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High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein with a dual

role in cancer, acting as an oncogene and a tumor suppressor. This protein

regulates nucleosomal structure, DNA damage repair, and genomic stability

within the cell, while also playing a role in immune cell functions. This review

comprehensively evaluates the biological and clinical significance of HMGB1 in

cancer, including its involvement in cell death and survival, its potential as a

therapeutic target and cancer biomarker, and as a prosurvival signal for the

remaining cells after exposure to cytotoxic anticancer treatments. We highlight

the need for a better understanding of the cellular markers and mechanisms

involved in the involvement of HMGB1in cancer, and aim to provide a deeper

understanding of its role in cancer progression.
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1 Introduction

High mobility group box 1 (HMGB1) is a highly conserved non-histone chromatin-

associated nuclear DNA-binding protein that plays an essential role in regulation of various

cellular processes, including nucleosomal structure, DNA damage repair, and genomic

stability (1, 2). Since its discovery and isolation from calf thymus in 1973, HMGB1 has been

the subject of extensive research for over half a century (3). This protein also participates in

various immunological functions, acting as a danger-associated molecular pattern (DAMP)

triggering various immune responses (4). HMGB1 has also been implicated in different

diseases, including cancer (5).

The involvement of HMGB1 in cancer is complex, and its precise mechanisms are not

yet fully understood. Studies have shown that HMGB1 plays a dual role in cancer by acting

as an oncogene and tumor suppressor (6). HMGB1 regulates cellular death and survival

pathways, as well as contributes to various stages of tumor progression, including

proliferation, invasion, and metastasis. HMGB1 overexpression has been associated with

a poor prognosis in various types of cancer (e.g., breast, lung, and colorectal). A study has

discovered a highly trustworthy HMGB1 protein structure model in mice, which could

facilitate the docking and prediction of anticancer drugs, such as CGA conformers, that
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bind to the active target site of HMGB1, potentially leading to the

development of a universal anticancer drug effective against various

cancer types (7). Therefore, it is important to understand the role of

HMGB1 in the cancer diagnosis, prognosis, and treatment.

This review aimed to provide a comprehensive overview of the

role of HMGB1 in cancer. We describe the mechanisms underlying

the contribution of HMGB1 to tumor development, progression,

and metastasis, together with its potential role as a biomarker and

therapeutic target in cancer. This review also highlights the current

state of knowledge and gaps in our understanding of the role of

HMGB1 in cancer, providing a foundation for future research and

the development of novel therapeutic strategies.
2 Structural variability of
HMGB1 protein

HMGB1 is a highly conserved single-chain polypeptide

consisting of 215 amino acid residues. Its N-terminal region is

enriched with positively charged lysine residues, whereas its C-

terminal region is predominantly composed of negatively charged

aspartic acid and glutamic acid, collectively referred to as the acidic

tail. The protein structure of HMGB1 spans from the amino

terminus to the carboxy terminus, encompassing an A box

(residues 9–79), a B box (residues 95–163), and a receptor-

binding motif (residues 186–215), which are exclusively
Frontiers in Oncology 02
composed of glutamic acid and aspartic acid. Crucially, HMGB1

contains two essential nuclear localization signals (NLS), specifically

located at amino acids 28–44 (NLS1) and 179–185 (NLS2). These

NLSs are responsible for the nuclear localization of HMGB1;

moreover, they regulate its translocation between the nucleus and

the cytoplasm upon post-translational modifications, such as

phosphorylation and acetylation. Additionally, HMGB1 features a

toll-like receptor 4 (TLR4)-binding site (residues 89–108) and a

receptor for advanced glycation end products (RAGE)-binding site

(residues 150–183), which contribute to its diverse functional

interactions (Figure 1A). The structural hallmark of HMGB1 lies

in its three distinct domains: two HMGBs, an NLS, and an acidic

tail. These domains, together with the various binding sites, allow

HMGB1 to perform vital roles in cellular processes, including

immune regulation and tumor development (Figure 1B).

HMGB1 exhibits structural variations depending on its redox

state and the presence or absence of disulfide bonds. These

structural changes directly affect biological functions (1).

In their reduced state, specific cysteine residues of HMGB1,

such as those located at positions 23, 45, and 106, remain in the

reduced form. Reduced HMGB1 exhibits chemotactic activity,

attracting leukocytes without relying on traditional cytokines or

chemokines. Furthermore, the reduced state of HMGB1 opposes

oxidation due to reactive oxygen species (ROS), maintaining its

structural stability and allowing normal execution of its biological

functions. This state also contributes to the promotion of repair of
A

B

FIGURE 1

(A) Structure of HMGB1 protein. (B) Function of HMGB1 protein in tumor. AMPK, AMP-activated protein kinase; BCL2, B-cell CLL/lymphoma 2;
BECN, beclin; Breg, regulatory B; CSCs, cancer stem cells; DAMP, danger-associated molecular pattern; DC, dendritic cell; ERK, extracellular signal-
regulated kinase; FOXP3, forkhead box P3; HMGB1, high mobility group box 1; HSP27, heat-shock protein 27; IL, interleukin; JNK, c-Jun N-terminal
kinase; LAIR1, leukocyte-associated immunoglobulin like receptor 1; MMPs, matrix metallopeptidases; mTOR, mechanistic target of rapamycin
kinase; NF-kB, nuclear factor-kappa B; NLRP3, NLR family pyrin domain containing 3; NLS, nuclear localization signals; TP53, tumor protein 53; PI3K,
phosphatidylinositol 3 kinase; PINK1, PTEN induced kinase 1; RAGE, receptor for advanced glycation end products; TIM1, T-cell immunoglobulin
mucin family member 1; TLR4, toll-like receptor 4; YAP, Yes1 associated transcriptional regulator.
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damaged tissue and regeneration and enhances the phagocytic

activity of phagocytic cells and the autophagic activity in

neighboring cancer cells.

