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Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to

its propensity for metastasis and poor prognosis. TNBC evades the body’s

immune system recognition and attack through various mechanisms, including

the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3

(STAT3) signaling pathway. This pathway, characterized by heightened activity

in numerous solid tumors, exhibits pronounced activation in specific TNBC

subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges

as a promising and precise therapeutic strategy for TNBC. The signal

transduction cascade of the JAK2/STAT3 pathway predominantly involves

receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor

STAT3. Ongoing preclinical studies and clinical research are actively investigating

this pathway as a potential therapeutic target for TNBC treatment. This article

comprehensively reviews preclinical and clinical investigations into TNBC

treatment by targeting the JAK2/STAT3 signaling pathway using small

molecule compounds. The review explores the role of the JAK2/STAT3

pathway in TNBC therapeutics, evaluating the benefits and limitations of active

inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to

facilitate the development of novel small-molecule compounds that target

TNBC effectively. Ultimately, this work seeks to contribute to enhancing

therapeutic efficacy for patients with TNBC.
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1 Introduction

Globally, breast cancer stands as the most prevalent malignant

tumor (1). Among its subtypes, triple-negative breast cancer (TNBC),

characterized by the absence of estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2 (HER-2)

expression, constitutes approximately 10%-15% of all breast cancer

cases (2). The treatment of TNBC presents significant challenges,

notably its propensity for early metastasis (3) and a comparatively

poorer prognosis than other breast cancer subtypes (4). Current clinical

strategies for TNBC primarily employ taxanes and anthracycline-based

cytotoxic drugs. However, these approaches frequently encounter

obstacles in the form of chemotherapy resistance, and the absence of

effective small-molecule targeted therapies, constituting primary

impediments in TNBC clinical management (5).

Reassessing classic drug targets is crucial for advancing new

precision medicine strategies. The JAK2/STAT3 pathway, clinically

validated as a therapeutic target for inflammation-related conditions,

has shown promise through its inhibitors in treating inflammatory

and autoimmune diseases. This success paves the way for novel

clinical therapy developments (6, 7). Extensive research has

established a strong association between aberrations in the JAK2/

STAT3 signaling pathway and key oncogenic processes such as

proliferation, invasion, and metastasis in various malignancies,

including TNBC. Notably, activation of this pathway has been

observed in multiple solid tumors, TNBC included (8–12).

Targeted inhibition of the JAK2/STAT3 signaling has demonstrated

efficacy in curtailing TNBC cell proliferation, invasion, and migration

(13), knockdown of JAK2 or STAT3 in triple-negative breast cancer

cells significantly reduced cell proliferation, invasion and migration

(14–21), tumor volume and distant metastasis were significantly

inhibited in a mouse model of triple-negative breast cancer with

conditional knockout of JAK2 or STAT3 (22–25). Moreover, the

downregulation of this pathway has been shown to counteract

paclitaxel (PTX) resistance (26). Thus, targeting JAK2/STAT3

emerges as a promising therapeutic strategy for treating TNBC and

overcoming challenges associated with PTX resistance.
Abbreviations: TNBC, Triple-negative breast cancer; JAK2, Janus Kinase 2;

STAT3, Signal transducer and activator of transcription 3; ER, Estrogen receptor;

PR, Progesterone receptor; HER-2, Human epidermal growth factor receptor 2;

PTX, paclitaxel; RTKs, Receptor tyrosine kinases; EGFRs, Epidermal growth

factor receptors; VEGFRs, Vascular endothelial growth factor receptors; IGFRs,

Insulin-like growth factor receptors; PDGFRs, Platelet-derived growth factor

receptors; FGFRs, Fibroblast growth factor receptors; LIFR, Leukemia inhibitory

factor receptor; IL-6R, Interleukin-6 cell factor receptor; IL-13R, Interleukin-13

cell factor receptor; GP130, Glycoprotein 130 receptor; EGF, Epidermal growth

factor; MEK, Mitogen-activated protein kinase; ERK, Extracellular signal-

regulated kinase; PI3K, Phosphoinositide 3-kinase; AKT, Protein kinase B;

VEGF, Vascular endothelial growth factor; PDGF, Platelet-derived growth

factor; FGF, Fibroblast growth factor; TBx3, T-box transcription factor 3;

TYK2, Tyrosine kinase 2; PROTAC, Proteolysis targeting chimera; PD-L1,

Programmed death-ligand 1; c-MET, Cellular mesenchymal-epithelial

transition; PARP, Poly ADP-ribose polymerase; AR, Androgen receptor; EZH2,

Enhancer of zeste homolog 2; CDK, Cyclin-dependent kinases.
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The signaling cascade of the JAK2/STAT3 pathway is

predominantly mediated through receptor tyrosine kinases (RTKs),

JAK2, and the transcription factor STAT3. RTKs are single-pass

transmembrane proteins ubiquitously expressed across various cell

types, including those within the tumor microenvironment.

Characteristically, all RTKs possess a conserved structural

composition: an extracellular ligand-binding domain, a

transmembrane domain, and an intracellular tyrosine kinase

domain (27). Upon ligand binding, RTKs undergo dimerization on

the cell membrane and phosphorylate tyrosine residues on the

receptors, facilitating their recognition and binding by downstream

proteins with SH2 domains, such as JAK2. RTK dimerization brings

the associated JAK2 kinase into proximity, enabling their activation

through reciprocal tyrosine phosphorylation. Activated JAK2 then

stimulates the RTKs to generate binding sites for STAT3. STAT3

binds to RTKs through its SH2 domain and undergoes

phosphorylation under the influence of JAK2. The phosphorylated

STAT3 forms homodimers and enters the nucleus to induce

downstream signal transduction, effectuating various physiological

or pathological roles (28). Given the characteristics of this signaling

pathway, targeting its components to treat TNBC represents an

effective strategy for precision therapy (Figure 1).

Consequently, this review systematically summarizes the roles

of the JAK/STAT3 pathway in the pathogenesis of TNBC and the

current advances in research on small-molecule compounds

targeting the JAK/STAT3 signaling pathway as a therapeutic

approach for TNBC.
2 Receptor tyrosine kinases in TNBC

Receptor tyrosine kinases represent a diverse class of enzyme-

linked cell surface receptors with a high affinity for growth factors,

cytokines, and hormones. These receptors not only bind specific

ligands but also function as protein kinases, phosphorylating

tyrosine residues on target proteins. RTKs are categorized into 20

distinct families based on the types of ligands they bind (29). TNBC

expresses various RTKs, including epidermal growth factor

receptors (EGFRs) (30), vascular endothelial growth factor

receptors (VEGFRs) (28), insulin-like growth factor receptors

(IGFRs) (31), platelet-derived growth factor receptors (PDGFRs)

(32), fibroblast growth factor receptors (FGFRs) (33), leukemia

inhibitory factor receptor (LIFR) (34), interleukin-6 cell factor

receptor (IL-6R) (35), interleukin-13 cell factor receptor (IL-13R)

(36), and glycoprotein 130 receptor (GP130) (37). Before ligand

binding, RTKs exist on the cell surface as inactive monomers.

