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Objectives: Precise segmentation of Odontogenic Cystic Lesions (OCLs) from

dental Cone-Beam Computed Tomography (CBCT) is critical for effective dental

diagnosis. Although supervised learning methods have shown practical

diagnostic results in segmenting various diseases, their ability to segment OCLs

covering different sub-class varieties has not been extensively investigated.

Methods: In this study, we propose a new supervised learning method termed

OCL-Net that combines a Multi-Scaled U-Net model, along with an Auto-

Adapting mechanism trained with a combined supervised loss. Anonymous

CBCT images were collected retrospectively from one hospital. To assess the

ability of our model to improve the diagnostic efficiency of maxillofacial

surgeons, we conducted a diagnostic assessment where 7 clinicians were

included to perform the diagnostic process with and without the assistance of

auto-segmentation masks.

Results: We collected 300 anonymous CBCT images which were manually

annotated for segmentation masks. Extensive experiments demonstrate the

effectiveness of our OCL-Net for CBCT OCLs segmentation, achieving an

overall Dice score of 88.84%, an IoU score of 81.23%, and an AUC score of

92.37%. Through our diagnostic assessment, we found that when clinicians were

assisted with segmentation labels from OCL-Net, their average diagnostic

accuracy increased from 53.21% to 55.71%, while the average time spent

significantly decreased from 101s to 47s (P<0.05).

Conclusion: The findings demonstrate the potential of our approach as a robust

auto-segmentation system on OCLs in CBCT images, while the segmented

masks can be used to further improve OCLs dental diagnostic efficiency.
KEYWORDS

bioengineering, cone-beam 3D CT, convolutional neural network, deep
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Introduction

Odontogenic Cystic Lesions (OCLs) are one of the most

common pathologic entities in the jaw region with a high

incidence rate. OCLs can be divided discretely into cysts and

tumors. According to Johnson et al. (1), the most common types

of OCLs are the radicular cyst (RC), dentigerous cyst (DC), and

odontogenic keratocyst (OKC), respectively. Among these three

cysts, the RC and DC are benign and non-invasive, whereas OKC is

highly likely to reoccur and exhibit locally aggressive behavior and

malignant transformation (2). Among the OCL tumors,

ameloblastoma (AM) is the most frequent one, which is a benign

lesion with a slow growth rate, and it can invade local tissues such as

the mandible and maxilla (3). Treatment of AMs generally requires

radical resection, with a longer follow-up period compared to other

tumors (4). On the other hand, cysts like OKCs and DCs are often

treated with curettage and enucleation, and sometimes DCs can be

treated by marsupialization to allow the tooth to be maintained (5).

However, on CBCT images, tumors like AMs and cysts like OKCs

or DCs exhibit similar characteristics, making it difficult to

distinguish between them. Therefore, differentiating between

tumors and cysts, as well as identifying specific subtypes is crucial

because different lesions require distinct treatment plans. Accurate

segmentation of OCLs ensures that appropriate areas have been

highlighted which can help with differentiating lesions on images.

Radiographic imaging examinations are vital for patients with

odontogenic cystic lesions, notwithstanding that histopathological

findings are the gold-standard diagnostic criteria. However,

histology examination needs to be performed after the surgery

with the entire specimen excised whereas radiographs are non-

invasive and can be obtained beforehand (6–8). Cone-beam

computed tomography (CBCT) is an innovative imaging

technique that employs divergent X-rays that form a cone shape.

The adoption of CBCT has enhanced the accuracy of diagnosing

dental diseases, especially OCLs that are commonly found inside

the jawbones and are challenging to diagnose without imaging

techniques that can demonstrate the 3-dimensional information

compared to normal X-rays or Panoramic Radiographs (9, 10).

However, accurate diagnosis of the lesion subtypes is often difficult

as different odontogenic cystic lesions may share similar features on

CT imaging. For example, as presented in Figure 1, AMs can be

confused with large OKCs and the unicystic variant of AMs often

associated with the crown may mimic DCs (11). Given the

similarities between the various subtypes of OCLs, radiologists

must examine several imaging features, such as the presence of

the lesion, its size, location, and internal structures as whether the

lesion includes any crowns or roots, to make an accurate diagnosis,

treatment response monitoring and planning therapeutic

interventions. For these features, accurate segmentation of cysts

and tumors is an essential step as the segmentation output can be

used to derive imaging features necessary for subtype diagnosis.