In contrast, when HMGB1 is in its oxidized state, cysteine

residues are oxidized, leading to the loss of chemotactic and

cytokine-inducing activities. Oxidation is particularly common in

highly acidic environments. The oxidized form of HMGB1 exhibits

suppressed immunogenic function, and its intramolecular

interactions can also undergo changes, that affect the

conformational structure and stability of HMGB1. Such structural

alterations can potentially affect the role of HMGB1 in cell signaling

and immune responses.

Specifically, the presence of disulfide bonds in HMGB1 alters its

structure. When the disulfide bond is located within the Box-A

region (between cysteines at positions 23 and 45), the cytokine-

induced activity of HMGB1 is suppressed. This structural change

may affect the interactions between HMGB1 and other molecules,

thereby influencing its function in cell signaling and

immune responses.
3 Role of HMGB1 in inflammation

Elevated HMGB1 levels have been observed in patients with

various inflammatory conditions, including mechanical trauma,

stroke, acute myocardial infarction, acute respiratory distress, and

liver transplantation. This protein is actively released from cells

during injury or stress, and its extracellular presence can trigger

inflammatory cascades (8).

In hepatic ischemia–reperfusion injury, HMGB1 levels increase

early after reperfusion and persist for a prolonged periods (9). This

increase in HMGB1 levels contributes to liver damage by promoting

the release of pro-inflammatory cytokines. Administration of

soluble RAGE or neutralizing antiHMGB1 antibody attenuates

liver damage, further supporting the role of HMGB1 in this

inflammatory process. TLR4, a HMGB1 receptor, is also involved

in hepatic ischemia–reperfusion injury, and TLR4-deficient mice

are protected from this injury. TLR4 mediates HMGB1-induced

inflammation and regulates the HMGB1 secretion. Hypoxia, a

common feature of ischemia–reperfusion, induces the active

release of HMGB1 from hepatocytes through a TLR4-dependent

mechanism involving ROS production and calcium-dependent

kinase signaling.

HMGB1 also activates the non-canonical inflammasome

pathway, leading to cell death through pyroptosis (10). This

process can contribute to immune hyperactivity and

immunosuppression, which may explain the late sepsis-related

mortality. In hepatic infectious diseases, HMGB1 activity can be

suppressed by glycyrrhizinic acid, providing a potential therapeutic

strategy for modulating inflammation.

In severe pulmonary inflammatory diseases, including

coronavirus disease-2019 (COVID-19), HMGB1 is abundantly

secreted by necrotic pulmonary epithelial cells and innate

immune cells (11). The disulfide form of HMGB1 triggers the

release of pro-inflammatory cytokines, further exacerbating

inflammation under these conditions.
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4 Role of HMGB1 in cancer stem
cell regulation

Cancer Stem Cell (CSCs) are a subpopulation of cells within a

tumor that possess self-renewal and differentiation capabilities,

similar to normal stem cells. These cells are thought to be

responsible for tumor initiation, metastasis, and recurrence. In

the context of CSC regulation, HMGB1 exhibits several functions

that contribute to the maintenance and expansion of

CSC populations.

HMGB1 promotes CSC self-renewal. By interacting with

specific receptors and signaling pathways, such as LC3II/TLR4

associated transcriptional regulator (YAP1), HMGB1 stimulates

the expression of genes involved in stem cell maintenance and

proliferation (12, 13). This leads to an increase in the number of

CSCs within the tumor, thereby enhancing the tumorigenic

potential of cancer cells.

Following radiotherapy, differentiated cancer cells that regain

stem cell characteristics can improve the population of CSCs, thus

accelerating tumor recurrence and metastasis (14). This process

involves the translocation of cytoplasmic YAP mediated by

HMGB1/TLR2 into the nucleus. Subsequently, YAP forms a

complex with hypoxia inducible factor 1 subunit alpha (HIF1A)

in the nucleus, further activating dedifferentiation of CD133-

negative pancreatic cancer cells.
5 Role of HMGB1 in metastasis
and angiogenesis

HMGB1 overexpression and or elevated serum HMGB1 levels

have been observed in several types of cancer, including

nasopharyngeal carcinoma, liver cancer, prostate cancer,

pancreatic cancer, melanoma, gastric cancer, esophageal cancer,

cervical cancer, breast cancer, malignant pleural mesothelioma, and

bladder cancer (15). This overexpression of HMGB1 is often

associated with a poor prognosis. Jiao et al. indicated that

HMGB1 plays a critical role in the invasion and metastasis of

breast cancer (16). In particular, overexpression of HMGB1 can

restore the migration ability of breast cancer cells, which is inhibited

by silencing of the hematological and neurological expressed 1-like

(HN1L) gene.

The tumor microenvironment (TME) is closely associated with

tumor invasion and propagation (17). Neutrophils are crucial

inflammatory cells in the environment (18). Tumor-infiltrating

neutrophils promote glioma progression by regulating the

HMGB1/RAGE/interleukin 8 (IL8) axis (19). HMGB1 is a crucial

component of neutrophil extracellular traps and has strong affinity

for RAGE receptors. It activates the nuclear factor kappa B (NF-kB)
pathway, which effectively promotes the secretion of IL8, leading to

increased proliferation of glioma cells. Continuous secretion of IL8

contributes to tumor angiogenesis and metastasis, thus enhancing

the invasion of the TME by neutrophils.

