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Purpose: This study aims to evaluate the utility of radiomic features from

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in

distinguishing HER2-low from HER2-zero breast cancer.

Patients and methods: We retrospectively analyzed 118 MRI cases, including 78

HER2-low and 40 HER2-zero patients confirmed by immunohistochemistry or

fluorescence in situ hybridization. From each DCE-MRI case, 960 radiomic features

were extracted. These features were screened and reduced using intraclass

correlation coefficient, Mann-Whitney U test, and least absolute shrinkage to

establish rad-scores. Logistic regression (LR) assessed the model’s effectiveness in

distinguishing HER2-low from HER2-zero. A clinicopathological MRI characteristic

model was constructed using univariate and multivariate analysis, and a nomogram

was developed combining rad-scores with significant MRI characteristics. Model

performancewas evaluated using the receiver operating characteristic (ROC) curve,

and clinical benefit was assessed with decision curve analysis.

Results: The radiomics model, clinical model, and nomogram successfully

distinguished between HER2-low and HER2-zero. The radiomics model showed

excellent performance, with area under the curve (AUC) values of 0.875 in the

training set and 0.845 in the test set, outperforming the clinical model (AUC =

0.691 and 0.672, respectively). HER2 status correlated with increased rad-score

and Time Intensity Curve (TIC). The nomogram outperformed both models, with

AUC, sensitivity, and specificity values of 0.892, 79.6%, and 82.8% in the training set,

and 0.886, 83.3%, and 90.9% in the test set.

Conclusions: The DCE-MRI-based nomogram shows promising potential in

differentiating HER2-low from HER2-zero status in breast cancer patients.
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Introduction

Breast cancer (BC) is the most prevalent form of cancer globally

and remains the leading cause of cancer-related deaths in women

(1). This disease comprises diverse biological entities with different

prognoses and oncogenic drivers (2, 3). BC can be categorized into

five intrinsic subtypes using the PAM50 gene expression profile,

while traditional histological markers define four fundamental

clinical subtypes with prognostic value (4–8). Notably, HER2-

positive tumors, representing 15% of invasive BC, have a more

aggressive clinical course and poorer prognosis (9, 10). However,

advancements in HER2 therapies have improved the history and

prognosis of these tumors (11).

Recently, tumors with HER2 immunohistochemistry (IHC) 1+ or

2+ expression levels but negative in situ hybridization (ISH) have

been classified as HER2-low BC. Studies, such as NSABP B-47, have

shown that conventional anti-HER2 therapies do not effectively treat

HER2-low BC (12). Yet, clinical data suggest that antibody-conjugate

drugs like trastuzumab deruxtecan and trastuzumab duocarmazine

may benefit patients with low HER2 expression, expanding beyond

traditional HER2-positive tumors (13, 14). The introduction of

antibody-conjugate drugs has reshaped the HER2 landscape, as

seen in studies like DESTINY Breast04, where trastuzumab

deruxtecan demonstrated efficacy in HER2-low BC (13). Identifying

HER2-low status early in the disease course is crucial for tailoring

treatment strategies, especially in therapy-resistant, hormone

receptor-negative tumors (15, 16). Early detection of HER2-low

status during the disease process is critical for optimizing and

customizing treatment strategies. However, the restricted sampling

of potentially heterogeneous lesions during biopsies can result in

inconsistencies and inaccuracies in distinguishing between HER2-low

and HER2-zero expression (17). Furthermore, alterations in HER2

status can occur over time and during treatment, transitioning from

primary to recurrent BC, influenced by processes such as epithelial-

mesenchymal transition and gene mutations (18).

Despite the sensitivity of DCE-MRI in detecting BC,

distinguishing between HER2-low and HER2-zero expression

remains challenging. Radiomics, which extracts and analyzes

quantitative data from medical images, offers insights into the

tumor microenvironment (19). DCE-MRI features can predict

molecular subtype, histology, recurrence risk, treatment response,

and HER2 status (20–24).

However, no studies have explored using radiomics to

differentiate HER2-low and HER2-zero BC on DCE-MRI data.

Hence, this study aims to identify specific radiomics features that

can distinguish between HER2-low and HER2-zero BC, addressing

a significant gap in current knowledge.
Materials and methods

Patient set

The Institutional Ethics Council of Jiangsu University Affiliated

People’s Hospital gave its approval to this retrospective study (K-

20230002-W). The methods employed in differentiating between
Frontiers in Oncology 02
HER2-low and HER2-zero are depicted in a flowchart in Figure 1.