Homologous ligand binding induces receptor dimerization,

activating their intrinsic kinase activity (38).
2.1 Epidermal growth factor receptors:
regulator of progression, metastasis, and
cancer stem cells in TNBC

Epidermal growth factor receptors, the receptor for epidermal

growth factor (EGF), is a key member of the HER family, which also
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includes Her-2, Her-3, and Her-4 (39). EGF binding to EGFR

induces receptor dimerization, a critical step leading to the

autophosphorylation of tyrosine residues on the activated

receptor. This activation allows the receptor to recruit various

signal sequence proteins, transmitting biological signals from the

extracellular milieu to the intracellular domain. These signaling

cascades culminate in gene transcription, modulating key cellular

processes such as proliferation, differentiation, and apoptosis. In

cancer, EGFR contributes to tumor progression by promoting

invasion and metastasis and stimulating tumor angiogenesis (40).

EGFR activates complex signal transduction pathways with primary

pathways including mitogen-activated protein kinase (MEK)/

extracellular signal-regulated kinase (ERK) (41), JAK2/STAT3

(42), and phosphoinositide 3-kinase (PI3K)/protein kinase B

(AKT) (43). Dysregulation of these pathways is intricately linked

to tumor development, invasion, and metastasis. EGFR is

overexpressed in several malignant tumors, including lung, colon,

liver, and breast cancers (44–47). In the context of cancer prognosis,

EGFR overexpression is associated with shorter recurrence times,

increased recurrence rates, and reduced survival durations (48). In

TNBC, the positive expression rate of EGFR is notably higher than

in non-TNBC, with over 40% of patients with TNBC exhibiting

EGFR overexpression, a factor closely correlated with TNBC

prognosis (49, 50). Targeted inhibition of EGFR expression has

demonstrated anti-cancer effects in TNBC (51). EGFR expression is

also implicated in CD44+ cell aggregation, with its inhibition

disrupting cancer stem cell assembly in TNBC. These lines of

evidence suggest a link between EGFR expression and the

progression of CD44+-mediated cancer stem cells (52).
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2.2 Vascular endothelial growth factor
receptors: regulator of angiogenesis and
cancer stem cells in TNBC

Vascular endothelial growth factor receptors, the receptor for

vascular endothelial growth factor (VEGF), comprises three

primary types: VEGFR1, VEGFR2, and VEGFR3. VEGF induces

angiogenesis by binding to VEGFR-2, enhancing the survival,

proliferation, migration, and adhesion of endothelial cells (53).

However, in pathological contexts, particularly in cancer, VEGFR

expression is linked to the promotion of tumor angiogenesis and

metastasis (54, 55). Numerous studies have documented the

overexpression of VEGFR in a range of malignant tumors,

including lung, colon, breast, liver, and ovarian cancers (56–60).

In TNBC, elevated VEGF levels correlate with increased metastasis,

poor treatment response, and decreased survival rates (61).

Upregulation of VEGFR in TNBC is linked to heightened cell

proliferation, while its downregulation inhibits this proliferation

(62). A notable randomized cohort study has indicated a strong

association between high VEGFR expression and 5-year and 10-

year breast cancer-specific survival rates in patients (63). These

findings underscore the potential of targeting the VEGF/VEGFR

axis as a promising approach in the targeted therapy of TNBC.

Research employing primary breast cancer mouse models and

models of spontaneous breast cancer metastasis has revealed

elevated VEGFR expression levels in metastatic breast cancer

compared to non-metastatic forms (64). Additionally, VEGFR

expression correlates with cancer stem cell characteristics. By

activating the VEGFR2/STAT3 pathway, VEGF induces the
FIGURE 1

Overview of the JAK2/STAT3 pathway signaling modality and potential therapeutic targets of the pathway. Phosphorylation signaling blockade and
protein-targeted degradation pathways. By Figdraw.
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upregulation of Myc and Sox2 expression, thereby promoting the

self-renewal of breast cancer stem cells. The autocrine action of

VEGF can establish a positive feedback loop, diminishing the

efficacy of anti-angiogenic drugs and enhancing cancer stem cell

renewal (28). Consequently, targeting VEGFR expression emerges

as a potentially effective therapeutic strategy for the regulation of

breast cancer stem cells.
2.3 Platelet-derived growth factor
receptors: regulator of endothelial cell
differentiation and cancer stem cells
in TNBC

Tumor blood vessel development is crucial to tumor growth,

making angiogenesis a potential target in cancer therapy (65).

Platelet-derived growth factor receptors, which binds to platelet-

derived growth factor (PDGF), exists in two forms: PDGFRa and

PDGFRb. PDGFR activation, contingent upon PDGF interaction,

initiates various intracellular signaling pathways. While PDGFR

contributes to vascular repair after tissue damage (66), it also

promotes cell proliferation within tumor tissues (67). Studies

involving mouse models with differential PDGF gene expression

have yielded insightful observations. Specifically, tumors in mice

with PDGF gene deficiency exhibit reduced pericyte recruitment,

whereas tumors in mice with PDGF overexpression demonstrate

increased pericyte recruitment. These findings suggest that tumors

recruit pericytes through paracrine PDGF secretion, interacting with

PDGFR, facilitating blood vessel maturation, and synergizing with

VEGF-mediated angiogenesis, contributing to tumor vascularization

(68). Extensive research indicates that PDGFR is overexpressed in

various malignant tumors, including lung, colon, breast, and ovarian

(69–72). In TNBC, PDGFRb plays a notable role in mediating

endothelial cell differentiation and vasculogenic mimicry in tumor

cells (32). Further studies have identified a link between PDGFRb
expression in TNBC, and cancer stem cells, where FOXC2 induces

cancer stem cell characteristics and metastasis by upregulating

PDGFRb expression (73). These findings position PDGFR as a

promising therapeutic target for TNBC.
2.4 Fibroblast growth factor receptors:
regulator of cell proliferation and cancer
stem cells in TNBC

Fibroblast growth factor receptors, the receptor for fibroblast

growth factor (FGF), comprises four subtypes: FGFR1, FGFR2,

FGFR3, and FGFR4, collectively forming the FGFR family. Upon

binding with FGF, FGFR is activated and modulates multiple

intracellular signaling pathways crucial to various biological

processes, including angiogenesis and lymphangiogenesis (74).