The epithelial-to-mesenchymal transition (EMT) is a process

driven by HMGB1, which may be an important factor responsible
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for tumor metastasis (20). HMGB1 up-regulates the expression of

matrix metallopeptidases (MMPs), which further modulates the

TME and results in EMT amplification. Additionally, a positive

correlation has been revealed between metastasis to other sites and

the activated RAGE/NF-kB signaling pathway, along with

upregulated HMGB1 expression in prostate cancer cells.

Angiogenesis, the process of developing new blood vessels from

preexisting capillaries, plays a vital role in various physiological and

pathological processes, including tumor growth. In 2006, HMGB1

was identified as a factor that promotes angiogenesis in endothelial

cells from various sources (21). Subsequent mechanistic studies

revealed that RAGE receptors play a crucial role in extracellular

HMGB1-mediated angiogenic activity through the mitogen-

activated protein kinase/extracellular signal-regulated kinase

(MAPK/ERK) pathway. Moreover, HMGB1 activates NF-kB
through membrane receptor stimulation, leading to the

production of angiogenic factors in hematopoietic cells (22).

Studies have demonstrated the upregulation of HMGB1 in

cancerous tissues compared to that in surrounding non-malignant

tissues. In breast cancer cells (MCF-7), HMGB1 promoted tumor

vessel formation and enhances cancer cell migration by regulating

HIF1A through the phosphatidylinositol 3 kinase/protein kinase B

(PI3K/AKT) signaling pathway (23). The ability of HMGB1 to

promote angiogenesis was also observed in ovarian cancer (24).

Deacetylation and inhibition the cytosolic release of HMGB1 by

sirtuin 1 (SIRT1) inhibits migration and angiogenesis in ovarian

cancer cells (25).

Zhang et al. revealed a key role for HMGB1 in hepatitis B virus-

induced primary liver cancer (26). During tumor formation,

hepatitis B virus-encoded X protein (HBx) induced HMGB1

expression, which activates signal transducer and activator of

transcription 3 (STAT3) to promote EMT and angiogenesis.

Furthermore, there was a reciprocal relationship between HMGB1
Frontiers in Oncology 04
and miR-34a expression levels. HBx-induced HMGB1 expression

was regulated by the NF-kB signaling pathway, which was blocked

by miR-34a, whereas STAT3 decreased miR-34a expression.

Furthermore, extracellular HMGB1 activated the IL6/STAT3/

miR-34a axis.

In gastric cancer, IL8 is the most notable cytokine associated

with serum HMGB1; suppression of IL8 markedly reduces human

umbilical vein endothelial cell migration and tubule formation

activities induced by recombinant human HMGB1 or mock-

transfected HMGB1 (27). These findings suggest that HMGB1

overexpression promotes tumor angiogenesis through IL8

expression in gastric cancer.

In conclusion, HMGB1 plays a crucial role in tumor

angiogenesis by activating various signaling pathways and

inducing the production of angiogenic factors. The identification

of HMGB1 as a promoter of angiogenesis in cancerous tissues

provides a promising therapeutic target for cancer treatment.
6 Role of HMGB1 in autophagy

Autophagy is a cellular self-degradation mechanism closely

associated with cancer metabolism and metastasis (28). HMGB1

may be a key protein in the induction of this process (29). The

protein can induce autophagy through several pathways, depending

on its location within the cell (Figure 2).

Inside the nucleus, HMGB1 modulates the expression of the

heat-shock protein 27 (HSP27) gene and activates PTEN induced

kinase 1/Parkin (PINK1/Parkin), an important pathway that

regulates mitochondrial autophagy and acts as a transcription

factor. Furthermore, HSP27 phosphorylation regulates actin

polymerization and contributes to mitophagy (30). It is not clear

whether HSP27 expression is regulated by HMGB1, or whether
FIGURE 2

Pathways of autophagy induction by HMGB1. In the extracellular environment, reduced-HMGB1 could bind to the RAGE receptor rather than TLR2/4
to activate ERK1/2 and inhibit the expression of TP53, or exert an effect on the AMPK/mTOR pathway. In the cytoplasm, HMGB1 could induce the
dissociation of the BECN1/BCL2 complex by ERK1/2 or bind to BECN1. It also activated the AMPK/mTOR pathway. In the nucleus, HMGB1 could
stimulate HSP27 transcription to lead to autophagy via the PINK1/Parkin pathway. AMPK, AMP-activated protein kinase; BCL2, B-cell CLL/lymphoma
2; BECN1, beclin 1; ERK, extracellular signal-regulated kinase; HMGB1, high mobility group box 1; HSP27, heat-shock protein 27; mTOR, mechanistic
target of rapamycin kinase; PI3K, phosphatidylinositol 3 kinase; PINK1, PTEN induced kinase 1; RAGE, receptor for advanced glycation end products;
TLR, toll-like receptor; TP53, tumor protein 53.
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HSP27 is required for HMGB1-dependent mitophagy. To initiate

mitophagy, PINK1 generates phospho-ubiquitin Parkin and

promotes its mitochondrial translocation, which participates in

mitochondrial autophagy by mediating voltage dependent anion

channel 1 (VDAC1) ubiquitination. In this process, p62 is

transported to the mitochondria, where it binds to the

microtubule associated protein 1 light chain 3 alpha (MAP1LC3),

leading to mitochondrial autophagy (31). PINK1-induced

autophagy may also be Parkin-independent, and optineurin

(OPTN) and NDP52 can stimulation of unc-51 like autophagy

activating kinase 1 (ULK1), DFCP1, WD repeat domain, and

phosphoinositide interacting 1 (WIPI1) protein molecules,

inducing the mitochondrial degradation. Parkin functions as an

amplifier that enhances PINK1-triggered mitochondrial autophagy

signaling (31).