However, segmentation is a complex task that is usually done

manually, which is tedious, error-prone, and time-consuming

(12). Therefore, an automated segmentation mask generated by a

computer-aided system can be an effective tool to extract imaging
Frontiers in Oncology
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features related to subtype diagnosis, thereby improving diagnostic

accuracy, and reducing time consumption.

Over the past few years, a great interest has been focused on deep

learning-based methods, which have been extensively used for solving

complex problems in medical radiology (13–15). Deep convolutional

neural networks (CNNs) have become increasingly utilized in

medical image segmentation (16–21) with the introduction of

UNet and its variants (22–25), great improvement has been made

in segmentation tasks. In recent years, there has been an increase in

the use of deep learning methods for various dental imaging

problems. For instance, in 2016, researchers used UNet for dental

anatomical segmentation on bitewing image modality (26). Similarly,

for more complex tasks such as tooth segmentation, the use of FCN-

based U-Net was proposed for the dental panoramic radiograph

segmentation task (27). Additionally, researchers applied the same U-

Net structure to segment panoramic radiographs and achieved

successful results with 88% Dice in segmenting apical lesions,

which is a sub-disease within OCLs (28). Several well-developed

CNN architectures, such as FCN and UNet (29, 30), have been

applied in dental image segmentation tasks resulting in state-of-the-

art performances (31). For imaging analysis tasks developed for

OCLs, researchers mainly focused on developing reliable methods

to diagnose these cysts and tumors (32–35). However, segmenting

multiple types of cyst-like lesions within CBCT images remains a

challenging task since there is no public dataset and the annotation

process is hard to complete. Therefore, our research is the first to

propose a deep learning method optimized for OCL segmentation on

large curated and annotated CBCT data specifically focused on DC,

RC, OKC and AM. Furthermore, we compared the diagnostic

accuracy of the proposed model with that of senior and junior oral

and maxillofacial surgeons.

In this paper, we proposed an automated segmentation of

odontogenic cystic lesions on CBCT images. To tackle the issue

of size variability among different subtypes, we incorporated a

multi-scale module and an auto-adapting schema into the UNet

architecture. Our primary contributions are summarized below:
1. We proposed a multi-scale module that operates at

different image scales to guide the model to extract

information under different scales and overcome the

problem of subtype size variation by preserving all scales’

features regardless of their size.

2. We proposed an auto-adapting technique that uses training

outcomes to re-adjust the size of input images, discarding

unnecessary background information and retaining only

the essential information for further training to help the

model focus on the lesion.

3. Through extensive experiments on a curated CBCT dataset,

we demonstrate the effectiveness of our proposed network

for the supervised segmentation of lesions. We further

demonstrate that our method can positively affect

diagnostic assessments by junior and senior surgeons

through a comparison experiment that asks them to

diagnose the OCLs using CBCT images with and without

the help of segmentation labels.
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Materials and methods

Data preparation

CBCT images (in DICOM format) from a total of 300 patients

(51 DCs, 53 RCs, 117 OKCs and 79 AMs), were included in this

study from the Stomatological Hospital of Wuhan University,

China. Full ethical approval was obtained. The patients were

selected retrospectively based on specific inclusion criteria. The
Frontiers in Oncology 03
criteria required clear pathological diagnosis, complete image data,

and exclusion of images with excessive artefact, poor image quality,

or beyond the field of view. The images with multiple lesions and

the coexistence of numerous pathological types were also excluded.

All cases were confirmed by histopathology examinations after

surgery, and personally identifiable information was removed.

Three radiological experts manually annotated the pixel-wise label

map of each image using 3D Slicer and stored it as a pair of MHD

files for both the image and the label. During the model training
FIGURE 1

Axial CBCT presents three different lesions, all in the mandibular area, from top to bottom: DC, OKC and AM. As presented, these three lesions have
similar size, location, and shape, which may cause misdiagnosis in real practice.
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process, 20% of the images were randomly selected to be the test set

