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Background: Lynch syndrome (LS) is an autosomal dominant multi-organ

cancer syndrome with a high lifetime risk of cancer. The number of cumulative

colorectal adenomas in LS does not generally exceed ten, and removal of

adenomas via routine screening minimizes the cancer burden. However,

abnormal phenotypes may mislead initial diagnosis and subsequently cause

suboptimal treatment.

Aim: Currently, there is no standard guide for the care of multiple colorectal

adenomas in LS individuals. We aimed to shed insight into the molecular features

and reasons for multiplicity of adenomas in LS patients.

Methods: We applied whole exome sequencing on nine adenomas (ten samples)

and three assumed primary carcinomas (five samples) of an LS patient developing

the tumors during a 21-year follow-up period. We compared the findings to the

tumor profiles of two additional LS cases ascertained through colorectal tumor

multiplicity, as well as to ten adenomas and 15 carcinomas from 23 unrelated LS

patients with no elevated adenoma burden from the same population. As LS

associated cancers can arise via several molecular pathways, we also profiled the

tumors for CpG Island Methylator Phenotype (CIMP), and LINE-1 methylation.

Results: All tumors were microsatellite unstable (MSI), and MSI was present in

several samples derived from normal mucosa as well. Interestingly, frequent

frameshift variants in RNF43 were shared among substantial number of the

tumors of our primary case and the tumors of LS cases with multiple tumors but

almost absent in our control LS cases. The RNF43 variants were completely

absent in the normal tissue, indicating tumor-associated mutational hotspots.

The RNF43 status correlated with the mutational signature SBS96. Contrary to LS

tumors from the reference set with no elevated colorectal tumor burden, the

somatic variants occurred significantly more frequently at C>T in the CpG

context, irrespective of CIMP or LINE-1 status, potentially indicating other, yet

unknown methylation-related mechanisms. There were no signs of somatic
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mosaicism affecting the MMR genes. Somatic variants in APC and CTNNB1 were

unique to each tumor.

Conclusion: Frequent somatic RNF43 hot spot variants combined with SBS96

signature and increased tendency to DNA methylation may contribute to tumor

multiplicity in LS.
KEYWORDS

Lynch syndrome, exome sequencing, panel sequencing, multiple adenomas, RNF43
1 Introduction

LS is a relatively common disorder (affects one in 250-400

individuals) with a high lifetime risk of cancer caused by the

deficiency of one of the main four DNA mismatch repair genes:

MLH1, MSH2, MSH6, or PMS2, or by transcriptional silencing of

MSH2 via 3’ deletion of EPCAM. Typically, LS families display

autosomal dominant inheritance of colorectal cancer (CRC) (and

various extracolonic cancers such as endometrial cancer) with a

relatively young age at onset (< 50 years) (1, 2). The Amsterdam

criteria, used as an aid in the clinical diagnosis of LS, draws heavily

on the family history of CRC, but additionally states the need for the

absence of polyps to distinguish LS from familial adenomatous

polyposis (FAP) (3, 4). Although the cumulative lifetime adenoma

burden of LS patients generally stays below ten, recent data has

shown that LS may manifest with an elevated polyp count, and that

individuals with pathogenic germline variants in different genes

may undergo gene-specific tumorigenesis (5–9), creating difficulties

for diagnosis. LS patients with an elevated adenoma count are

additionally significantly more likely to have an advanced colorectal

neoplasia (8).

The adenoma-carcinoma pathway of CRC is grouped into three

distinct subtypes: the chromosomal instability (CIN) pathway, the

MSI pathway, and the CIMP pathway. LS-associated tumorigenesis

is generally thought to arise via MSI pathway, but recently the

possibility of copy-neutral loss of heterozygosity for carriers of
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MLH1 germline variants as the cause of cancer has been discussed

(10). Of all CRCs, about 10% follow an alternative pathway wherein

the adenoma precursor is replaced with a serrated polyp. Although

the MSI pathway can sometimes give rise to serrated-type tumors,

the CIMP adenoma-carcinoma pathway produces adenomas that

resemble MSI carcinomas due to hypermethylation of MLH1 but

lack the hallmark genetic disruption in APC; instead, tumors form

in association with BRAF and KRAS mutations driven by an

exclusive WNT activating RNF43 mutation in sporadic CRC (11,

12). Once RNF43 is inactivated in the serrated lesions, they may

advance into mucinous adenocarcinomas with a high likelihood of

metastasis. Although frequently observed in sporadic CRC, the

mechanisms of the accelerated tumor progression and metastatic

spread are poorly understood.