HMGB1 has also been documented as a beclin 1-binding

(BECN1-binding) protein, which plays an important role in

sustaining autophagy in the cytoplasm. It can bind to BECN1

through an intramolecular disulfide bridge (C23/45), resulting in

dissociation of the inhibitory partner of BECN1 B-cell CLL/

lymphoma 2 (BCL2). Tang et al. demonstrated that mutations in

C23S and C45S led to the loss of the ability of HMGB1 to bind to

BECN1, consequently inhibiting autophagy (32). Furthermore,

phosphorylation of BCL2 by HMGB1 through the activation of

the ERK/MAPK pathway may also be a possible mechanism

involved in the inhibition of the BECN1/BCL2 complex (33).

Subsequently, the BECN1/phosphatidylinositol 3-kinase catalytic

subunit type 3 (BECN1/PIK3C3) complex is formed, initiating the

recruitment of autophagy related (ATG) proteins to the

phagophore to induce autophagy.

Extracellular HMGB1 due to tumor cell death can induce

autophagy, with RAGE receptors playing a central role in

HMGB1-induced autophagy. The redox state of HMGB1 is a

crucial factor in determining its pathophysiological activities, with

reduced binding of HMGB1 to RAGE receptors promoting

autophagy; although, oxidized HMGB1 did not exert an effect

(33). HMGB1 can regulate autophagy through a HMGB1-RAGE-

ERK1/2-dependent pathway, enabling survival of Lewis cells (34).

The mechanistic target of rapamycin kinase (mTOR), a serine/

threonine kinase, also plays an important role in the regulation of

autophagy (35). HMGB1, stimulated by chemotherapeutic drugs,

can be transported to the cytoplasm and promotes autophagy

through activation of AMP-activated protein kinase (AMPK),

which in turn causes inhibition of mTOR in hepatocellular

carcinoma cells (HCC) (36). The AMPK/mTOR pathway can act

downstream of HMGB1/RAGE to regulate autophagy in HCC (36).

However, RAGE has a negative regulatory effect on the AMPK/

mTOR signaling pathway.

Tumor protein 53 (TP53) is a tumor suppressor with a wide

range of functions. The function of TP53 in autophagy regulation is

strongly influenced by its subcellular location. In a transcription-

independent manner, cytoplasmic TP53 protein suppresses

autophagy by inhibiting HMGB1/BECN1 complex formation

(36). TP53 knockout enhanced autophagy and promoted the

translocation of HMGB1 from the nucleus to the cytoplasm. Lai

et al. reported that extracellular binding of HMGB1 to RAGE
Frontiers in Oncology 05
receptor exerted an inhibitory effect on TP53, which was

conducive to autophagy (37).
7 Role of HMGB1 in chemotherapy
and radiotherapy resistance

Apoptosis induced by chemotherapy drugs or radiotherapy is

an important type of cell death kills cancer cells. However, changes

in TME and antiapoptotic factors often result in the development of

drug resistance, leading to treatment failure and cancer relapse.

HMGB1 generally plays a blocking role during the treatment

process. In this section, we discuss the role of HMGB1 in the

regulation of certain commonly used anticancer drugs.
7.1 Adriamycin

Li et al. revealed that adriamycin significantly increases HMGB1

levels in the cytoplasm of HCC cells. HMGB1 enhances autophagy

and protects cancer cells from adriamycin-induced apoptosis by

activating the AMPK/mTOR signaling pathway, which further

contributes to chemoresistance in HCC cells (36). Lai et al. found

that RAGE activation though HMGB1 binding was involved in drug

resistance, including resistance to adriamycin in acute leukemia.

This occurred through three mechanisms: 1) HMGB1 enhanced

autophagy by activating ERK signaling, thus inhibiting mTOR

activation and initiating the activity of the ULK1/ATG13/FIP200

complex; 2) HMGB1 inhibited apoptosis by restricting the BCL2/

BCL2 associated X (BCL2/BAX) pathway with TP53 involvement;

and 3) HMGB1 activated the NF-kB pathway, thereby inducing the

expression of P-glycoprotein (P-gp) and multidrug resistance-

associated protein (MRP) to expedite drug excretion (37).