and the rest 80% were used for training.
Model overview

An overview of our proposed OCL Network (OCL-Net) is

illustrated in Figure 2. Similar to its backbone U-Net, it employs

an encoder-decoder structure which is commonly used in medical

imaging segmentation. The encoder structure consists of five parts,

with each part representing a different scale, and is implemented by

a convolutional block together with a max-pooling layer for down-

sampling. In each convolutional block, two convolutional layers are

used, and each layer is followed by a batch normalization layer and a

Rectified Linear Unit. The decoder followed a similar design

structure with every max-pooling layer being switched to a

transposed convolutional layer to up-sample the feature map back

to the input size. To enhance the encoding and decoding process,

skip connections are utilized between corresponding levels of the

encoder and the decoder, allowing the network to retain crucial

spatial information and gradient flow. These connections

concatenate the feature maps from the encoder to those in the

decoder, facilitating a more accurate reconstruction of the input

data. Moreover, the integration of dropout layers after each max-

pooling operation aids in mitigating overfitting, ensuring that the

model generalizes well across different CBCT scans. In addition to

the backbone structure, we have integrated two novel techniques,
Frontiers in Oncology 04
including a multi-scale dense attention module and an auto-

adapting schema, into the network. The multi-scale dense

attention module enhances spatial awareness by generating and

integrating attention maps across different scales, allowing the

model to focus on pertinent image regions progressively. This

mimics the clinical process of interpreting CBCT scans from

broad features to finer details. The auto-adapting schema

dynamically adjusts the input images during training to eliminate

redundant background information, centralizing the lesions for

more effective learning. By cropping the images based on

predicted labels, the model refines its focus, improving

segmentation accuracy. The details of these two modules will be

further explained in subsequent parts of this section.
Multi-scale dense attention module

The four OCL subtypes have various positions and sizes, and to

incorporate these different characterizations into our model, we

integrate an adjusted multi-scale dense attention module to

enhance the network’s spatial awareness. This follows the work of

(36) who integrated multi-scale guided blocks to segment complex

Pulmonary Fibrosis lesions, which have a set of similar imaging

characteristics compared to OCLs. Specifically, we use a

convolutional layer at the late four scales of the decoder to

retrieve a spatial attention map which is used as a high-level

attention signal to guide the learning of the following decoding
FIGURE 2

Structure of our proposed OCL-Net. To address the inter-class variation problem among different subtypes, the late four scales employ convolution
layers to generate multi-scale feature maps to enforce the learning process. The gradually trained prediction mask is sent through the auto-adapting
connection to be scaled up and help centralize the input images.
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process. The input of the decoder at each scale will be incorporated

with all the attention maps generated in the previous scales.

Therefore, the multi-scale module ensures that for every lower

scale, the spatial information from all the previous higher scales will

be preserved as an additional input.

In terms of architectural design, the multi-scale dense attention

module employs a sequence of convolutional layers followed by

normalization and activation functions to generate attention maps

at each scale. Each attention map is produced by retrieving the

output of a 1×1 convolution, enabling the model to emphasize or

suppress features at different locations. The novelty lies in how these

attention maps are recursively integrated: at each scale, the current

attention map is concatenated with the feature map from the

previous layers before being passed to the next convolutional

block. This iterative refinement process allows the model to

progressively focus on pertinent regions of the image.

The motivation for the multi-scale dense attention module is

from the clinical scenario. In the clinical scenario of interpreting

CBCT scans depicting dental structures, the observer initially

perceives the broader features, such as the positioning and

dimensions of dental anatomy and associated pathologies; this is

depicted by the larger scales in our module. Subsequently, attention

is directed towards finer nuances: the contours of individual teeth,

subtle variations in bone density, and the integrity of periodontal

ligaments, as a portrayal reminiscent of the finer scales. Analogous

to this perceptual process, our module progressively refines its focus

from coarse to fine details, integrating features from various scales.

By synthesizing information across multiple levels of granularity,

our model enhances its ability to delineate intricate patterns within

CBCT images, thereby contributing to precise diagnosis, treatment

planning, and evaluation of dental conditions and interventions.

Unlike the previously mentioned module design that included

all the scales, we did not incorporate information from the highest

scale into the lower scales. The previous study did not conduct an

ablation study to determine the optimal number of scales required

to produce the attention map within the module. The bottom block

extracts the highest level of features, and including such high-level

information in the decoding process could make it difficult to

interpret and potentially mislead the learning process. Therefore,

in our network, we kept the attention maps obtained from the last

four scales and propagated them to all subsequent scales.
Auto-adapting schema

To address the issue of redundant background information in

CBCT images, we incorporated an auto-adapting schema that

adjusts the input image volume dynamically during the training

process and consequently eliminates irrelevant background

information. CBCT images are 3-dimensional and cover the area

from the chin to the calvarium, but the jawbone is only a portion of

the image, thus making the lesion even smaller compared to other

background structures such as teeth and bones. To address the issue

of redundant background information in the image, we

incorporated an auto-adapting schema that adjusts the input

image volume dynamically during the training process therefore
Frontiers in Oncology 05
eliminating irrelevant background information. The backbone is