We undertook this investigation to explore the molecular

background of colorectal tumor multiplicity in LS, the existing

knowledge of which is scarce. We determined the constitutional and

somatic molecular profiles of three LS cases with multiple adenomas

and compared the findings to a cohort of LS patients with no such

colorectal tumor multiplicity. We describe distinct tumor profiles

that may be associated with increased colon tumor burden in LS.
2 Materials and methods

2.1 Patients and samples

This investigation was carried out on a total of 26 index cases

with molecularly confirmed LS (Figure 1) from Finland. The

patients were ascertained from the Finnish Lynch Syndrome

Research Registry. DNA was extracted from blood or archival

formalin-fixed paraffin-embedded (FFPE) samples following the

protocol presented in Isola et al. (13).

Case LS-298

Our index individual initially presented with a 25 mm

mucinous cecal adenocarcinoma and a 40 mm moderately

differentiated adenocarcinoma of the ascending colon at 52 years

of age. The ascending colon housed a few adenomatous polyps, as

well. After right sided hemicolectomy, he developed several tumors

in the descending colon as well as renal carcinoma (Table 1).
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Analysis of the germline tissue revealed a pathogenic variant in

MLH1, c.677G>T, p.(Gln197Argfs*8) (14).

Case F1001

The index of F1001 had a personal history of several adenomas,

leading to the initial suspicion of attenuated familial adenomatous

polyposis. He underwent subtotal colectomy at 47 years of age due

to the presence of multiple seemingly primary carcinomas with

mucinous, and signet cell/mixed histology as well as several

adenomatous polyps. Subsequent analysis of the case revealed a

27 bp deletion of MSH2 c.1140_1166del, p.(Leu381_Arg389del) in

the MSH3/MSH6 interaction domain (6). MSI and IHC analyses

complied with MSH2-associated Lynch syndrome.

Case LS-202

The case LS-202 was initially diagnosed with a moderately

differentiated rectum carcinoma and several sigmoid polyps at

57 years of age. He underwent an anterior resection During

routine follow-up screens, adenomas were observed at a regular

interval, and at the age of 64, he developed two cecal pT2N0

adenocarcinomas alongside few adenomas. Despite being

subjected to right-sided hemicolectomy, several adenomas were

observed at routine screens. Molecular analysis of germline tissue

revealed a likely pathogenic germline alteration in MSH6, c.900dup

p.(Lys301Glufs*11) (15).

Control LS cohort

Twenty-five LS-tumors (ten adenomas and 15 carcinomas)

from 23 LS cases with a typical disease expression were subjected

to panel sequencing using the Comprehensive Cancer Panel (CCP)

as previously described (15). Somatic mutational data for this

cohort is available online by Porkka et al. (15). All control LS
Frontiers in Oncology 03
patients were confirmed carriers of pathogenic or likely pathogenic

germline variants in the MMR genes.

Written informed consent preceded study participation and

sample donation. This study was approved by the Institutional

Review Boards of the Helsinki University Central Hospital (466/E6/

01) and Central Finland Health Care District (10U/2011) approved

this study. The National Supervisory Authority for Welfare and

Health (Dnro 1272/04/044/07 and Dnro 10741/06.01.03.01/2015)

approved the collection of archival specimens.
2.2 Exome sequencing and
variant prioritization

Exome sequencing (ES) was performed as previously described

by Olkinuora et al., or by preparing the library and enriching

components with the Twist Core Exome + RefSeq kit and run on

Novaseq S1 system at the Institute for Molecular Medicine Finland,

FIMM (Supplementary Table S1) (6). Sequences were aligned to the

human reference genome GRCh37/hg19 using the Burrows-

Wheeler Aligner version 0.6.2. Quality control was performed as

described by Sulonen et al. (16).

Germline and somatic variant data was annotated using

ANNOVAR (17). Variants fulfilling the following selection

criteria were selected for further analyses: gnomAD allele

frequency < 0.001, nonsynonymous (frameshift, stop gained/lost,

missense, disrupting donor/acceptor site variants) and predicted

pathogenic with at least five of six programs assessing protein

function in silico (for missense changes). DNA methyltransferases
FIGURE 1

Outline of this investigation. Study cases and cohorts as well as methodological approaches and rationales behind them are shown.
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TABLE 1 Molecular features of the case LS-298 in chronological context.

Adenomas

a adenoma
4

adenoma
5

adenoma
6

adenoma
7

adenoma
8

adenoma
9

adenoma
10

same tumor

15 18 18 21 21 21 21

rectum rectum rectum transversum rectum rectum transversum

Tubular Tubuvillous Tubuvillous Tubular Tubular Tubular Tubular

moderate moderate moderate high high high low

MSI MSI MSI MSI MSI MSI MSI

Yes Yes No Yes No No No

33.27 32.79 34.64 41.64 42.21 33.79 28.06

– – – – – trunc –

– – – – – miss –

– – – – – – –

– – – trunc – – –

trunc trunc trunc trunc trunc – trunc

– – – – – trunc trunc

Yes Yes Yes Yes Yes Yes Yes

No No No Yes No Yes No

0.95 0.71 0.73 0.95 0.83 0.86 0.78

0.89 0.58 0.66 0.94 0.80 0.79 0.79

0.90 0.71 0.61 0.73 0.93 0.75 0.91

56.8% 56.6% 56.8% 52.2% 50.5% 53.8% 54.6%
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Carcinomas