Similarly, Huang et al. confirmed the role of HMGB1 in

multidrug resistance, including resistance to adriamycin,

by regulat ing the formation of the BECN1/class III

phosphatidylinositol 3-kinase (BECN1/PI3KC3) complex involved

in autophagy in osteosarcoma (38, 39). Furthermore, resistance to

adriamycin caused by HMGB1 has also been found in breast cancer

(40, 41) and neuroblastoma (42).
7.2 Cisplatin

Zhu et al. confirmed that HMGB1 expression is markedly

increased in resistant nasopharyngeal carcinoma cells compared

to that in sensitive cells (43). Mechanistic studies substantiated

HMGB1-induced IL6 expression followed by activation of the Janus

kinase-STAT3 (JAK-STAT3) pathway, which results in acquired

resistance to cisplatin. In addition, studies have confirmed that long

noncoding RNA myocardial infarction associated transcript

(MIAT) is an important regulatory factor of HMGB1. In another

study, Zhu et al. demonstrated that HMGB1 interaction with Ku

autoantigen, and KU70 participates in resistance to cisplatin and

ionizing radiation (IR) by promoting the efficiency of non-
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homologous end joining (NHEJ) (44). HMGB1 may be associated

with the development of resistance to cisplatin in lung

adenocarcinoma cells. Higher levels of HMGB1 have also been

detected in cisplatin-resistant A549/DDP cells compared to

cisplatin-sensitive A549 cells (45). In cisplatin-persistent 1.3.11,

A549, HCC4006, and SKLU-1 cells, the expression of RAGE was

increased, while that of TLR-2 or TLR-4 was not significantly

changed (46). Furthermore, downregulation of HMGB1 by short

hairpin RNA (shRNA) helped restore the chemosensitivity of lung

cancer cells.
7.3 Vinblastine

Zhan et al. showed that extracellular HMGB1 displayed

cytoprotective activity against SGC-7901 and BGC-823 gastric

cancer cells using the microtubule-targeting drug vincristine. The

drug induces the mitochondrial apoptotic pathway via

transcriptional upregulation of myeloid cell leukemia 1 (MCL1),

an anti-apoptotic member of the BCL2 protein family (47).

Inhibition of RAGE expression by small-interfering RNA (siRNA)

resulted in the blockage of MCL1 mRNA upregulation induced by

recombinant HMGB1 activation. This led to enhanced induction of

apoptosis by vincristine. Additionally, the knockdown of TLR2 or

TLR4 partially affected the regulation of recombinant HMGB1. In

K562 cells, HMGB1 can induce autophagy and increase vinblastine

chemotherapeutic resistance via the AMPK-mTOR pathway (48).

Extracellular HMGB1 has been shown to considerably increase P-

gp expression in human gastric adenocarcinoma cells, thus,

increasing resistance to adriamycin and vincristine and

encouraging the development of multidrug resistance (49).
7.4 Taxane

Lei et al. observed constant paclitaxel-induced expression of

HMGB1 in metastatic castration-resistant prostate cancer cells.

Furthermore, HMGB1 can activate c-Myc signaling, an important

pathway that contributes to drug resistance in various types of

cancers (50). Similarly, several reports showed that protective

autophagy induced by HMGB1 is also an important mechanism

for resistance to taxane (51, 52).
7.5 Radiation therapy

Radiation therapy is an essential treatment option for cancer.

The generation of extracellular neutrophil traps induced by

HMGB1, an important inhibitor of radiotherapy, has been

observed in bladder cancer models mediated by TLR4 expression

and has been confirmed by tumor growth regression through

inhibition of HMGB1 (53). In contrast, HMGB1 may promote

the sensitivity of tumor cells to radiotherapy. HMGB1 suppression

increases cell proliferation and invasion, but decreases sensitivity to

radiation therapy in cervical cancer, and HMGB1 induction exerts

the opposite effects (54). The enhancing effect of HMGB1 on
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sensitivity to radiotherapy may be related to increased expression

of retinoblastoma (RB), a tumor suppressor protein.

Exposure to ultraviolet (UV) radiation is an important risk

factor for melanoma development. The discovery of an autonomous

cell response to UV damage by the HMGB1/RAGE pathway in

melanocytes may contribute to their resistance to apoptosis and cell

death, and may have implications for the early stages of melanoma

formation (55).
7.6 Other pathways involving HMGB1

Yin et al. demonstrated that HMGB1 counteracts the

cytotoxicity of gemcitabine by mediating the c-Jun N-terminal

kinase (JNK) and ERK activities to induce protective autophagy.

Knockdown of HMGB1 strongly enhances gemcitabine-induced

apoptosis in bladder cancer cells and suppresses autophagy (56).

Furthermore, gemcitabine resistance may be related to activation of

HSP27 (an important drug resistance-related protein) by HMGB1

(57, 58).

Higher levels of HMGB1 expression have also been found in

chemotherapy-resistant RPMI8226/ADR, RPMI8226/BOR, and

RPMI8226/DEXMM cell lines. Silencing endogenous HMGB1

using shRNA improved drug sensitivity and decreases NF-kB
signaling activity in chemotherapy-resistant MM cells. Activation

of NF-kB signaling reverses the enhancement of drug sensitivity

caused by HMGB1 silencing, indicating that the NF-kB signaling

pathway is critical in drug resistance mediated by HMGB1 (59).

In recent years, numerous reports have confirmed the

importance of HMGB1 as a target for chemotherapy or as a

resistance to radiation therapy in various types of cancer

(Figure 3). However, oxidized HMGB1 enhances the cytotoxicity

of chemotherapeutic agents and cause apoptosis through the

caspase 9/3 (CASP9/3) intrinsic pathway (60). Therefore, it is of

great significance to identify the redox state and subcellular location

of HMGB1. This would allow researchers to better understand

whether HMGB1 inhibits or promotes apoptosis by inducing

protective autophagy, blocking or activating CASP-dependent

pathways may be optimal as a clinical antitumor strategy.
8 Role of HMGB1 in necrosis

A growing body of evidence indicates that necrosis is a

molecular control mechanism and a modulated form of cell death

rather than simply an uncontrolled and accidental process. The

concept of regulatory necrosis currently encompasses several modes

of cell death, such as oncosis, necroptosis, ferroptosis, and

pyroptosis. Unlike tumor-suppressed apoptosis or autophagic cell

death, necrosis is considered ‘repair cell death’ occurring during

tumor progression and invasion. The cell membrane of necrotic

cells is ruptured, and cytoplasmic contents such as HMGB1 are

released into the extracellular space (61, 62). Apoptotic cells modify

their chromatin to bind to HMGB1 due to generalized histone

acetylation, to prevent the release of HMGB1 in the early stages. In

contrast, necrotic cells release HMGB1 passively through a special
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vesicle-mediated secretory pathway; independently of the

endoplasmic reticulum-Golgi apparatus because of the lack of a

signal peptide (63).