firstly trained for 100 epochs. Once a preliminary segmentation

result is obtained, the input images will be cropped using the

predicted labels generated by the same backbone. Specifically, the

bounding box of the predicted labels will be obtained by identifying

the highlighted area as those pixels are labelled as 1s and others as

0s. The original image will be cropped in the next step using the

obtained coordinates. The cropped images are then used as the

input images to continue the training process, where the pre-trained

backbone used to generate preliminary segmentation results will be

trained again with the cropped images. More specifically, given an

output label maskMn produced by the network after processing the

input image In in epoch n, the input image In+1 in the next epoch is

auto-adjusted using the Mn as a reference; if no auto-adapting is

applied, the input image in the next epoch would still be the same as

the current epoch, as we centralized and crop In using the label

information retrieved fromMn, we can obtain In+1 by cropping In so

that the new input image will have less background information and

the lesion will be properly centralized to enhance the learning

effectiveness of the model further. The label mask generated using

input images will be scaled up first and then used to guide the

cropping operation for In+1. We selected the parameters to keep the

exact image size between In and In+1.
Size aware loss

We implement the loss function as a combination of multiple

losses, the final loss function as:

L =o
N

i=1
lbce(Pi,Yi) + lsd(Pi,Yi)   (1)

lsd(Pi,Yi) =
Pi−Yij j
Yij j − 2� Pi∩

​Yij j
Pij j+ Yij j   (2)

Where Pi represents the prediction map and Yi represents the

ground truth label map. In Equation 1, lbce represents the Binary

Cross Entropy Loss function, and lsd represents the Size-aware Dice

Loss. As shown in Equation 2, the later fraction represents the

original Dice Loss function. The first fraction has a numerator Pi −

Yi to calculate the size difference between Pi and Yi and it is divided

by Yi to give the difference ratio. More specifically, we adjust the loss

equation to make the dice loss aware of sizes, and we also constrain

the range of the loss by setting the size-aware to 1 if we have a huge

size ratio to make sure all the losses have a unified scale.
Implementation

Our OCL-Net was implemented in PyTorch on an NVIDIA

GTX 3080 Ti GPU. The total training epoch was set to 200, and the

model was trained with Adam optimizer with an initial learning rate

of 1� e−4 and batch size of 1. The backbone was implemented

following the 3D-UNet architecture (37). All the input images were

resized as 128� 128� 128. For the auto-adapting schema, the

generated label masks are scaled to 256� 256� 256, and the
frontiersin.org
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image cropping size is set to 128� 128� 128. Furthermore, the

hyperparameter n was set to 100, which means that the model will

first train 100 epochs for the label mask. At the end of the 100th

epoch, all the input images will be cropped following the auto-

adapting schema, and the adapted input images will be used for the

later training processes.
Evaluation

For quantitative evaluation of the segmentation result, we used

the Dice score, Intersection over Union (IoU) and the Area Under

the Receiver Operating Characteristic Curve (AUC). The selection

of evaluation metrics follows similar settings for segmentation

research developed in a clinical context (38, 39).

AUC measures the overall performance of a binary

classification model by assessing its ability to distinguish between

positive and negative instances based on the ROC curve.

The Dice coefficient is a similarity metric used to measure the

overlap between two sets, often used in image segmentation tasks.

As shown in Equation 3, A ∩​ Bj j is the size of the intersection of

sets A and B, and Aj j, Bj j represents the size of sets A and B. IoU

measures the overlap between the predicted and ground truth

regions in tasks like object detection and segmentation. The

equation of IoU is shown in Equation 4, where A ∪​ Bj j stands
for the size of the union of regions A and B.

Dice = 2� A  ∩ Bj j
Aj j+ Bj j   (3)

IOU =   A  ∩ Bj j
A  ∪ Bj j   (4)

Since no previous studies were found to be similar to this

project, we compared our OCL-Net performance to the backbone

UNet and other UNet variants including ResUNet (40) which

incorporates residual connections within the architecture and

Attention UNet (41) which incorporates attention mechanisms to

better focus on the important regions. We chose these models

because they have been proven to be robust and can perform well on

similar medical imaging tasks. An ablation study to quantitatively

compare the contributions from our proposed multi-scale module

and the auto-adapting schema is conducted.