Sample ID carcinoma
1

carcinoma
2

carcinoma
3

carcinoma
4

carcinoma
5

adenoma
1

adenoma
2

adenom
3

same tumor same tumor

Years since dx 0 0 0 0 21 12 15 15

Tumor information

Tumor location ascendens ascendens caecum caecum transversum NA rectosigmoid rectum

Histology NA NA Mucinous Mucinous
Mucinous,
signet cell

Villous Tubular Tubular

Dysplasia moderate moderate high

MSI MSI MSI MSI MSI MSI MSI MSI MSI

2nd hit or LOH No No No No Yes Yes Yes No

TMB (mut/Mb) 34.39 53.03 13.52 22.76 25.39 30.30 39.27 38.55

Oncogenic event

APC – miss – miss – trunc – –

CTNNB1 – – miss miss miss – – –

KRAS trunc – – – – – – –

TP53 trunc – – trunc – – – –

RNF43 hotspot trunc trunc – – trunc – trunc trunc

MBD4 – – – – – – trunc trunc

SBS96 No Weak No No Weak Weak Yes Yes

CIMP (Weisenberger) Yes Yes No NA No Yes Yes No

LINE-1 1m 1.06 0.66 0.75 0.89 0.98 0.76 0.96 0.92

LINE-1 2m 1.13 0.63 0.73 0.78 0.74 0.82 0.90 0.81

LINE-1 3m 0.81 0.78 0.79 0.71 0.79 0.73 0.71 0.94

%C>T at CpG 36.3% 27.9% 14.2% 19.5% 42.2% 48.3% 56.6% 58.3%

CIMP was evaluated using the Weisenberger criteria.
trunc, truncating; miss, missense; NA, Not Available.
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and genes with the methyl-CpG binding domain according to the

HGNC database (https://www.genenames.org/) were taken for

closer inspection.

The clinical enrichment analysis of MAFtools was used to

compare germline variant distribution between groups (18). The

input variants were restricted to the CCP panel, and all output genes

were manually confirmed for sufficient coverage using Integrative

Genomics Viewer (IGV).
2.3 Somatic variant profiling

VarScan2 variant detection algorithm version 2.3.2 was applied

to tumor-normal pairs to identify non-synonymous somatic

variants from ES data. SnpEff version 4.0 with the Ensembl v68

annotation database (https://www.ensembl.org) was used to

annotate the variant data. Due to the limited number of genes in

the CCP used in the original analysis of the control LS dataset, the

somatic exome data was filtered to match the sequenced regions of

CCP for downstream analyses comparing two cohorts. Variants

with a VarScan2-derived somatic p-value less than 0.01 were

selected for somatic mutational signature analysis, which was

carried out using the R package MutationalPatterns (19). The

single-base substitution (SBS) somatic mutation matrix was

additionally repaired for FFPE-derived artefacts using the FFPEsig

python package (20). The signatures present in the tumors were

evaluated by running NMF factorization rank estimation on the

mutational matrices with the NMF R package to draw de novo

signatures with 1000 iterations. The resulting de novo signatures

were then mapped against the SBS signatures by Degasperi et al. and

18 insertion-and-deletion (ID) signatures recognized by the

COSMICv3.1 database (cancer.sanger.ac.uk) (21).

Tumor heterogeneity and driver mutation analyses were carried

out using the R package MAFtools (18).
2.4 Loss of heterozygosity (LOH)

Possible loss of heterozygosity was evaluated on germline

mutation loci based on either the results ES or fragment analyses

by comparing the allele or peak ratios of tumor samples to the

corresponding ratios in the normal sample by applying the

following formula: LOH (or allelic imbalance) ratio (R) = (A/B)T/

(A/B)N. LOH ratios 1.67 ≥ R ≤ 0.60 were considered indicative of

strict LOH, and R= 0.6 – 0.8 and R= 1.25 – 1.67 putative LOH (22).
2.5 Microsatellite instability analysis

Mononucleotide markers BAT25 and BAT26 were used to

classify samples MSI or MSS. Samples were considered MSI when

at least one marker showed instability. Recurrent frameshift

mutations at coding microsatellites identified by the analysis of
Frontiers in Oncology 05
tumor tissue were confirmed in adjacent normal tissues with the

following fluorescent markers: CASP5_fwd, 5 ’-AACTCT

TTAAGCTGTGCCCA-3’; CASP5_rev, 5’-TCTACCAAGATC

AGGGCCTT-3’; LTN1_fwd, 5’-GAAGCTGATGTTGAGTCCGT-

3 ’ ; LTN1_rev, 5 ’-GCTTTCAAGTATCTCATCAGCA-3 ’ ;