HMGB1 is involved in tumor progression as a pro-

inflammatory and protumor cytokine released by necrotic cells

(62). Liu et al. confirmed that etoposide caused the release of

HMGB1 in acute myeloid leukemia cells. However, this

extracellular HMGB1 prevented etoposide-induced necroptosis

through the NF-kB pathway rather than preventing the

degradation of the cellular inhibitor of apoptosis 1/2 (cIAP1/2) or

X-linked inhibitor of apoptosis (XIAP) (64).

Iron-dependent lipid peroxidation is a characteristic of

ferroptosis, a newly identified type of controlled necrosis. Wen

et al. demonstrated that HMGB1 is a DAMP released by ferroptotic

cells and positively regulated by an autophagic pathway dependent

on ATG5- and ATG7 (65). Histone deacetylase (HDAC) inhibitors,

which can induce autophagy and enhance HMGB1 acetylation, can

lead to the release of HMGB1 in ferroptosis. Current study has

showed that RAGE rather than TLR4 is required for the production

of TNF mediated by HMGB1 in macrophages in response to

ferroptotic cells. This evidence implies that inhibition of the

HMGB1/RAGE pathway could reduce ferroptosis-induced

inflammation. Erastin, a ferroptosis inducer, promotes

cytoplasmic translocation of HMGB1 in HL-60/NRASQ61L cells.

Ye et al. found that HMGB1 knockdown could effectively

suppressed iron-mediated ROS generation and erastin antitumor

activity through the RAS-JNK/p38-dependent signaling pathway

(66). These findings imply that HMGB1-mediated ferroptosis may

be a potential target for cancer therapy.

Pyroptosis is a type of programmed cell necrosis that is mainly

mediated by pro-inflammatory gasdermin (GSDM). The N-

terminus of the cleaved GSDM generates pores in the cell

membrane during pyroptosis, resulting in cell disintegration and
Frontiers in Oncology 07
the release of intracellular factors, such as HMGB1 (67). Tan et al.

observed that HMGB1 and GSDME-mediated pyroptosis released

could promote the development of colorectal cancer (68). This

study further revealed that HMGB1-induced activation of ERK1/2

signaling leads to colorectal cancer carcinogenesis and proliferating

cell nuclear antigen (PCNA) expression, which is a key proliferation

marker indicating the rate at which cells multiply.
9 Role of HMGB1 in immunotherapy

9.1 Immunogenic cell death

Immunogenic cell death is a mode of tumor cell death caused by

the activation of the host immune system in response to

chemotherapy, UV radiation, photodynamic therapy, or

radiotherapy (69). This activation involves the release of DAMPs,

such as calreticulin (CALR), HMGB1, adenosine triphosphate, and

HSPs, from dead tumor cells (70, 71). Cytotoxic T cells are recruited

by antigen-presenting cells to kill cancer cells directly. HMGB1

plays an important role in immunogenic cell death, while acting as a

well-characterized DAMPs. However, as already discussed, the

redox state of HMGB1 plays a critical role in its immunogenic

activity of HMGB1 (72). Redox modifications regulate the

translocation, release, and activity of HMGB1. The fully reduced

HMGB1 translocated to extracellular space following injury has

chemokine activity, recruiting immune cells. Extracellular immune

cells can directly secrete disulfide-HMGB1, or they can oxidize

reduced all-thiol-HMGB1 to disulfide-HMGB1 by ROS generation.

Disulfide-HMGB1 alone has cytokine activity; it promotes the

release of pro-inflammatory cytokines, thus participating in the

inflammatory response. Finally, HMGB1 is oxidized by ROS to
FIGURE 3

Role of HMGB1 in resistance to chemotherapy or radiation therapy. AMPK, AMP-activated protein kinase; BECN1, beclin 1; BCL2, B-cell CLL/
lymphoma 2; ERK, extracellular signal-regulated kinase; HSP27, heat-shock protein 27; STAT3, signal transducer and activator of transcription 3; JNK,
c-Jun N-terminal kinase; KLF4, KLF transcription factor 4; MRP, multidrug resistance-associated protein; mTOR, mechanistic target of rapamycin
kinase; NF-kB, nuclear factor-kappa B; P-gp, P-glycoprotein; PI3KC3, class III phosphatidylinositol 3-kinase; RAGE, receptor for advanced glycation
end products.
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become all-oxidized-HMGB1, consequently abolishing its cytokine

and chemokine activities. Although HMGB1 can be released both

actively and passively, no significant difference was observed in the

biological and molecular events mediated by this release (73).

A main mechanism through which HMGB1 acts its role as a

DAMP is the activation of TLR4 and its adaptor myeloid

differentiation primary response protein (MYD88) in dendritic

cells (DCs). This activation underlies the processing and

presentation of dying tumor cell antigens. Silencing of HMGB1

with siRNA in the doxorubicin-treated CT26 or MCA205 tumor

model and irradiated EG7 dying tumor cells disrupts antigen

presentation and inhibits the priming of T cells (74).