To assess the diagnostic assistance ability of our OCL-Net

results, we compared the performance of maxillofacial surgeons

with and without using the segmentation labels when performing

lesion diagnosis on CBCT images and the Welch t-test was

conducted to analyze the results obtained from the diagnostic

assessment. We selected 3 junior surgeons with less than 3 years

of experience in the field, 3 senior surgeons with over 3 years but

under 10 years of experience and 1 chief surgeon with over 20 years

of experience. From our database of 300 images, we randomly

selected 20 images from all 4 diseases, with half of them consisting

of original images only and the other half also including the

segmentation labels derived from the OCL-Net. Clinicians were

asked to go through all the images and perform their diagnosis

while recording the time spent and their final decision on the

diseases. After this process, each surgeon filled out a questionnaire
Frontiers in Oncology 06
to provide their opinions of whether the OCL-Net segmentation

labels were useful in their diagnostic process.
Result

Evaluation of model performance

Table 1 presents the results of OCL-Net in comparison to UNet,

ResUNet and Attention UNet as baselines. An ablation study is also

included. The OCL-Net result is the combination of the baseline

model with size loss, multi-scale (4) and auto-adapting (S). Our

model outperformed the baseline models in every metric including

the Dice score by 2%, IoU by 3%, and AUC by 0.5%. Our ablation

study shows that the introduction of size loss brought increment

across all three metrics. For multi-scaled blocks, four multi-scaled

blocks were optimal compared to five blocks, and hence it was

selected as the final number of blocks.

The auto-adapting schema worked well in both image sizes,

with 0.3% enhancement in case (D) and 1.3% Dice increase in case

(S). The result after upscaling the label masks and trying to keep the

same image resolution for all the inputs in case (S) was better with

1% over the experiment result without upscaling in case (D).

Figure 3 displays the original image, prediction results, and 3D

reconstruction results generated by 3D Slicer using its build-in

function (42). The third column’s prediction results, obtained

through OCL-Net, offer a smoother boundary and a more precise

outcome compared to the second column, derived from the masks

generated by a simple combination of U-Net and multi-scale blocks.

In the first two rows, the segmentation masks generated by OCL-

Net segmented more pixels around the boundary. In the last two

rows, the masks generated by OCL-Net can better locate the lesion

without creating false positive segmentation results. We manually
TABLE 1 Overview of the OCL-Net performance compared to UNet,
ResUNet, Attention UNet and OCL-Net variants (ablations are done
based on UNet with the highest result among baseline models) with size
loss and using different numbers of multi-scale blocks and different (D)
or same (S) image sizes after processing.

Dice (%) IoU (%) AUC (%)

UNet 86.65 78.07 91.81

ResUNet 53.76 41.88 72.11

Attention UNet 80.85 72.92 88.44

+ Size Loss 86.90 79.27 92.01

+ Multi-Scale (5) 86.23 78.05 91.15

+ Multi-Scale (4) 87.45 79.68 92.61

+ Auto-Adapting
(D)

87.01 78.63 90.82

+ Auto-Adapting
(S)

88.04 80.48 91.86

OCL-Net 88.84 81.23 92.37
Note that the bold results represent the best among that metric.
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crop the images in the second column after segmentation to ensure

that all the displayed images having the same size.
Comparison of clinician performance with
assistance from the model

The results of the clinical diagnosis using our OCL-Net are

shown in Table 2A. The results suggest that within either the

original group or the model-assisted group, there were variations

in diagnostic accuracy among different participating surgeons. The

average accuracy of the chief surgeon (70%) was higher than that of

senior surgeons (50%) and junior surgeons (50%). Regardless of

whether having assistance with segmentation masks or not, there

was no significant impact on the average diagnostic accuracy among

all the surgeons. However, in the senior doctors’ group, we observed

that the average diagnostic accuracy of Senior 1 and Senior 3
Frontiers in Oncology 07
increased from 50% to 65% and 40% to 48%, while Senior 2

dropped from 63% to 53%, respectively. In the junior doctors’

group, the average diagnostic accuracy of participants 2 and 3 had

increased from 48% to 58% and 40% to 53%, while participant 1’s

accuracy decreased from 63% to 43%, respectively.