MARCKS_fwd, 5’-CCGCCTCCTCGACTTCTT-3’, MARCKS_rev,

5’-CCGCTCAGCTTGAAAGACTT-3’; NCAM1_fwd, 5’-TACTC

AGCCTGGCAATTGTC-3’; NCAM1_rev, 5’-ATTGTAATCT

GCTGGCTGGG-3’; RNPC3_fwd, 5’-GCAAAAGAGCAAGAT

CGAGT-3’; RNPC3_rev, 5’-ACTTGCTAGTCTGAAAACAA-3’;

SLC22A9_ fwd , 5 ’ -TGCAGTCAACTCACTTCTCA-3 ’ ;

SLC22A9_rev , 5 ’ -CGTAAAGGACAGGAGGGAGA-3 ’ ;

TAF1B_fwd, 5 ’-CTGCAGAGATATCAGGAAGTTACA-3 ’ ;

TAF1B_rev, 5 ’-CATCATGAAGGTGAAAGATGTGA-3 ’ ;

USP48_fwd, 5’-CTTTAGCAAAGCAAGAAAAGC-3’; USP48_rev,

5’-TGGAAACTCAGGAGCCTTTG-3’; RNF43_Arg117fs_fwd, 5’-

TCTGGAGCCTGGATTCATCA-3’; RNF43_Arg117fs_rev, 5’-

GCGAAGTGTGAGTCTACCTT-3’; RNF43_Gly659fs_fwd, 5’-

CTCTCTGCCCGACACCCA-3’; RNF43_Gly659fs_rev, 5’-

TTGCATCCTGGGGCCGAG-3 ’ . Fragment analysis was

performed at the Institute for Molecular Medicine Finland FIMM

Genomics unit supported by HiLIFE and Biocenter Finland.
2.6 Germline and somatic
methylation analyses

Possible presence of CIMP was evaluated by methylation-

specific multiplex ligation-dependent probe amplification (MS-

MLPA) using SALSA MS-MLPA probemix ME042-C2

(MRC Holland, Amsterdam, the Netherlands) as previously

described (23). CIMP+ status was given when three out of five

genes exhibited dosage ratios above a threshold level for

hypermethylation as defined by the Weisenberger panel (24).

Thresholds for hypermethylation were calculated as described

previously (23).

The methylation status of LINE-1 was determined using custom

MS-MLPA probes described by Pavicic et al. using commercially

available reagents from MRC Holland (25).
2.7 Genomic rearrangements in
MMR genes

Blood or normal mucosa FFPE -derived DNA of the study cases

were examined for large genomic rearrangements using multiplex

ligation-dependent probe amplification (MLPA) according to

manufacturer’s (MRC-Holland, Amsterdam, the Netherlands)

instructions. SALSA MLPA P003-D1 and SALSA MLPA P072-D1

were used for MLH1/MSH2 and MSH6/MUTYH, respectively,

whereas PMS2 was investigated by SALSA MLPA P008-C1. The

results from fragment analysis were analyzed by Coffalyser™

(MRC-Holland, Amsterdam, the Netherlands).
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2.8 Immunohistochemistry for MMR
protein expression

Archival FFPE tissue specimens from index cases were stained

using anti-MLH1 (clone G168-15; Pharmingen), anti-MSH2 (clone

FE-11; Calmiochem/Oncogene Research), and anti-MSH6 (clone

44; Transduction Laboratories) antibodies according to Thiel et al.

(26). Dako Envision+ System, DAB Peroxidase was applied

according to manufacturer’s instructions for visualization.
2.9 Statistical analysis

Analysis of statistical significance between groups were carried

out by Fisher’s Exact or two-tailed ANOVA for normally

distributed data, and by Kruskal-Wallis analysis for non-

parametric data. Tukey HSD or Dunn’s test was used for post hoc

analyses for ANOVA and Kruskal-Wallis, respectively. All analyses

were conducted on R v.4.2.3.
3 Results

We sought to discriminate whether the underlying reason for

the multiplicity of colorectal tumors in case LS-298 and two other

similar cases (Figure 1) was due to 1) metastatic disease or

nonradical removal of initial lesions; 2) mutagenic stressors, e.g.

colibactin; 3) modifying germline variants resulting in

ultrahypermutability; or 4) somatic mosaicism, e.g. potential

constitutional mismatch repair deficiency syndrome (CMMRD)

or involvement of APC that might have escaped detection.
3.1 Somatic mutation profiling of tumors

All colorectal tumors from LS-298 were MSI although somatic

mutation or loss of the wild type allele of MLH1 was detectable in

only 7 tumors (58.3%). The tumors investigated from F1001, LS-

202, and the control LS cohort were likewise microsatellite unstable.

To rule out metastatic disease, we compared somatic variants

identified by our tumoral analyses (Supplementary Table S2) in all

available samples. While the number of shared variants occurred at

the same rate in the tumors of LS-298 as in the available controls, by

ES analyses, we observed several frameshift-type variants shared

across tumor samples of our index case. The rate of shared

frameshift variants was not significantly different from the

unrelated control LS tumors, however, which indicated that the

frameshift variants likely represented mutational hotspots typical of

LS. As the number of shared missense and synonymous somatic

variants was low and occurred at a similar rate as the control group,

the likelihood of metastatic disease or shared clonal origin was low.

