.7 78.4

Training Radiomic+ DTL 0.989
(0.982–0.995)

95.8 94.9 96.2 93.0 97.3 93.0

Training Nomogram 0.990
(0.981–0.998)

96.0 95.8 96.2 93.0 97.7 93.0

Test Clinical 0.802
(0.756–0.849)

69.8 85.0 64.1 46.7 92.1 46.7

Test Radiomic 0.865
(0.827–0.903)

81.1 84.1 80.0 60.8 93.2 60.8

Test DTL 0.915
(0.888–0.942)

80.6 94.4 75.5 58.7 97.3 58.7

Test Clinical
+ Radiomic

0.898
(0.866–0.930)

83.6 78.5 85.5 66.7 91.5 66.7

Test Radiomic+ DTL 0.913
(0.885–0.940)

79.6 94.4 74.1 57.4 97.3 57.4

Test Nomogram 0.930
(0.906–0.954)

84.9 93.5 81.7 65.4 97.1 65.4
FIGURE 8

The ROC curves and AUC of clinical, radiomics, DTL, radiomics
combined with DTL, and nomogram models in test cohort.
Combined refers to radiomics combined with DTL model.
FIGURE 7

The ROC curves and AUC of different radiomics combined with DTL
models in the test cohort.
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constructed to automatically categorize the ovarian masses into low

risk and intermediate-high risk of malignancy lesions. A

retrospective study reported that the proportion of malignancy

was 0% for O-RADS 2, 3% for O-RADS 3, 35% for O-RADS 4,

and 78% for O-RADS 5. Using O-RADS 4 as a threshold achieved a

sensitivity of 99% and a specificity of 70% (18). Therefore, ovarian

masses with O-RADS 1–3 were considered to be low risk of

malignancy lesions, while ovarian masses with O-RADS 4–5 were

considered to be intermediate-high risk of malignancy lesions.

Following published studies and expert consensus recommending

the use of pattern recognition by an experienced radiologist as the

most accurate ultrasound method for distinction between benign

and malignant ovarian lesions (23–25), we used the judgment of

senior radiologists as the standard to evaluate the diagnostic

performance of the models.
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To find the optimal model, we developed and compared five

models, including the clinical model, radiomics model, DTL model,

radiomics combined with DTL model, and nomogram combining

clinical, radiomics, and DTL features. The results indicated that the

nomogram demonstrated better diagnostic performance than the

other models for the classification of ovarian masses suggesting that

the combination of these three features is particularly advantageous

for identifying benign and malignancy lesions. Furthermore, the

DeLong test demonstrated that the nomogrammodel outperformed

other models in the classification of ovarian masses with statistical

significance (p < 0.05). The nomogram calibration curves showed

excellent agreement between the prediction of the nomogram and

the actual classification in both the training and test cohorts (p >

0.05). Finally, the results of DCA demonstrated that the use of the

nomogram offers significant clinical benefits compared to scenarios

without any prediction model.

The nomogram model performed better than the junior

radiologists in both the training cohort and test cohort. More

importantly, the diagnostic indices for the junior radiologists,

such as AUC, sensitivity, and specificity, showed significant

improvements with the assistance of the nomogram model, with

higher values for AUC (0.881 vs. 0.929), sensitivity (84.1% vs.

91.6%), and specificity (92.1% vs. 94.1%). The result indicated

that this nomogram model can enhance the diagnostic

performance of junior radiologists, help to supplement medical

resources in underdeveloped areas, and provide a new method for

rapid ultrasound screening of ovarian cancer.