A comparison of the diagnostic accuracy for the different

diseases between the original group and the model-assisted group

is presented in Table 2A. The results showed that the chief surgeon

was able to maintain a similar diagnostic accuracy for different

diseases. However, there were fluctuations in the diagnostic

accuracy among senior and junior surgeons. The diagnostic

accuracy for RC, DC, and AM was ~60%, while the accuracy for

OKC was only ~30%, which is the lowest among all disease types.

Table 2B presents the time required for the diagnosis. Without

the OCL-Net’s labels, the time needed for our chief surgeon was

significantly lower (P < 0:05) than that for the senior and junior

doctors. However, in the OCL-Net assisted group, the difference in
FIGURE 3

Prediction results compared between UNet with multi-scale and our OCL-Net. The lesion subtypes are shown in rows, ordered from top to bottom
as follows: dentigerous cyst, radicular cyst, odontogenic keratocyst and ameloblastoma. Among columns, the first column displays the original
images that were cropped using the auto-adapting schema. The second column shows the prediction outcome obtained using U-Net and multi-
scale modules, which were manually trimmed to the same size as the others for comparison with the auto-adapting outputs. The third column
demonstrates the result segmented by our OCL-Net, combining the multi-scale module and the auto-adapting method. The fourth column depicts
the actual ground truth label, and the last column contains the 3D model generated using ground truth.
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diagnostic times between chief, senior, and junior surgeons was less

distinct, except for one senior surgeon who only needed an average

time of 27s to diagnose the OCLs. There was no decrease in the time

required for the chief surgeon, while senior and junior surgeons

experienced a reduction in the average diagnosis time. The average

time spent by all three senior surgeons decreased from 114.3s to

39.98s and the average time spent by all three junior surgeons

decreased from 103.37s to 49.65s, respectively.
Frontiers in Oncology 08
Discussion

This study demonstrated the effectiveness of a supervised deep-

learning method in segmenting odontogenic cystic lesions on CBCT

images among four disease subtypes. Our OCL-Net improved in Dice

Score (88.84%) and IOU Score (81.23%) compared to other models as

shown in Table 1. However, the highest AUC score of 92.62% was

obtained by combining the U-Net with multi-scale (4). We attribute
TABLE 2A Diagnostic accuracies obtained from the diagnostic assessment process.

ACC (%) Chief Senior 1 Senior 2 Senior 3 Junior 1 Junior 2 Junior 3 AVG SD

Without Assistance

DC 0.80 0.50 1.00 0.50 0.70 0.50 0.40 0.63 0.21

RC 0.80 0.80 0.80 0.20 0.80 0.50 0.40 0.61 0.25

OKC 0.60 0.10 0.40 0.40 0.20 0.50 0.20 0.34 0.18

AM 0.60 0.60 0.30 0.50 0.80 0.40 0.60 0.54 0.16

AVG 0.70 0.50 0.63 0.40 0.63 0.48 0.40 0.53 0.12

SD 0.12 0.29 0.33 0.14 0.29 0.05 0.16 0.13 –

With Assistance

DC 0.80 0.80 0.80 0.30 0.40 0.60 0.50 0.60 0.21

RC 0.67 0.70 0.90 0.80 0.90 0.50 0.40 0.70 0.19

OKC 0.60 0.30 0.20 0.30 0.00 0.30 0.50 0.31 0.20

AM 0.80 0.80 0.20 0.50 0.40 0.90 0.70 0.61 0.25

AVG 0.72 0.65 0.53 0.48 0.43 0.58 0.53 0.56 0.10

SD 0.10 0.24 0.38 0.24 0.37 0.25 0.13 0.17 –
TABLE 2B Diagnostic time spent shown in 2b obtained from the diagnostic assessment process.