Studies have highlighted the association of FGFR expression in

various solid tumors with tumor cell proliferation (75–79). High-

throughput sequencing has identified FGFR gene mutations in

approximately 7.1% of malignant tumors, with breast cancer

exhibiting the second-highest frequency after urothelial
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carcinoma (80). In TNBC, FGFR3 expression is observed, and

inhibition of the FGFR3 signaling pathway reduces TNBC cell

invasion and migration (81). Targeting and blocking the FGFR

pathway can significantly enhance T cell infiltration and suppress

tumor growth in TNBC (33). Some studies have revealed that

estrogen can stimulate breast cancer stem cell proliferation via the

paracrine FGF/FGFR/T-box transcription factor 3 (TBx3) signaling

pathway, and inhibiting this pathway curtails cancer stem cell

expansion in TNBC (82). These findings highlight the potential of

targeting the FGFR pathway as a therapeutic approach in TNBC.
3 Activation of the JAK2/STAT3
signaling pathway in TNBC

Janus Kinase 2, a member of the JAK family of non-receptor

tyrosine kinases, includes JAK1, JAK3, and tyrosine kinase 2 (TYK2).

JAK3 is predominantly expressed in hematopoietic cells, while JAK1,

JAK2, and TYK2 exhibit broader expression across various tissues

(83). JAKs mediate a range of disease processes, including immune

system disorders (84), hematologic conditions (85), and various

malignancies (86, 87). Signal transducer and activator of

transcription (STAT) protein family comprises members such as

STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6.

Notably, STAT3 is implicated in the promotion of tumor growth and

the induction of immunosuppression (88–90). The JAK2/STAT3

signaling pathway is ubiquitously expressed in cells and vital in

physiological functions (91), such as cell proliferation,

differentiation, apoptosis, and immune regulation (92). Beyond its

physiological roles, this pathway is significantly implicated in various

pathologies, notably in cancer and autoimmune disorders. In breast

cancer, particularly TNBC, JAK2/STAT3 signaling is known for its

excessive activation (93). Advanced research has facilitated a more

precise molecular classification of TNBC, identifying the

mesenchymal subtype characterized by heightened JAK2/STAT3

activity (8). This insight offers a new direction and foundation for

the personalized clinical treatment of TNBC, focusing on targeting

the JAK2/STAT3 signaling pathway. Research has elucidated that the

JAK2/STAT3/Cyclin D2 signaling pathway is pivotal in promoting

cancer stem cell proliferation (94). Specifically, in TNBC, studies have

demonstrated that downregulating the JAK2/STAT3 pathway can

significantly inhibit cancer stem cell proliferation (95). Furthermore,

additional research has indicated that suppressing this pathway may

reduce TNBC cell proliferation and migration (13).
4 The role of the JAK2/STAT3
signaling pathway in multidrug
resistance in TNBC

The lack of effective targeted therapies, necessitating reliance on

taxanes and anthracycline cytotoxic drugs significantly hinders the

treatment of TNBC. However, the emergence of multidrug

resistance during treatment poses a formidable challenge to this

approach (5). For instance, the activation of the JAK2/STAT3
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signaling pathway in nasopharyngeal carcinoma has been

demonstrated to induce forkhead box M1 transcription, thereby

enhancing resistance to PTX (96). Subsequent studies have revealed

the contribution of the JAK2/STAT3 pathway to the development

of PTX resistance by upregulating anti-apoptotic gene expression.

Targeting this pathway has proven effective in reversing PTX

resistance in ovarian cancer (97). In a model of PTX-resistant

cells, researchers observed differential expression of the JAK2

gene, suggesting its potential role as a candidate gene linked to

PTX resistance in ovarian cancer cell lines (98). Further studies

indicate that the downregulation of JAK2/STAT3 signaling pathway

can counteract PTX resistance in TNBC (26). Furthermore, a

separate research effort found that JAK2 inhibitors can directly

bind to the drug efflux protein P-gp in resistant cell lines, thus

impeding P-gp-mediated drug efflux (99). Collectively, these studies

underscore the significance of the JAK2/STAT3 signaling pathway

in the development of multidrug resistance. Consequently, targeting

this pathway, either as a standalone therapy or in combination with

PTX, presents a promising strategy for the treatment of PTX-

resistant TNBC.
5 Current therapeutic applications of
the JAK2/STAT3 signaling pathway
in TNBC

Recent research has elucidated the pivotal role of the JAK2/

STAT3 signaling pathway in driving the proliferation, invasion, and

migration of TNBC. These findings position the JAK2/STAT3

pathway as a promising therapeutic target for TNBC

management. In response to these insights, numerous preclinical

and clinical studies are actively exploring the development of

inhibitors targeting RTKs, JAK2, and STAT3. These inhibitors are

categorized based on their mode of action into traditional small

molecule inhibitors in the occupation-driven mode and proteolysis

targeting chimera (PROTAC) molecules based on ubiquitin-

mediated protein degradation in an event-driven mode.

Traditional small molecule inhibitors in the occupation-driven

mode function by occupying the active site or binding site of the

target protein with small molecule compounds. This action blocks

its interaction with downstream signaling molecules, inhibiting its

function. On the other hand, PROTAC molecules employ a ligand

linker to bind the target protein with an E3 ubiquitin ligase,

leveraging the ubiquitin-proteasome system to drive the

degradation of the target protein (Figure 2).
5.1 Occupation driven mode: application of
small molecule inhibitors in TNBC

5.1.1 RTKs inhibitors
Currently, the U.S. Food and Drug Administration (FDA) has

not approved RTK inhibitors for the treatment of TNBC. Both

monoclonal antibodies and small molecule inhibitors are

progressing through preclinical and clinical research stages.
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Preclinical studies have shown that cetuximab can effectively

reduce cancer stem cells in TNBC and inhibit tumor growth

(100). However, clinical trials reveal a more complex picture. For

instance, a study investigating the combination of cetuximab and

cisplatin in metastatic TNBC reported benefits in fewer than 20% of

patients. Genomic analyses revealed limited efficacy due to

cetuximab-induced activation of alternative bypass pathways.