Due to the retrospective nature of this study, it was difficult to

collect sufficient clinical data. As a result, we only collected the

patients’ age, maximum lesion diameter, presenting symptoms,

menopause status, and presence or absence of ascites. The results

showed that there were statistical differences in these clinical

characteristics between the two groups (p < 0.05). We found that

the mean age of the intermediate-high risk of malignancy group was

older than that of the low risk of malignancy group, and the

proportion of postmenopausal patients was higher in the
FIGURE 9

The nomogram with a total score reflecting the probability of malignancy in ovarian masses. Combined refers to radiomics model combined with
DTL model.
FIGURE 10

The p-value of the DeLong test between the different models in the
test cohort. Combined refers to radiomics model combined with
DTL model.
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intermediate-high risk of malignancy group, which is consistent

with the conclusion of previous studies that ovarian cancer affects

older women more frequently than younger women (26, 27). Most

women with ovarian cancer are asymptomatic or have nonspecific

symptoms, such as abdominal pain or distension, at an advanced

stage (28, 29). As there were patients with endometriosis in the low

risk of malignancy group who usually had symptoms, including

dysmenorrhea, chronic pelvic pain, and dyspareunia, the

proportion of patients with clinical symptoms was higher in the

low risk of malignancy group. However, due to the lack of clinical

information, the diagnostic performance of clinical model was not

as good as that of the other models.

Radiomics involves the conversion of medical images into

mineable high-throughput image features by util izing

sophisticated image-processing techniques enabling the extraction

and detection of quantitative data that characterize microscopic

tissue aspects beyond the ability of the human eyes (30, 31). These

data can be subsequently analyzed using either conventional

biostatistics or artificial intelligence methods and correlated with

pathology diagnoses based on these processed features (32). Deep

learning has also shown remarkable progress in medical image

analysis. Resnet (Residual Network) is a type of CNN that avoids

the problem of gradient disappearance or explosion by learning

residuals resulting in increased network efficiency, accuracy, and

execution speed (33). In Resnet-101, the mapping relationship

between the original input and output features is gradually
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learned by adding residual units making the deep neural network

learning more stable and efficient. Currently, Resnet-101 is widely

used in the field of computer vision, and it achieved the best

performance in this study. In recent years, transfer learning, a

pre-trained CNN, has gradually been used in various medical image

analysis domains because acquiring a large number of medical

images is difficult. It can increase model performance in target tasks

and minimize overfitting with a small training size by transferring

previously learned features from source tasks (34).

Multiple studies have been published regarding the use of

machine learning or deep learning models for diagnosis of medical

images of ovarian masses (22, 35–37). However, these studies have

predominantly focused on discrimination between benign and

malignant lesions based on pathology results. The published studies

indicated that the artificial intelligence technologies have shown

satisfactory predictive ability to diagnose and classify benign and

malignant ovarian diseases from medical images (38–40).

Furthermore, several studies (28, 41, 42) developed deep learning

models to discriminate between borderline and malignant ovarian

tumors, and these models have shown promising diagnostic efficiency

and provided complementary clinical diagnostic information. As far

as we know, no studies have focused on investigating the use of

artificial intelligence technology for classification of ovarian masses

according to O-RADS.

The following are the limitations of this retrospective study.

First, the sample size of the dataset is relatively small, especially for

the intermediate-high risk of malignancy group, which may induce

potential selection bias. Second, manual segmentation of lesion

boundaries may lead to human error potentially omitting image
TABLE 5 p-Value of Hosmer–Lemeshow test.

Cohort Clinical model Radiomic model DTL model DLR model Nomogram

Training <0.001 <0.001 <0.001 <0.001 0.752

Test <0.001 <0.001 <0.001 <0.001 0.711
FIGURE 11

The nomogram calibration curves of the different clinical models in
the test cohort. Combined refers to radiomics model combined with
DTL model.
FIGURE 12

The DCA curves for different models in the test cohort. Combined
refers to radiomics model combined with DTL model.
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features. Third, this study was a retrospective study, which was

prone to sample selection bias. Fourth, the lack of clinical

information limited the performance of the clinical model. In the

future, larger multicenter prospective trials incorporating a broader

range of clinical data are necessary to evaluate the diagnostic

performance of the predictive model in clinical practice.
5 Conclusions

We first constructed an ultrasound image-based nomogram

combining clinical, radiomics, and DTL features to automatically

classify the ovarian masses into low risk of malignancy lesions and

intermediate-high risk of malignancy lesions according to O-RADS.

This model has the potential to improve the level of expertise of

junior radiologists as an auxiliary diagnosis tool. Furthermore, this

integrated model can provide a fast and effective method for ovarian

cancer screening and provide more valuable clinical information for

treatment decisions on ovarian masses.
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