When considering driver genes for colorectal neoplasia

recognized by the COSMIC database (cancer.sanger.ac.uk/

cosmic), most frameshift variants were shared at equal overall

proportions in our sample cohorts. Although control LS
Frontiers in Oncology 06
adenomas acquired variants in APC at a higher rate than the

tumors of LS-298 (48% (12/25) versus 26.67% (4/15),

respectively), the difference was not statistically significant. Two

of the three (66.7%) tumors from LS-202 also harbored somatic

variants in APC (Supplementary Figure S1B). Interestingly, the

adenomas and carcinomas of LS-298 frequently showed frameshift

variants in RNF43 with high variant allele frequency (median VAF=

44.4; range = 15.69-62.3; Supplementary Table S2). As these

variants mostly targeted the recognized mutational hotspots of

the gene, G659 (G7 repeat) and R117 (C6 repeat), we screened the

control LS datasets for the hotspot mutations as the CCP panel does

not cover the RNF43 gene (27). Frameshift mutations in RNF43

hotspots occurred significantly more frequently in our study case

and LS individuals with multiple tumors (p = 0.0001 by Fisher’s

Exact Test; Supplementary Table S3); 73.3% (11/15) tumor samples

of LS-298, and 60.0% (9/15) of F1001 tumors, versus 10% (2/15) of

tumors from control LS with sufficient DNA for testing. The single

tumor of LS-202 with enough DNA for testing did not carry any

RNF43 hotspot mutations.

Due to the high VAFs of several frameshift variants in

coding microsatellite regions of genes in our initial analyses

(Supplementary Table S2), we analyzed several normal mucosa

samples for the possibility of MSI in non-malignant tissue.

Although we failed to capture MSI using the typical BAT25/26

markers in most of the normal mucosa samples, we observed

instability at selected markers (Supplementary Table S4), which

could indicate “field defects” of hypermutated hotspot loci,

previously reported to occur healthy mucosa of patients with

sporadic CRC (28). No RNF43 hotspot variants were observed in

normal tissue, suggesting later involvement in tumorigenesis

despite the very high VAF in tumor tissue. Although our normal

mucosa samples were evaluated by a pathologist, we cannot

eliminate the possibility of tumor contamination or presence of

individual cells with neoplastic potential within the sample.

Typical of LS, majority of the tumors were hypermutated (with

10 somatic variants/Mb as a cut-off) and the rate of somatic variants

at C>T context was elevated for adenomas and carcinomas for both

LS-298 and control LS dataset (Supplementary Figure S1A;

Supplementary Table S2 (15);). The adenomas of LS-298

displayed higher average tumor mutational burden (TMB) than

control LS adenomas or carcinomas (p = 0.01748 and p = 0.00093,

respectively, by Mann-Whitney U-test), while the carcinomas of LS-

298 did not significantly differ from control LS adenomas or

carcinomas. However, when mapping the somatic C>T variants

in context of CpG regions, we noticed an elevated rate of C>T

variants at CpGs in the tumors of LS-298, being particularly

pronounced in the adenomas (p = 0.0025 and p = 0.000031 vs

control LS adenomas and carcinomas, respectively, by Wilcoxon

pairwise test). When comparing TMB and the %C>T at CpG of

samples with RNF43 hotspot mutations to those without, we

noticed an increase in the mutational load and the percentage of

variants occurring at CpG sites (Figures 2A, B). While the

differences are notable, we were unable to attain statistical

significance due to the small number of samples.

Mutational Signature analyses refitted to the consensus

signatures (COSMIC v3.1., cancer.sanger.ac.uk) showed typical
frontiersin.org
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MSI-associated signatures in all groups including a very strong

relative contribution of SBS1 (Supplementary Figure S2).
3.2 Analysis of sample methylation status

Among the 58 tumor samples where testing was possible, CIMP

was observed at a high rate: 50% (29/58) tumors were CIMP
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positive according to the Weisenberger criteria (24). CIMP was

more frequent in carcinomas than in adenomas (p = 0.03), and

particularly pronounced in the case F1001 (75%, 12/16 of samples

were CIMP positive) and LS-202 (100%, 3/3 tumors were CIMP

positive). Tumors of LS-298 did not differ significantly from the

control LS cases (Table 1). However, the overall Dm ratios of the

genes covered by the MS-MLPA kit used were higher in all tissue

types of LS-298 compared to the matching tissue type of the control
A

B

C

FIGURE 2

Effect of RNF43 mutation status on molecular tumor features of LS-298 vs. control LS cohort. Tumor mutational burden (A), percentage of C to T
transitions at CpG sites (B), and mutational signatures (C) are illustrated. RNF43 hotspot mutation status is indicated with a solid square.
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LS cases. The Dm ratios of F1001 were comparable to those of LS-

298, whereas LS-202 did not differ significantly from tissue-

matching control LS group. (Figure 3). RNF43 hotspot-mutation

positive samples had no significant correlation to CIMP status

contrary to previous studies (29).