Combining cetuximab with inhibitors targeting downstream

elements of the EGFR pathway is proposed for enhanced benefits

in patients with TNBC (101). Preclinical research has demonstrated

that bevacizumab, a VEGFR inhibitor, effectively suppresses TNBC

growth in vivo (102). However, the adjunctive use of bevacizumab

with chemotherapy did not improve overall survival rates in early-

stage patients with TNBC compared to chemotherapy alone.

Similarly, tocilizumab, an interleukin-6 receptor (IL-6R) inhibitor,

exhibits potential anti-TNBC properties in preclinical studies (103),

but its clinical efficacy in TNBC treatment remains unreported and

warrants further investigation.

Several RTK small molecule inhibitors have been reported in

clinical studies for the treatment of TNBC (Table 1). Apatinib, a

highly selective VEGFR inhibitor, has exhibited promising efficacy

in a Phase II clinical trial for patients with TNBC combined with

chemotherapy. The results highlighted not only its effectiveness but

also a manageable safety profile (104). Furthermore, combining

Apatinib with a programmed death-ligand 1 (PD-L1) inhibitor in

another Phase II trial resulted in favorable outcomes with a

controllable safety profile (105). Integration of Apatinib with a

PD-L1 inhibitor and Eribulin in a multicenter Phase II trial

demonstrated significant therapeutic benefits in treating advanced

TNBC, notably extending its efficacy to PD-L1–negative patients

(106). Anlotinib, identified as a small molecule inhibitor targeting

the VEGFR, displayed promising results in advanced TNBC

treatment. Specifically, a Phase Ib clinical trial revealed that

Anlotinib, when employed in a chemotherapy-free regimen

alongside a PD-L1 inhibitor, effectively treated previously

advanced patients with TNBC. This combination not only

demonstrated favorable efficacy but also maintained a manageable

safety profile (107). Another Phase II clinical trial combining

Anlotinib with standard chemotherapy for metastatic TNBC

demonstrated therapeutic benefits with manageable safety (108).

Gefitinib, a small molecule EGFR inhibitor, along with

neoadjuvant chemotherapy, showed a higher pathological

complete response rate in a Phase II clinical trial for patients with

TNBC, especially in the chemotherapy and Gefitinib combination

group. However, it is critical to note that patients receiving Gefitinib

exhibited a higher incidence of toxic reactions, consequently leading

to the discontinuation of the trial for those patients (109). In

another Phase II clinical trial, Erlotinib, a small molecule EGFR

inhibitor, was evaluated for its efficacy in treating metastatic TNBC.

Patients in this trial initially received treatment with albumin-

bound PTX combined with bevacizumab, followed by a

maintenance regimen comprising both bevacizumab and

Erlotinib. Notably, a significant proportion of participants in this

trial exhibited partial tumor responses (110).

Research on RTK inhibitors in TNBC is expanding to include

natural products such as Salidroside extracted fromRhodiola (Table 2).
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Preclinical studies have shown that Salidroside inhibits

phosphorylation signaling pathways of EGFR/JAK2/STAT3, thereby

impacting TNBC cell viability by binding to EGFR. Salidroside’s

therapeutic potential is highlighted by its selective efficacy,

demonstrating minimal toxicity in normal breast epithelial cells

(114). Doxazosin, primarily known as a vasodilator, has a dual-target

mechanism, binding to cellular mesenchymal-epithelial transition

factor (c-MET) and EGFR. This binding results in the inhibition of

JAK2/STAT3 phosphorylation signaling. Research has demonstrated

that doxazosin significantly affects TNBC cell proliferation, invasion,

and migration, supported by in vitro and in vivo evidence. The efficacy

of doxazosin in curbing TNBC lung metastasis was further

substantiated through a mouse lung metastasis model (115).

Magnolol, a multifunctional lignan compound derived from the

traditional Chinese herb Houpo, has demonstrated notable anti-

cancer properties against TNBC. In vitro studies reveal that

Magnolol effectively reduces the viability of TNBC cells. This

inhibitory effect is primarily attributed to the suppression of

phosphorylation signaling in the EGFR/JAK2/STAT3 pathway

(116). The lead compound APP has also shown promising results
Frontiers in Oncology 06
in TNBC treatment. In vitro analyses indicate that APP induces

apoptosis in TNBC cells. This apoptotic effect is mediated through

the inhibition of EGFR/JAK2/STAT3 phosphorylation signaling,

coupled with the regulation of apoptotic proteins (117).

Demethoxycurcumin (DMC), a principal variant of curcumin

predominantly found in the rhizomes of turmeric, has garnered

attention in the context of TNBC research. In vitro studies have

illuminated its potential in modulating TNBC cell viability. DMC

achieves this by inhibiting EGFR protein expression levels.

Furthermore, its mechanism involves the inhibition of specific

phosphatases, thereby sustaining EGFR activation. This suggests

that DMC’s influence on TNBC cells might result from its

regulation of multiple signaling pathways (118). Morin, a

flavonoid compound derived from plants, has shown potential in

the treatment of TNBC. Studies indicate that Morin, particularly

when used in conjunction with doxorubicin, promotes apoptosis in

TNBC cells. This synergistic effect is attributed to the inhibition of

EGFR/STAT3 phosphorylation signaling (119, 120).

Primaquine, an antimalarial drug, has been observed to inhibit

TNBC cell viability and migration in vitro. This inhibition is linked
FIGURE 2

Potential therapeutic targets and inhibitors targeting JAK2/STAT3 signaling pathway for TNBC treatment. Occupation-driven mode: RTKs, JAK2 and
STAT3-targeted inhibitors; event driven mode: small molecule compounds targeting JAK2 protein for ubiquitination degradation.
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to the suppression of EGFR/STAT3 phosphorylation signaling.

However, the specific mechanisms by which Primaquine impedes

TNBC growth in vivo remain to be explored further (121).

Additionally, Centipeda minima Extract (CME), an extract from

the Centipeda minima, has demonstrated efficacy in regulating

TNBC cell behavior by modulating the phosphorylation signaling

of multiple pathways, notably the STAT3 pathway. This modulation

occurs through the inhibition of EGFR expression, thereby

promoting apoptosis in TNBC cells (122). CAPE-pNO2 has also

been identified as a potent inhibitor of proliferation and migration

in TNBC by suppressing EGFR phosphorylation and the regulation

of STAT3 and AKT phosphorylation signaling. This dual effect has

been observed in both in vitro and in vivo studies (123).