Time (s) Chief Senior 1 Senior 2 Senior 3 Junior 1 Junior 2 Junior 3 AVG SD

Without Assistance

DC 59.9 142.3 92.0 115.9 109.4 84.7 89.5 99.1 26.3

RC 61.6 132.9 109.2 107.8 106.9 140.8 142.1 114.5 28.1

OKC 49.5 127.7 101.2 113.2 87.1 113.0 105.8 99.6 25.4

AM 54.7 142.8 94.1 92.9 80.2 93.5 87.5 92.2 26.3

AVG 56.4 136.4 99.1 107.5 95.9 108.0 106.2 101.4 23.8

SD 5.5 7.4 7.8 10.3 14.5 24.9 25.3 9.4 –

With Assistance

DC 50.4 24.8 41.3 39.6 36.5 42.3 45.4 40.0 8.0

RC 59.2 29.7 34.7 53.0 44.2 45.6 55.3 46.0 10.9

OKC 56.1 25.7 49.6 47.0 50.5 48.9 60.7 48.4 11.1

AM 89.8 29.0 60.8 44.6 52.0 50.0 54.9 54.4 18.5

AVG 64.0 27.3 46.6 46.1 45.8 46.7 54.1 47.2 11.0

SD 17.7 2.4 11.3 5.6 7.1 3.5 6.4 6.0 –
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this improvement to the multi-scale module that enables the model to

consider information extracted from different scales thereby

improving its ability to distinguish between lesion and background

pixels. On the other hand, the auto-adapting method helps the model

to concentrate on lesions and eliminate background information,

thus leading to accurate delineation of the target region with higher

Dice and IoU scores compared to the UNet. Overall, our OCL-Net

combines the advantages of both techniques and produces a balanced

improvement, achieving the highest Dice and IoU scores and the

second-highest AUC score for the OCLs segmentation task. It is

unexpected to see the two UNet variants performing worse than the

baseline UNet. Since these UNet variants were not designed for

CBCT images encompassing both jawbones and the cranial regions,

this requirement presented unique challenges to these models. These

challenges may arise from the inclusion of redundant background

information, compounded by the intricate nature of the bony

structures involved. As the amount of lesion pixels is relatively less

than the amount of background pixels, simpler architecture like UNet

can perform better without overfitting.

Our diagnostic assessment experiment indicates that the highest

diagnostic accuracy does not exceed 80%. The chief surgeon shows

consistent diagnostic accuracy for various diseases, at

approximately 80%. In contrast, the diagnostic rates for senior

and junior surgeons are lower, averaging only 50%. The accuracy

for diagnosing OKC is the lowest at only 30% where OKC is more

likely to be misdiagnosed as DC and AM. The shared imaging

characteristics among these three types of lesions are likely

responsible for the difficult diagnosis (11). The average diagnostic

accuracy increased from 53% to 56% when using our segmentation

labels. The improvement in the accuracy may not be due to the

segmentation label only, but also because the images in the two

experimental groups (with and without the aid of the segmentation

labels) are different and therefore have different levels

of complexity.

The Welch Two Sample t -test was conducted to compare the

average time spent by surgeons diagnosing a disease with and

without the aid of segmentation labels. The results reveal a

substantial and statistically significant difference between the two

groups. Surgeons, on average, took approximately 101.62 seconds to

diagnose the disease without segmentation labels, while with the

assistance of segmentation labels, the average diagnosis time was

significantly shorter at approximately 47.10 seconds. This difference

in mean diagnosis times is supported by a high t -statistic of 18.237

and a p-value of 2:2e−16, indicating strong evidence that adding

segmentation labels leads to a significant reduction in the time

required for diagnosis. The 95 per cent confidence interval suggests

that the true difference in the diagnosis times is likely to be higher

than 49.59 seconds. Despite the segmentation labels contributing to

diagnostic efficiency, during the normal diagnostic process,

surgeons are unlikely to manually segment the lesion, as labelling

an accurate segmentation label may take a longer time than the

diagnosis. Automatically generating segmentation masks would

help a lot in diagnostic efficiency in real clinical practice.
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In our ablation study, regarding the parameter selection for

the multi-scale module, we chose to remove the multi-scaled block

that is linked to the bottom block. The primary objective of this

block is to extract the features from the highest scale. Since our

lesions are relatively small compared to the background, the

highest-level information could be influenced heavily by

unrelated information possessed in the background. Conveying

such high-level information to the model and including it in the

decoding process may misguide the learning process of the model.

Hence, we decided to decrease the number of multi-scale blocks,

and our experimental findings have validated our decision with

dice score improvement and a smoother training process. As the

original multi-scaled technique implemented a paired supervision

method by comparing the SoftMax output of every multi-scale

block to the down-sampled ground truth map. In the initial

experiment setup, we followed their method of combining all

five losses, but the loss for the fifth scale, which is the bottom

block, never converged. This outcome is consistent with our claim,

proving that the highest level of information may impede the

training process of the model.