Furthermore, HMGB1 promotes DC activation and elicits an

immune response through activation of the RAGE receptor.

Owing to the chemokine receptors C-C motif chemokine receptor

7 (CCR7) and C-X-C motif chemokine receptor 4 (CXCR4),

lipopolysaccharide-stimulated DCs can migrate to CCL19 and

CXCL12. However, the presence of antiHMGB1 and antiRAGE

antibodies inhibits the migration of lipopolysaccharide-stimulated

DCs (75). The role of extracellular HMGB1 in promoting DC

activation and recruitment of T cells has also been demonstrated

in clinical studies in addition to preclinical models (76). A study

analyzing tissue samples obtained from patients with non-small cell

lung cancer showed that high expression of HMGB1 and CXCL11

was positively correlated with overall survival of patients. Similarly,

plasma HMGB1 levels were significantly higher in patients with

breast cancer who were sensitive to epirubicin/docetaxel than in

non-responders (77). The above data suggest that radiation therapy

and chemotherapy-induced elevation of HMGB1 expression may

be a favorable prognostic tool, and HMGB1 may be an

indispensable regulatory factor in immunotherapy.
9.2 M1 polarization

Macrophages are widely distributed white blood cells that are

activated under different inflammatory conditions, and include M1

(pro-inflammatory) and M2 (anti-inflammatory) macrophages,

under appropriate stimulation. By upregulating the expression of

pro-inflammatory mediators and creating an inflammatory state,

M1 macrophages play an important role in tumor suppression. In

contrast, M2 macrophages contribute to disease development by

secreting anti-inflammatory cytokines (78). Macrophages interact

with tumor cells and other components in the TME and undergo

polarization to the M2-type, thus exhibiting different tumor-

promoting actions. M1 polarization was induced by recombinant

HMGB1 or the MAPK-p38 stimulator, as reported by He et al. (79).

Positive-feedback release or production of HMGB1 and RAGE via

the MAPK-ERK pathway in macrophages promoted M1

macrophage polarization. Li et al. also reported that M1-like

polarization of tumor-related macrophages was aided by the

HMGB1/RAGE/NF-kB/NLR family pyrin domain containing 3

(HMGB1/RAGE/NF-kB/NLRP3) pathway, and elevated levels of
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HMGB1 enhanced the sensitivity of glioblastoma cells to

temozolomide (80).
9.3 Chemotherapy-induced
peripheral neuropathy

Although the inflammatory response induced by HMGB1 is

helpful in tumor immunotherapy, its inflammatory side effects

should not be underestimated. The pro-inflammatory effect of

HMGB1 is reflected in tumor immunotherapy and is a potential

therapeutic target for several inflammatory diseases, including

COVID-19 (81). Chemotherapy-induced peripheral neuropathy

(CIPN) is a common complication of chemotherapeutic drugs

such as paclitaxel, cisplatin, and vincristine, which can have

adverse effects on the therapeutic efficiency and quality of life of

patients. In severe cases, dosage reduction or discontinuation of

chemotherapy may be necessary. In recent years, numerous studies

have investigated the pharmacological effects of HMGB1 on tumor

pain and neuralgia, given its strong pro-inflammatory and propain

activities (82–84). Studies have shown that an anti-HMGB1-

neutralizing antibody can effectively inhibit CIPN in animals

receiving chemotherapy (85). Similarly, recombinant human

soluble thrombomodulin, an antibody that inactivates HMGB1,

also prevents the development of CIPN in rats treated with

paclitaxel or vincristine (86). Overall, HMGB1 mainly mediates

CIPN induced by inflammatory factors through the activation of

receptors, such as RAGE, TLRs, and CXCR4 on the cell membrane,

since macrophages actively secreted HMGB1 after paclitaxel

stimulation (85).
9.4 Immunotolerance

Numerous studies have demonstrated the vital role of HMGB1

in immune cells activations. However, recent investigations have

shown that several components neutralize extracellular HMGB1 or

alter its pro-inflammatory to anti-inflammatory effects (87).

HMGB1 contributes to protumor action of the M2 macrophage

phenotype in a RAGE-dependent manner. Hypoxia-induced

HMGB1 production promotes the accumulation of M2-like

macrophages and an IL10-rich environment through RAGE

signaling (88). C1q/leukocyte-associated immunoglobulin like

receptor 1 (Clq/LAIR1) is one of the most important associates of

HMGB1/RAGE for inducing anti-inflammatory activities. C1q is an

evolutionarily conserved molecule with immunosuppressive effects,

and LAIR1 (an immunoglobulin superfamily transmembrane

protein) is a high-affinity receptor for C1q. These four proteins

form a polymeric protein complex, which causes monocytes to

adopt an M2-like phenotype. This process increases the production

of CD163 and several anti-inflammatory molecules, including

programmed cell death 1 ligand 1 (PDL1), Mer, and IL10 (89).

However, the immunogenic activity of HMGB1 is dependent on its
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redox state. A clinical study focusing on basal-like breast cancer

cells reported the release of high levels of HMGB1. Moreover, the

tumor-specific cytoplasmic expression of HMGB1 is further linked

to immunological tolerance and poor clinical outcomes. In

cytoplasmic HMGB1-positive malignancies, an increased density

of CD206+ M2macrophages has been found in the TME, along with

amplification in forkhead box P3 (FOXP3+) regulatory T cells (90).