Similarly, PA-2, another compound under investigation, has

demonstrated its ability to promote apoptosis in TNBC cells. It
Frontiers in Oncology 07
achieves this through the inhibition of EGFR phosphorylation and

by modulating the phosphorylation signaling of the PI3K/AKT and

STAT3 pathways (124). Deguelin also contributes to this growing

field of TNBC therapeutics. It influences the expression of both

EGFR and c-Met, leading to the downregulation of phosphorylation

signaling across several pathways, including STAT3, AKT, ERK,

and NFkB. This comprehensive action results in a marked impact

on the viability of TNBC cells (125, 126). Picrasidine G, a naturally

derived dimeric alkaloid, has shown efficacy in inhibiting the vitality
TABLE 1 Targeting JAK2/STAT3 signaling pathway for TNBC in
preclinical studies.

Compd. Target Effects/
Adverse Reactions

Citation

Apatinib VEGFR Combined with chemotherapy in a
phase II clinical trial study, excellent
results were achieved in patients
with TNBC and were safe and
manageable; Combination with a
PD-L1 inhibitor in a phase II clinical
trial study showed favorable results
with a manageable safety profile in
patients with advanced TNBC;
Combination of PD-L1 inhibitors
and eribulin shows promising results
in the treatment of advanced TNBC
in a multicenter phase II clinical
trial study.

(104–106)

Anlotinib VEGFR Combination with a PD-L1 inhibitor
in a phase Ib clinical trial showed
favorable efficacy in previously
treated patients with advanced
TNBC with a manageable safety
profile; Combination chemotherapy
for treatment of metastatic TNBC
achieves efficacy and is safe and
controlled in phase II clinical
trial studies.

(107, 108)

Gefitinib EGFR Efficacy achieved in combination
with neoadjuvant chemotherapy in
TNBC patients in a randomized
phase II clinical trial study, but the
trial was terminated due to
toxic events.

(109)

Erlotinib EGFR Combined bevacizumab
maintenance therapy reduces tumor
load in most patients in a phase II
clinical trial study.

(110)

Ruxolitinib JAK2 In a phase II clinical trial study,
treatment of TNBC as a single agent
did not meet efficacy endpoints;
Combination capecitabine has no
benefit over capecitabine alone for
TNBC in a phase II clinical trial
study; Combined PTX is better than
PTX alone for TNBC in a phase I
clinical trial study.

(111–113)
TABLE 2 Targeting RTKs to modulate the JAK2/STAT3 signaling
pathway in preclinical studies for the treatment of TNBC.

Compd. Target In Vivo
Or
In
Vitro

Citation

Salidroside EGFR In vitro (114)

Doxazosin EGFR/
c-MET

In vitro
and
in vivo

(115)

Magnolol EGFR In vitro (116)

4-(adamantan-1-yl)-2-(3-(2,4-
dichlorophenyl)-5-phenyl-4,5-
dihydro-1H-pyrazol-1-yl)
thiazole (APP)

EGFR In vitro (117)

Demethoxycurcumin EGFR In vitro (118)

Morin EGFR In vitro (119, 120)

Primaquine EGFR In vitro
and
in vivo

(121)

Centipeda minima Extract (CME) EGFR In vitro
and
in vivo

(122)

CAPE-pNO2 EGFR In vitro
and
in vivo

(123)

Phospho-aspirin-2 (PA-2) EGFR In vitro
and
in vivo

(124)

Deguelin EGFR/
c-MET

In vitro
and
in vivo

(125, 126)

Picrasidine G EGFR In vitro (127)

Regorafenib VEGFR/
PDGFR

In vitro
and
in vivo

(128)

Bazedoxifene GP130 In vitro
and
in vivo

(129, 130)

Raloxifene GP130 In vitro (131)

EC359 LIFR In vitro
and
in vivo

(34, 132)

Chikusetsusaponin IVa Butyl Ester
(CS-IVa-Be)

IL-6R In vitro (133)
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of TNBC cells in vitro by suppressing the EGFR/STAT3

phosphorylation signaling pathway (127). Regorafenib, another

compound under study, exerts its anti-cancer effects by inhibiting

key receptors such as VEGFR and PDGFR. This inhibition impacts

the STAT3 phosphorylation signaling (128).

Bazedoxifene presents a different angle in TNBC treatment. By

targeting GP130, it influences the STAT3 phosphorylation signaling

pathway. This strategic inhibition inhibits TNBC both in vitro and

in vivo (129, 130). Raloxifene, a compound known for its influence

on the GP130 receptor, has been shown to inhibit the vitality of

TNBC cells in vitro. This effect is achieved through the modulation

of the STAT3 phosphorylation signaling pathway (131). EC359,

another promising agent, binds to the leukemia inhibitory factor

receptor (LIFR), inhibiting the LIFR/STAT3 phosphorylation

signaling, thereby curbing TNBC proliferation both in vitro and

in vivo (34, 132). Similarly, CS-IVa-Be targets cancer cells through

the inhibit ion of IL-6R, impacting the JAK2/STAT3

phosphorylation signaling pathway. This specific action has been

observed to inhibit TNBC in vitro (133).

In summary, RTK inhibitors can inhibit the signaling of the

JAK2/STAT3 pathway. However, due to the activation of bypass

pathways, clinical trial results suggest that combining these

inhibitors with chemotherapy may be more beneficial for patients

with TNBC.

5.1.2 JAK2 inhibitors
Directly targeting JAK2 emerges as a strategic approach for

modulating the JAK2/STAT3 signaling pathway in TNBC

treatment. However, to date, JAK2 inhibitors have not received

FDA approval for use in TNBC therapy. Ruxolitinib, a JAK1/JAK2

inhibitor, is being evaluated for its clinical efficacy in treating TNBC

in several clinical trials. In a Phase II clinical trial, Ruxolitinib

monotherapy did not meet its efficacy endpoint for TNBC

treatment (111). Further research explored the potential of

Ruxolitinib in combination with chemotherapy drugs. While

combining Ruxolitinib with Capecitabine did not enhance overall

survival, another trial pairing it with PTX showed improved clinical

efficacy, outperforming PTX monotherapy (112, 113) (Table 1).

In preclinical TNBC studies, several small molecules exhibit

promise as JAK2 inhibitors (Table 3). For instance, Glyceryl

Trinitrate (GTN), a vasodilator, inhibits STAT3 activation by

blocking JAK2 phosphorylation, suppressing TNBC cell viability

(134). Additionally, a range of compounds, including Withaferin A

(WA) (135), Naphtho[1,2-b]furan-4,5-dione (NFD) (136),

Ganoderic acid A (GA-A) (137), Methylseleninic Acid (MSA)

(138), and AZD1480 (139), have been identified to inhibit the

phosphorylation and signal transduction of the JAK2/STAT3

pathway, reducing the viability of TNBC cells. Recent research

findings highlight the efficacy of JAK2 small molecule inhibitors in

TNBC. For instance, the JAK2 inhibitor AG490 has been shown to

reduce TNBC cell viability by modulating the phosphorylation and

signal transduction of STAT3 and AKT (140, 141). Additionally, 3-

Deoxy-2b,16-dihydroxynagilactone E (B6) interacts with the

FERM-SH2 domain of JAK2, inhibiting downstream STAT3

phosphorylation and reducing TNBC cell viability (142). Another
Frontiers in Oncology 08
study highlights the effectiveness of ECN in suppressing TNBC cell

viability by targeting the JAK2/STAT3 signaling pathway. ECN has

also demonstrated the ability to inhibit TNBC tumor growth in

vivo (143).