Comparison of the genes included in the CCP panel did not

reveal a difference between our study cases and controls in their

somatic mutational load in genes with a primary function in

epigenetic regulation (data not shown). However, prompted by the

propensity of somatic variants to occur at the CpG regions, frequent
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CIMP positivity, and the predominance of SBS1 in our study case’s

tumors when comparing the mutational data to COSMIC consensus

signatures (Table 1; Supplementary Figure S2), we compared sample

signatures to a specific subset of hypermutator signatures associated

with MSI and spontaneous demethylation of C>T to see whether the

tumor phenotypes were indicative ofMBD4-associated tumorigenesis

as described by Degasperi et al. (21). The subset signature analysis

revealed that majority of tumors of LS-298 harbored the SBS96

signature (Figure 2C), whereas tumors from control LS cases

unanimously harbored only SBS1 or SBS1 and SBS95. Interestingly,
A

B

FIGURE 3

Relationship between CIMP status and tumor multiplicity. Colorectal tumors from LS patients with multiple tumors (LS-289, F1001, and ME16) are
compared to those without (LS control group). (A) Box plots of distributions of DNA methylation (Dm) values at CIMP marker loci. (B) Pairwise
Wilcoxon analysis of Dm differences for statistical significance between the sample sets. Statistical significance is indicated with bolded text. P-values
were adjusted for multiple testing by Bonferroni correction.
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mapping the presence of RNF43 hotspot mutations to the relative

contribution of signatures showed a significant association with a

moderate positive correlation with the hotspot mutation status and

the strength of SBS96 (r = 0.64, p = 0.00003897 by Point-

Biserial correlation).

Long interspersed elements (LINEs) constitute roughly 17% of

the human genome, and typical to retrotransposons, are normally

heavily methylated. In cancer, LINEs may activate, inducing

downstream genes and/or lead to CIN and in LS, hypomethylated

LINE-1s have been shown in association with early-onset CRC as

well as an elevated TMB (30–32). Overall, LINE-1 sequences

retained their methylated state, and the level of methylation did

not correlate with CIMP status (Table 1; Supplementary Table S5).
3.3 Germline features

Our recent discovery of a LS patient with multiple adenomas

possibly due to a synergistic effect of the Lynch-associated germline

alteration in PMS2 and a heterozygous germline variant in NEIL1

also observed in unexplained polyposis families inspired us to look

for modifying germline variants in DNA repair genes (33). Our

analysis pinpointed OGG1 VUSes in two individuals: case LS-298

was compound heterozygous for two OGG1 missense variants,

p.Ala330Val and p.Asn331Ser, and case F1001 with several

primary carcinomas and adenomas was heterozygous for the

OGG1 missense variant p.Leu259Phe. These variants are very rare

in the average population: the missense variants found in LS-298

have a MAF < 0.001 (gnomAD2.1.1) whereas the missense variant

observed in the case F1001 is absent in available databases. The

clinical significance of these OGG1 variants remains unknown.

There were no OGG1 germline variants in LS-202.

Inspired by the somatic mutational profile of LS-298 which

indicated the involvement of methylation-related mechanisms at

play, we analyzed the ES data of this case in more detail for

modifying variants involved in the maintenance of methylome.

No germline variants of potential clinical significance were detected.

(Supplementary Table S6). Despite in silico enrichment analyses

and thorough manual analysis of ES and (MS-)MLPA data, no

potentially pathogenic germline variants were detected in the

established CRC-associated susceptibility genes, excluding the

possibility of CMMRD or involvement of other high-penetrance

CRC genes (1). Our MLH1 and CTNNB1 analyses did not suggest

the involvement of copy-neutral LOH in tumors (data not shown).
4 Discussion

Elevated adenoma burden has been shown in about 6% of LS

patients, and multiple cumulative adenomas are particularly

observed in carriers of pathogenic MSH6 and PMS2 gene variants

as well as individuals with CMMRD (8, 34, 35). Understanding the

history of adenomas of LS patients is important as those with > 10

cumulative adenomas are much likelier to develop advanced

neoplasia (8, 34). Familial risk for tumor multiplicity has been

proposed before and some polygenic factors have been identified
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(36). While our analyses did not reveal promising germline

alterations predisposing one to an elevated tumor load, the fact

that two of the three LS cases with multiple tumors shared the same

hallmark molecular features suggests an intrinsic susceptibility to

tumor multiplicity.