The upscaling process within our auto-adapting schema was

designed to retain the same image resolution as the original input

image. The choice of input image resolution can significantly

impact the performance of deep learning models. The resolution

of the input images determines the amount of detail that the model

can capture, and the computational complexity of the model. On

one hand, using high-resolution images can improve the model’s

ability to capture fine-grained details, which can lead to better

performance. On the other hand, using low-resolution images can

reduce the computational complexity of the model and speed up the

training process, but at the cost of potentially sacrificing some

information. A study by Thambawita et al. investigated the effect of

different image resolutions on the performance of CNNs on a public

dataset and found that using higher-resolution images led to better

performance (43). In our experiment, we upsized the trained

segmentation output and used it as a reference to centralize the

input image. The upscaling process does not need to be precise

because only the center of the lesion should be acquired. Finally, the

nearest up-sampling algorithm was implemented and as seen in

Table 1, the auto-adapting method resulted in a higher performance

with the upscaling process and produced a higher result (Dice

88.04%, IoU 80.48%, AUC 91.86%) compared to cropping the input

image (Dice 87.01%, IoU 78.63%, AUC 90.82%).

Introducing the size-aware loss function represents an

advancement in our approach to semantic segmentation. Unlike

conventional Dice Loss, which solely focuses on the pixel-wise

agreement between prediction and ground truth, our size-aware

formulation accounts for differences in lesion sizes by evaluating the

ratio of differences and intersections between prediction and

ground truth masks relative to the ground truth size. This

adjustment makes the loss function aware of the size disparities

among the lesions and ensures that the loss is within a specific

range, thus promoting stable and consistent model training.
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Integrating the size-aware loss into our training pipeline yielded

promising results, as evidenced by the increase across different

metrics (+0.25% in Dice, +1.2% in IoU and +0.2% in AUC). By

explicitly considering lesion sizes during training, our model

demonstrated improved sensitivity to variations in lesion

morphology, leading to enhanced segmentation accuracy across

different image samples. This highlights the effectiveness of our

approach in mitigating the challenges posed by size discrepancies,

which are common in medical imaging datasets.

We also applied the t -test to our model compared to the

baseline. The results of the t -tests yielded insights into the

comparative performance of OCL-Net compared to UNet. The t-

statistic for Dice is approximately -2.384, with a corresponding p-

value of 0.024. This suggests a statistically significant difference in

the Dice scores between the two models. Specifically, the negative t-

statistic implies that the mean Dice score of the baseline model is

lower than that of the OCL-Net. These findings suggest that the

OCL-Net offers superior segmentation accuracy and overlap with

the ground truth labels, as indicated by higher Dice scores

compared to the baseline UNet.

The generated segmentation masks can serve as invaluable tools

with multifaceted clinical relevance. They enable precise diagnosis

by accurately delineating the extent of the lesions which are crucial

for treatment planning. With lesion segmentation masks, dentists

can visualize the lesion size and its location, and this can aid in

selecting appropriate clinical interventions. Additionally, these

masks allow for ongoing monitoring of lesion progression,

facilitating assessment of treatment efficacy and adjustments as

needed. Apart from potential clinical applications, visual aids from

the segmentation masks can be used to enhance patient education

and promote a better understanding of oral health conditions and

treatment options.

This study focused on a single lesion and a single pathological

type of lesion, meaning that within each image, only one type of

lesion was considered. We demonstrated that our method was

capable of learning the characteristics of these lesions and being

able to segment them. It’s important to note that there is a

possibility for a small number of patients to have multiple types

of lesions simultaneously, and as future work, we will explore the

extension of our method to cater for multiple lesions. To improve or

expand the segmentation task for OCLs using CBCT images in the

future, we will investigate incorporating additional subtypes of the

jaw lesions which were not selected in this study because there

weren’t enough patients. Including more subtypes will result in a

more diverse and extensive dataset. Which can help with the

robustness and generalizability of the segmentation system.

In conclusion, this study demonstrated that our OCL-Net

achieved > 88% Dice Score in segmentation results for OCL using

CBCT images. In our experiments, OCL-Net was able to improve

the speed and accuracy of diagnosis therefore reducing the

workload of clinical doctors. We suggest that the possibility of

applying supervised deep learning segmentation methods in clinical

settings is dependent on extra downstream research, such as

utilizing the segmentation system to automatically crop the

lesions from the original images and use it to help with other

lesion analysis and volume characteristics research in the future.
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