Chloroquine enhances PTX therapeutic efficacy in TNBC by

inhibiting JAK2/STAT3 pathway phosphorylation, impacting

autophagy processes (95). Additionally, Silibinin suppresses TNBC

cell invasive and migratory capabilities in vitro by downregulating

JAK2/STAT3 pathway phosphorylation (144, 145). Piperlongumine,

a bioactive alkaloid known for its antioxidant and anti-tumor

properties, has been found to inhibit TNBC cell proliferation and

migration by inhibiting JAK2/STAT3 pathway phosphorylation

(146). Similarly, Hydroxyzine, primarily recognized as a histamine

H1 receptor antagonist, has demonstrated the capability to induce

apoptosis in TNBC cells through the inhibition of JAK2/STAT3

phosphorylation (147).

JAK2 inhibitors have shown significant efficacy in inhibiting

TNBC in vitro. Clinical trial data in vivo also suggest that a

combination of these inhibitors with the chemotherapy drug

paclitaxel could be a promising therapeutic approach for TNBC.

However, concerns about the safety of JAK2 inhibitors, as evidenced

by FDA warnings, underscores the necessity for alternative

therapeutic strategies targeting the JAK2/STAT3 pathway.
TABLE 3 Targeting the JAK2 for TNBC in preclinical studies.

Compd. Target In Vivo
Or
In Vitro

Citation

Glyceryl Trinitrate (GTN) JAK2 In vitro
and
in vivo

(134)

Withaferin A (WA) JAK2 In vitro (135)

Naphtho[1,2-b]furan-4,5-
dione (NFD)

JAK2 In vitro (136)

Ganoderic acid A (GA-A) JAK2 In vitro (137)

Methylseleninic Acid (MSA) JAK2 In vitro
and
in vivo

(138)

AZD1480 JAK2 In vitro (139)

AG490 JAK2 In vitro (140, 141)

3-Deoxy-2b,16-dihydroxynagilactone
E (B6)

JAK2 In vitro (142)

7b-(3-Ethyl-cis-crotonoyloxy)-1a-(2-
methylbutyryloxy)-3,14-dehydro-Z-
notonipetranone (ECN)

JAK2 In vitro
and
in vivo

(143)

Chloroquine JAK2 In vitro
and
in vivo

(95)

Silibinin JAK2 In vitro (144, 145)

Piperlongumine JAK2 In vitro
and
in vivo

(146)

Hydroxyzine JAK2 In vitro (147)
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5.1.3 STAT3 inhibitor
Several STAT3 small molecule inhibitors have been reported in

preclinical studies for the treatment of TNBC (Table 4). The

therapeutic strategy to inhibit STAT3 involves targeting multiple

stages of its functional cycle, including phosphorylation,

dimerization, nuclear translocation, and DNA binding activities.

This approach leverages the nuclear translocation signal of STAT3.

Stattic, a non-peptidic small molecule, has demonstrated

notable anti-TNBC effects by selectively targeting STAT3,

inhibiting its activation, dimerization, and nuclear translocation.

This inhibition is facilitated through Stattic’s binding to the SH2

functional domain of STAT3 (148, 149). Similarly, STA-21, another

small molecule inhibitor, induces apoptosis in TNBC cells by

inhibiting DNA binding activity and dimerization of STAT3

(150). FLLL31 and FLLL32, derivatives of curcumin, have been

identified as selective inhibitors of STAT3. They achieve this by

binding to the SH2 functional domain of STAT3, thereby inhibiting

its phosphorylation and DNA binding activities. Notably, these

compounds have shown potential in synergistically inhibiting

TNBC cell proliferation when combined with doxorubicin. In

vivo studies further indicate that FLLL32 can effectively suppress

TNBC growth by downregulating STAT3 phosphorylation levels

(151). Pyrrolidine sulfonamide derivative 6a selectively inhibits

STAT3 activation at phosphorylation and transcription levels,

reducing TNBC cell viability in response to IL-6 stimulation

(152). LLL12, a non-peptidic, cell-permeable small molecule,

selectively targets STAT3 by inhibiting its DNA binding activity

and phosphorylation through SH2 domain binding. It induces

apoptosis in TNBC cells and suppresses TNBC growth in vivo by

downregulating STAT3 phosphorylation levels (153). LLL12B, a

prodrug of LLL12, is activated in the tumor microenvironment by

tumor-associated plasmin, which cleaves its aminoformate bond to

release active LLL12. LLL12B exhibits improved pharmacokinetic

properties compared to its parent compound, LLL12. However,

additional research is required to fully elucidate the comparative in

vivo and in vitro pharmacology of these compounds, particularly

their respective abilities to bind to STAT3 (15).

Naringenin, a naturally occurring compound, reduces TNBC

cell viability by binding to the SH2 domain of STAT3, suppressing

STAT3 phosphorylation. In combination with cyclophosphamide,

naringenin has demonstrated enhanced efficacy in inducing

apoptosis in TNBC cells (154). S3I-201, a selective STAT3

inhibitor probe, targets the SH2 functional domain of STAT3,

inhibiting its DNA binding activity and dimerization. In vitro

studies have revealed that S3I-201 significantly diminishes the

TNBC cell viability and inhibits tumor growth by reducing

STAT3 phosphorylation (155). Napabucasin, a targeted

therapeutic agent, selectively inhibits the DNA binding activity

and phosphorylation of STAT3 by binding to its SH2 functional

domain. In vitro studies have demonstrated Napabucasin’s

capability to reduce TNBC cell viability (156). Additionally, a

series of compounds, such as 7a (157), SLSI-1216 (158), H182

(159), SMY002 (160), MC0704 (161), ZSW (162), and Acetyl-

cinobufagin (163), have been identified to selectively inhibit

STAT3 phosphorylation by binding to its SH2 domain and
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TABLE 4 Targeting STAT3 for TNBC in preclinical studies.