Schemes classifying the development of CRC focus mainly on the

intrinsic features of tumor cells, e.g. histopathology and molecular

characteristics. While these traits are generally thought to be

divergent, some molecular characteristics overlap in tumors with

differing histology (37). As the molecular and histopathological

features of a tumor are of critical prognostic and predictive

significance, accurate classification of subtypes of CRC is crucial.

The classic adenoma-carcinoma sequence thought to occur in LS-

associated tumorigenesis has been challenged since recent reports

have indicated that carriers of pathogenic MLH1 variants may

undergo the so-called copy-neutral LOH which results in the

simultaneous loss of CTNNB1 and MLH1 due to genomic

rearrangement. This would result in a short or adenoma-free

progression to cancer (10). Additionally, while the occurrence of

serrated adenomas in individuals with LS is thought to be comparable

to the general population, certain molecular features typical of

serrated pathway in colorectal cancer are observed in LS as well;

namely the frequent occurrence of MSI and CIMP (15, 38, 39).

The MMR system is integrally involved in the maintenance of

DNA methylation, and it has been proposed that MMR uses

hemimethylated DNA as a strand-discriminator when targeting the

newly synthesized DNA (40). This tight link with defective MMR

system and changes in genomic methylation is often seen in LS; LS-

associated adenomas and carcinomas acquire hypermethylation of

select genes (41), and sometimes CIMP (15, 30). In the sporadic

setting, the presence of CIMP has been shown to associate with worse

prognosis irrespective of MSI, as well as an increased risk of

developing metachronous advanced colorectal lesions (42, 43).

Interestingly, Murcia et al. note that a positive CIMP status also

predicted the formation of serrated polyps in unselected group of

CRC patients (43). Conversely, studies of sporadic CRC cases

revealed an association between frequent metastases at diagnosis

and the absence of CIMP (44). While a large proportion of tumors

from our study cases were CIMP positive, the number was not

significantly higher compared to the control LS dataset from the same

population. Although we could not assess the genome-wide

methylation status of our study cases, using LINE-1 MS-MLPA as

a proxy for genome-wide methylation status, we noted variable

methylation dosages that did not correlate with CIMP or TMB

(Supplementary Table S5). While LINE-1 hypomethylation has

been associated with poorer prognosis in individuals with LS, there

was no consistent hypomethylator effect in tumors from LS-298 (45).

On the contrary, several tumors showed high levels of methylation at

LINE-1 loci (Supplementary Table S5), possibly indicating genome

wide hypermethylation as was suggested by our CIMP

analyses (Figure 3).

Using C>T at CpG islands as a proxy for mutagenesis occurring

at methylated cytosines further indicated that the tumors of case LS-

298 were largely hypermethylated. C>T at CpG is thought to arise

due to spontaneous deamination of 5-methylcytosine, and elevated

rate of C>T at CpG may therefore reflect increased mutational
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processes resulting in deamination, increased occurrence of

methylated CpGs, or a combination of the two (46). In addition

to defects in DNA repair, spontaneous deamination can occur due

to mutagenic exposure, by for example, Helicobacter pylori has been

suggested to trigger AID, which, in turn, has been thought to lead to

gastric cancer (47–50). The H. pylori induced pathology also seems

to be aggravated by somatic variants in RNF43 (51). Our mutational

analyses did not show any association to SBS2 (APOBEC/AID

deaminases), SBS9 (AID) or SBS24 (Aflatoxin), indicating a

different mutagenic origin of the observed phenotype. Moreover,

we found no discernible SBS88 signature that is linked to colibactin

and was reported to occur in colorectal tumors from NTHL1- and

MUTYH-associated polyposis patients (52). The molecular features

of tumors that were available for testing in our case F1001

mimicked those of LS-298, allowing us to hypothesize that similar

tumorigenic mechanisms play a role in both individuals.

RNF43 is a tumor suppressor negatively regulating the Wnt

signaling pathway by degrading the Wnt Frizzled-LRP5/6 complex.

This prohibits the phosphorylation of b-catenin and allows activation
of downstream target genes (53). Somatic RNF43 variants typically

show mutual exclusivity with somatic APC variants, as was evident in

our patients (Supplementary Figure S1B), probably owing to the

genes’ importance in b-catenin destruction (27, 54, 55). As APC is

integrally involved in the development of adenomas by both germline

and somatic inactivation, RNF43 defects could promote the

formation of adenomas (56). The hotspot somatic variants, G659

(G7 repeat) and R117 (C6 repeat), occur at short coding

microsatellites, targets for MSI-induced somatic mutations. While

the hotspot variant at R117 has proven to reduce the functionality of

RNF43, the somatic hotspot variant at G659 might activate PI3K/

AKT signaling instead of affecting the Wnt pathway directly (57–59).