Furthermore, inhibition of extracellular HMGB1 decreases the

growth of preexisting solid tumors and enhances the therapeutic

effectiveness of anti-programmed cell death 1 (anti-PD1) treatment

in immunocompetent mice by activating anticancer immune

responses. In a highly oxidized TME, the reduced-disulfide/

oxidized ratio of HMGB1 may be less than 2:1. Furthermore, DC

activation and its tolerogenic activity were considerably increased

by the reduced and oxidized forms of HMGB1, which can be

negatively regulated by RAGE inhibition.

Ye et al. on HCC-derived exosomes confirmed that HMGB1 can

trigger the production of protumorigenic regulatory B cells (Breg)

(89). T-cell immunoglobulin mucin family member 1 (TIM1+) Breg

cells appear to include the highest number of IL10-producing B

cells; these cells have 8–20 times higher IL10 expression than the

rest of the B cell subsets. In addition, they account for >70% of all

IL10-producing B cells (90). The IL10 produced by these TIM1+

Breg cells was sufficient to induce tremendous anti-immunogenic

activity. Initially, through the HMGB1/TLR2/4/MAPK pathway,

HCC cells release exosomes that can stimulate the accumulation of

TIM1+ Breg cells. Subsequently, by secreting IL10 and restricting

CD8+ T cell activities, TIM1+ Breg cells generate an

immunosuppressive milieu that promotes HCC growth.
10 Therapeutic targeting of HMGB1

Currently, there are no commercially available drugs that

specifically target HMGB1 expression. Nevertheless, several

candidates are currently in clinical development. CD24Fc, a

first-in-class recombinant fusion protein, serves as an

immunomodulator targeting a novel immune checkpoint in the

innate immune system (91). It inhibits HMGB1, HSP70/90, and

other molecules. In particular, CD24Fc has demonstrated

promising activity for symptomatic improvements in patients

with severe COVID-19 (92). Although Merck Sharp & Dohme

(NJ, USA) has discontinued its development as a treatment for

COVID-19, CD24Fc retains its potential usefulness in the treatment

of malignancies such as melanoma.

SB17170 and SB1703 are small-molecule drugs developed by

Spark BioPharma (Seoul, RK) that specifically target HMGB1. In

particular, SB17170 served as a prodrug, for its active metabolite

SB1703. SB17170 exhibited antitumor activity in B16F10 murine

syngeneic models, but not in immunodeficient models, indicating

that its antitumor mechanism relies on the participation of the

immune system. Treatment with SB17170 induced intratumoral T

cell infiltration, reduced the number of MDSC, and lowered the

levels of HMGB1 in the blood. When used in combination with
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immune checkpoint inhibitors, SB17170 enhances antitumor

responses (93).

Dociparstat sodium (DSTAT, CX-01) is a low anticoagulant

heparin with multiple mechanisms of action, including inhibition of

the CXCR4/CXCL12 axis, blockage of HMGB1, and binding of

platelet factor 4 (PF-4) (94). Its therapeutic effect in combination

with standard chemotherapy for acute myeloid leukemia is

currently under investigation in phase III clinical trials.
11 Conclusion

HMGB1 is a multifunctional molecule that in intricately

involved in various pathological conditions, particularly in

inflammatory disorders and malignancies. It plays a pivotal role

in numerous biological processes and significantly promotes the

development, migration, and angiogenesis of tumors in both the

extracellular and endogenous environments. This promotion is

achieved through the binding of its ligand to receptors such as

RAGE and TLR4. Furthermore, HMGB1 has been implicated in the

emergence of resistance to antitumor drugs, either by inducing

protective autophagy or by enhancing the expression of drug-

resistant proteins.

As a DAMP, HMGB1 effectively in recruits DCs. In addition, it

can induce immunogenic cell death, thereby activating the immune

response of the body. However, it should be noted that the cytokine

and chemokine activities of reduced-HMGB1 are often triggered by

oxidative agents (e.g., ROS) in the TME.

Considering the complex and multifaceted nature of HMGB1,

future studies must investigate several crucial aspects. First, it is

important to clarify the specific role of each HMGB1 receptor in the

immune response. This understanding will help us gain insight

into the mechanisms by which HMGB1 interacts with and

modulates the immune system. Second, understanding the

dynamics of HMGB1 translocation between the intracellular and

extracellular environments is essential. This knowledge could

provide valuable clues on the functions of HMGB1 in different

cellular compartments and its potential contribution to

pathological processes.

It remains unclear whether the release of HMGB1 during

different types of cell death mediates similar immune responses.

To our knowledge, this is a crucial gap that must be addressed. In

addition, the interaction between HMGB1 and non-immunogenic

DAMPs in inflammatory regulation requires further investigation.

Finally, the development of effective and selective HMGB1

inhibitors remains a critical research topic. Such inhibitors, if

designed to specifically target the intracellular or extracellular

functions of HMGB1, could potentially enhance tumor therapy

by blocking autophagy and nuclear homeostasis. This approach

holds promise for the development of novel antitumor medications.

In conclusion, HMGB1 is a complex and multifaceted molecule

with widespread implications in various pathological conditions.

Future research should focus on clarifying its specific roles and

interactions in the immune response, translocation dynamics, and
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inflammatory regulation to improve our understanding of its role in

tumor growth and progression. The development of targeted

inhibitors of HMGB1 represents a promising avenue for

antitumor therapy.
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