Compd. Target In Vivo
Or
In Vitro

Citation

Stattic STAT3 In vitro (148, 149)

STA-21 STAT3 In vitro (150)

FLLL31 STAT3 In vitro (151)

FLLL32 STAT3 In vitro and
in vivo

(151)

Pyrrolidinesulphonylaryl
molecules (6a)

STAT3 In vitro (152)

LLL12 STAT3 In vitro and
in vivo

(153)

LLL12B STAT3 In vitro and
in vivo

(15)

Naringenin STAT3 In vitro (154)

S3I-201 STAT3 In vitro (155)

Napabucasin STAT3 In vitro (156)

Coumarin-benzothiophene1, 1-
dioxide conjugates compound(7a)

STAT3 In vitro and
in vivo

(157)

SLSI-1216 STAT3 In vitro (158)

H182 STAT3 In vitro and
in vivo

(159)

SMY002 STAT3 In vitro and
in vivo

(160)

MC0704 STAT3 In vitro and
in vivo

(161)

ZSW STAT3 In vitro and
in vivo

(162)

Acetyl-cinobufagin STAT3 In vitro and
in vivo

(163)

Arctigenin STAT3 In vitro and
in vivo

(164)

KYZ3 STAT3 In vitro and
in vivo

(165)

Dihydrotanshinone STAT3 In vitro and
in vivo

(166)

DT-13 STAT3 In vitro and
in vivo

(167)

Cucurbitacin E STAT3 In vitro (168–170)

Niclosamide STAT3 In vitro and
in vivo

(171–173)

SG-1709 STAT3 In vitro (174)

SG-1721 STAT3 In vitro and
in vivo

(174)

Nifuroxazide STAT3 In vitro and
in vivo

(175, 176)

LLY17 STAT3 In vitro and
in vivo

(177)

(Continued)
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suppressing TNBC cell viability in vitro. Arctigenin, a bioactive

lignan isolated from the seeds of Arctium lappa, inhibits STAT3 in

TNBC cells by binding to its SH2 domain, thereby disrupting

hydrogen bond connections between DNA and STAT3. This

disruption prevents STAT3’s binding to genomic DNA, effectively

reducing TNBC cell viability (164). Similarly, KYZ3, a derivative of

cryptotanshinone, binds to the SH2 domain of STAT3, inhibiting its

DNA binding activity and phosphorylation, leading to decreased

TNBC cell viability in vitro (165). Research has identified a wide
Frontiers in Oncology 10
array of small molecules that exhibit the potential to inhibit TNBC

cell viability. This includes Dihydrotanshinone (166), DT-13 (167),

Cucurbitacin E (168–170), Niclosamide (171–173), SG-1709 (174),

SG-1721 (174), Nifuroxazide (175, 176), LLY17 (177), 6Br-6a (178),

Pyrimethamine (179, 180), Pectolinarigenin (181), Flubendazole

(182, 183), Eupalinolide J (184, 185), Betulinic acid (186),

Carfilzomib (187), WP1066 (188), Rhus coriaria extract (189),

FZU-03,010 (190), Disulfiram (191), Schisandrin B (192), Osthole

(193), Brevilin A (194), Arnicolide D (195), Eucannabinolide (196),

Pulvomycin (197), R001 (198), Salinomycin (199, 200), the

ethanolic extract of origanum syriacum (201), Apigenin (202),

and AG-014699 (203). This inhibition is attributed to their ability

to suppress STAT3 phosphorylation. However, direct evidence

demonstrating their binding to STAT3 is currently lacking.

While preclinical studies have identified various small molecule

compounds as potential STAT3 inhibitors, TTI-101 stands out as

the sole compound advancing into Phase I clinical trials. Various

groups of researchers are investigating the efficacy and safety of

TTI-101 in patients with advanced breast cancer and those with

inoperable solid tumors.

5.1.4 Adverse effects of JAK2/STAT3
pathway inhibition

Because the biological processes of normal cells also depend on

the JAK2/STAT3 pathway, the long-term use of JAK2/STAT3

pathway inhibitors has certain toxic side effects. JAK2 inhibitors

inevitably inhibit the normal hematopoietic function of the body,

which can cause anemia, thrombocytopenia, and other adverse

effects (including dizziness, headache, abdominal pain, diarrhea,

and the secondary tumor).

Studies have shown that anemia and thrombocytopenia are the

most common hematologic adverse effects when JAK2 inhibitors are

used to treat myelofibrosis (204–210); in another study of Ruxolitinib

as a drug treatment for true erythrocytosis, headache and diarrhea

were the most common non-hematologic adverse effects (211); the

immunosuppressive effects of JAK2 inhibitors are important in

inducing infections, and in the JUMP study, the most common

infection was pneumonia, followed by urinary tract infections and

nasopharyngitis (205), and another study showed that 30 of 31

patients treated with Ruxolitinib developed infections, including

several opportunistic infections (212); although JAK inhibitors can

be used to treat hematologic cancers and inflammatory diseases,

during treatment with these drugs, studies have found that some

patients suffer from lymphomas and other malignancies, with a

statistically significant 16-fold increase in the risk of B-cell

malignancies in patients with myeloproliferative neoplasms treated

with JAK1/2 inhibitors, and skin cancers being the most common

secondary tumor (213); in addition to these symptoms, Ruxolitinib

can also cause other adverse reactions such as abdominal pain,

drowsiness, acute renal failure (211), and even some studies have

reported that patients have died from cardiac arrest (204).

Since the JAK family mediates signaling of multiple cytokines

and different receptors are associated with different JAKs, and

comprehensive inhibition of the JAK family can result in a variety

of side effects, the design and development of new targeted JAK2

inhibitors could provide a solution to these adverse effects.
TABLE 4 Continued

Compd. Target In Vivo
Or
In Vitro

Citation

6Br-6a STAT3 In vitro and
in vivo

(178)

Pyrimethamine STAT3 In vitro and
in vivo

(179, 180)

Pectolinarigenin STAT3 In vitro and
in vivo

(181)

Flubendazole STAT3 In vitro and
in vivo

(182, 183)

Eupalinolide J STAT3 In vitro (184, 185)

Betulinic acid STAT3 In vitro and
in vivo

(186)

Carfilzomib STAT3 In vitro and
in vivo

(187)

WP1066 STAT3 In vitro (188)

Rhus coriaria extract STAT3 In vitro and
in vivo

(189)

FZU-03,010 STAT3 In vitro (190)

Disulfiram STAT3 In vitro (191)

Schisandrin B STAT3 In vitro and
in vivo

(192)

Osthole STAT3 In vitro and
in vivo

(193)