In our patient cohort, the hotspot variant at G659 was more prevalent

though the variant at R117 was frequent as well (Supplementary

Table S3). The PI3K/AKT pathway regulates DNA methylation via

phosphorylation of AKT, which might explain the hypermethylated

phenotype present in our tumor samples with RNF43 hotspot

variants (60). The involvement of PI3K/AKT pathway might also

contribute to tumor multiplicity: germline variants in PTEN, a

regulator of PI3K/AKT, confer a hamartomatous tumor syndrome,

characterized by multiple hamartomatous polyps in the colorectum

(61). Interestingly, Fang et al. noted PI3K inhibitors selectively

targeted cells with the G659 hotspot variant, suggesting the

importance of PI3K inhibition as a therapeutic option for

individuals with the G659 hotspot variant (57).

Somatic RNF43 variants in sporadic CRC are frequently

observed and show strong correlation with MSI (27, 62). They

have also been reported in strong association with the BRAF V600E

somatic mutation as well as an aggressive tumor biology, and

sporadic CRC patients with both mutations seem to benefit from

a specific therapy regimen (43, 54, 63, 64). Though BRAF V600E

has a very tight association with the CIMP tumor phenotype in

sporadic CRC, LS tumors very rarely harbor the BRAFV600E driver

mutation, to the extent that the presence of BRAF V600E can be

used as a marker predicting the absence of LS (65). It is therefore

perhaps perplexing that somatic variants in RNF43 are less

frequently reported in association with CIMP positivity, and
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analyses of sporadic serrated polyps have failed to find this

enrichment altogether (29, 66). Perhaps, then, somatic variants in

RNF43, while associated with BRAF V600E, are not part of the

cascade of events that result in CIMP, but instead in another, yet

uncharacterized tumorigenic mechanism that is governed by

changes in the methylome. This is supported by our observation

that while MSI-associated signatures were strongly present in our

LS cases, available tumors from LS-298 with RNF43 hotspot

variants had a significant association to SBS96 (Figure 2) which is

suggested to arise from aberrant maintenance of DNA methylation

due to pathogenic germline MBD4 variants (67).

Germline variants in RNF43 have been proposed to cause a

serrated polyposis phenotype and somatic mutations in the gene

have been suggested to take part in the formation of sporadic

serrated polyps (27, 68). While pathologist’s reports of the tumors

with high allele frequency RNF43 variants showed no serrated

histology, several molecular features align with the so-called

serrated pathway to CRC as discussed above but lacked the

characteristic hypermethylation of MLH1. Instead, carcinomas of

LS-298 frequently represented mucinous subtype with occasional

signet cells. Although several features of carcinomas and adenomas

of our cases with multiple tumors were common with our index

case LS-298, incomplete medical records prohibit us from drawing

firm conclusions about possible association between this histology

and observed mutational features in our sample sets. Mucinous

carcinomas are a rare histological subtype that have clear molecular

and clinicopathological features compared to non-mucinous

carcinomas. RNF43 is frequently mutated in mucinous ovarian

and pancreatic carcinomas, and mucinous differentiation is often

found in serrated colorectal carcinomas, to which germline RNF43

variants are thought to predispose (68–72). Furthermore, analyses

of inflammatory bowel disease (IBD)-associated CRCs have noted

an association between chronic inflammation and somatic RNF43

variants and mucinous or signet-ring cell histological subtypes (73).

Interestingly, Fujita et al. noted a tendency of IBD-associated

carcinomas to harbor C>T mutations at CpG context, which

correlated with the observed methylation levels at CpG sites (73).

LS-associated tumorigenesis has a strong immunogenic component,

and although outside the scope of this manuscript, we hope future

research will shed light on the immunogenic markers of LS with a

severe tumor burden (74).

In summary, although our germline analyses did not reveal a

potential explanation for tumor multiplicity in our LS individuals,

we describe a non-random association of RNF43 hotspot variants to

hypermethylator tumor phenotype that is distinct from the classical

BRAF V600E-associated CIMP. The RNF43 variants were likely the

result of MSI that preceded the loss of the wild-type MMR allele as

MSI was observed at select markers in normal tissue before the loss

of wild type MMR gene allele and LOH and 2nd hits were variably

observed in the tumors. No shared molecular features of tumors

additionally indicate that somatic events arose independently,

indicating an increased incidence of mutagenesis. Analyses of

larger multinational patient cohorts are needed to fully

understand the association of serrated tumor pathway and

multiplicity of colorectal tumors in LS. As our sequencing data is

based on exome and panel sequencing, we may miss important
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modifying factors in genes or intergenic regions not covered by the

sequencing panel.
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SUPPLEMENTARY FIGURE 1

Molecular comparison of case LS-298 and LS-202 to the control LS cohort.

(A)Oncoplot depicting the 20 most commonly mutated genes. Sample-wise
TMB is indicated by the barplot on top. (B) Distribution of APC mutations in

LS-298 versus control LS. The analysis was restricted to genes present in the
smaller CCP panel.

SUPPLEMENTARY FIGURE 2

Relative contribution of sample signatures mapped against COSMICv3

consensus signatures. All samples were repaired for FFPE-derived artefacts
by FFPEsig.
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