Brevilin A STAT3 In vitro and
in vivo

(194)

Arnicolide D STAT3 In vitro and
in vivo

(195)

Eucannabinolide STAT3 In vitro and
in vivo

(196)

Pulvomycin STAT3 In vitro and
in vivo

(197)

R001 STAT3 In vitro and
in vivo

(198)

Salinomycin STAT3 In vitro (199, 200)

Ethanolic extract of
Origanum syriacum

STAT3 In vitro (201)

Apigenin STAT3 In vitro and
in vivo

(202)

AG-014699 STAT3 In vitro (203)
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5.2 Event-driven mode: application of
PROTAC molecules based on ubiquitin-
mediated protein degradation in TNBC

The regulation of the JAK2/STAT3 signaling pathway can be

strategically achieved through the targeted degradation of the JAK2

protein employing PROTACs. These molecular constructs consist of

a linker connecting two ligands, with one ligand binding to the target

JAK2 protein and the other engaging with the ubiquitin E3 ligase.

This dual binding facilitates the formation of a ternary complex,

bringing the JAK2 protein and E3 ligase into close proximity.

Subsequently, the target JAK2 protein undergoes ubiquitination,

marking it for recognition by the proteasome system. This leads to

the proteasomal degradation of JAK2 into peptide fragments,

effectively nullifying its protein activity (214). Recent studies

underscore the promising role of PROTAC molecules in TNBC

treatment. MZ1, a small molecule PROTAC, targets BRD4 protein

for degradation. Compared to JQ1, a conventional inhibitor targeting

the protein domain, MZ1 exhibits superior anti-TNBC activity both

in vitro and in vivo, which is attributed to its specific action in

targeting BRD4 protein degradation (215). Another notable

PROTAC molecule, NN3, is designed to target PARP1 protein

degradation. Experimental findings indicate that NN3 demonstrates

effective anti-TNBC activity in vitro and in vivo. Remarkably, NN3

retains its efficiency in degrading PARP1 protein even in the presence

of point mutations, further underscoring its potential as an anti-

tumor agent (216). Emerging research sheds light on the efficacy of

PROTACmolecule 6n, designed to target the degradation of the AXL

protein. Demonstrating a significant advantage over traditional AXL

kinase inhibitors, 6n has shown superior anti-TNBC activity in vitro

and in vivo (217). Similarly, YX-02-030, a PROTAC molecule

targeting the MDM2 protein degradation, exhibits enhanced anti-

tumor activity compared to specific MDM2 inhibitors. Notably, YX-

02-030 achieves this therapeutic efficacy without causing harm to

normal cells (218). TEP, a PROTAC molecule engineered to target c-

Myc protein degradation, effectively inhibits the proliferation of

TNBC cells by facilitating the specific degradation of the

endogenous c-Myc/Max complex. Additionally, TEP enhances the

sensitivity of TNBC cells to palbociclib, a cyclin-dependent kinase

inhibitor (219). Another PROTACmolecule, CT-4, designed to target

HDAC8 protein degradation, promotes apoptosis in TNBC cells

through the targeted degradation of HDAC8 protein (220). The

small molecule compound A4, a PROTAC developed based on

DCAF16, specifically targets CDK4/6 protein degradation. Research

demonstrates that A4 exhibits potent inhibitory activity against

CDK4/6, offering a favorable safety profile in normal cells, which is

considered superior to the established CDK4/6 inhibitor, palbociclib

(221). The small molecule compounds 7f and PP-C8, which also

function as PROTAC molecules, also target CDK12/13 degradation.

Studies have indicated that these compounds effectively reduce

TNBC cell viability by inhibiting the expression of CDK12/13 (222,

223). PROTAC molecules MS8815 and U3i, designed to target EZH2

protein degradation, induce ubiquitination and subsequent

proteasome-dependent degradation of EZH2, effectively inhibiting

TNBC cell growth (224, 225). Similarly, androgen receptor (AR)-

PROTAC has shown efficacy in targeting AR-positive TNBC cells by
Frontiers in Oncology 11
mediating the ubiquitination and degradation of the AR, thereby

inhibiting cell growth (226). Furthermore, C8, a PROTAC molecule

developed based on the PARP1/2 inhibitor Olaparib, exhibits

promising therapeutic potential against TNBC. It promotes PARP2

protein degradation, demonstrating effectiveness in vitro and

in vivo (227).

Currently, PROTAC small molecules targeting the degradation

of JAK2 protein have been reported. However, research indicates

that the E3 ligase CUL5 mediates JAK2 protein degradation (228).

Developing PROTAC small molecules that facilitate the binding of

JAK2 protein to the E3 ligase CUL5 could be a feasible strategy for

treating TNBC.
6 Conclusion

The JAK2/STAT3 signaling pathway, activated by cytokines, is

central in governing fundamental cellular processes, including

growth, differentiation, apoptosis, and immune responses. In

TNBC, excessive activation of this pathway contributes to immune

evasion by TNBC cells. This aberrant activation promotes tumor

growth, facilitates metastasis, and develops drug resistance in TNBC.

Therefore, the strategic therapeutic targeting of the JAK2/STAT3

signaling pathway emerges as a promising strategy for the effective

treatment of TNBC. The JAK2/STAT3 signaling pathway presents

multiple targets for therapeutic intervention in TNBC. Inhibition

strategies focusing on RTKs, JAK2, and STAT3 effectively suppresses

TNBC cell growth. Despite these promising results, clinical trials of

inhibitors that bind to the active sites of these proteins have

encountered challenges. These limitations can be attributed to

several factors, including the activation of compensatory bypass

pathways, overexpression of target proteins, emergence of point

mutations within these targets, and the heightened expression of

competitive ligands. Unlike conventional inhibitors, PROTAC

molecules do not rely on sustained binding to the target protein to

exert their inhibitory effect. This unique characteristic enables them

to remain effective even in the presence of mutations in the protein’s

active binding site. A key advantage of PROTACs lies in their

catalytic mechanism; following the facilitation of ubiquitination

and degradation of the target protein, PROTAC molecules can be

recycled. This recycling ability potentially allows for lower drug

dosages, enhancing both the safety profile and therapeutic potential

of these molecules. Consequently, employing PROTACs to target the

JAK2/STAT3 pathway emerges as an exceptionally promising

strategy for TNBC treatment. By developing PROTACs that

specifically target JAK2 protein degradation, not only is TNBC

growth inhibited through the downregulation of the JAK2/STAT3

pathway, but the typical toxic side effects associated with traditional

JAK2 inhibitors are also likely to be mitigated.
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