From January 2021 to September 2022, the research included a total

of 568 participants who performed DCE-MRI examinations.

Informed consent was obtained from all individual participants

included in the study. The inclusion criteria were: (1) HER2 status

precisely assessed by postoperative histopathological IHC and

fluorescence in situ hybridization; (2) HER2 status consist of

HER2-zero (IHC 0), HER2-low (IHC 1+ or IHC 2+/FISH-

negative), (3) images of lesions are clear and can be sketched; (4)

no history of radiotherapy, surgical decompression, or other

immunosuppressive therapy. The final group included 118 BC

patients (78 HER2-low breast cancer patients and 40 HER2-zero

breast cancer patients) for analysis.
HER2 status

IHC 0 was used to define HER2-zero. IHC 1+/2+ with a HER2

amplification negative result by in situ hybridization (ISH) methods

was designated as HER2-low. The American Society of Clinical

Oncology (ASCO)/College of American Pathologists (CAP)

recommendations state that HER2 amplification is detected when

the HER2/chromosome 17 centromere ratio is ≥2.0 (after 2013), the

HER2 Copy Number is ≥6.0, or the HER2 IHC is 3+.
MRI acquisition

A 3.0-T MRI scanner (Magnetom Skyra; Siemens Healthcare)

with a specialized 16-channel breast coil was used for the breast

MRIs. Fat-suppressed diffusion-weighted axial echo planar images

were taken after anatomical localization (field of view = 330 mm,

repetition/echo time= 6200/45 ms, matrix = 384 384 mm, slice

thickness = 4 mm, 28 slices, parallel imaging factor = 2, total

imaging time= 2.37 min). Diffusion weighting was used with b = 50,

800, and 1000 s/mm2. The signal was averaged after three

acquisitions to improve the signal-to-noise ratio.

Following that, fat-suppressed volume-interpolated breath-hold

DCEMRI images were obtained in three dimensions (3D). Six post-

contrast scans were obtained after a 2.5 mL/s intravenous injection

of 0.2 mL/kg Gadoterate Meglumine (Gd-DOTA), which was

followed by a 13-mL saline flush with a power injector (Irich;

Nemoto Kyorindo). DCE-MRI parameters were as follows: field of

view = 340 mm, repetition/echo time = 4.12/1.61 ms, flip angle =

10°, matrix = 384 mm,88 sections, parallel imaging factor = 1, and

total imaging duration = 44 s.
Tumor masking and radiomic
feature extraction

Export the DCE phase 2 images from the Picture Archiving

and Communication System (PACS) in DICOM format

(Figure 1). A radiologist, blinded to the pathological results,

manually delineated the tumor regions using 3D Slicer 4.11

software, avoiding the necrotic and cystic areas of the lesion. If
frontiersin.org
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the patient had multiple lesions, the largest lesion was selected for

delineation (Figures 2, 3). Using a simple random sampling

method, 16 cases were selected from 118 patients. Another

radiologist, blinded to the pathological results, re-delineated the

regions of interest for reproducibility analysis using the intraclass

correlation coefficient (ICC).
Frontiers in Oncology 03
Feature extraction, selection method and
radiomic model construction

960 features that were extracted from every ROI using Pyradiomics

library (https://pyradiomics.readthedocs.io/en/latest/), covering the

following categories: 14 shape features derived from the original
FIGURE 1

(A) Flowchart of the methods based on radiomics analysis for differentiation between HER2-low and HER2-zero. (B) The workflow of the
radiomics analysis.
FIGURE 2

Results obtained from a randomly-selected HER2-low (HER2 2+ negative) case. (A) Subtraction image of pre- and post-contrast scans. (B) Enlarged
image showing the ROI (red region) delineated manually by an experienced radiologist, then, the segmentation was examined by another radiologist.
(C) TIC curve (platform type) of the DCE image. (D) Pathology results showing IDCS (HER2 2+ gene confirmed by IHC).
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image, 18 first-order features, 68 texture features, 36 first-order

features following LOG transformation, 136 texture features,

and 688 small porter features following wavelet transformation.

Z-score normalization was used to standardize all of the

radiomic characteristics.

The ICC was used to evaluate the consistency of radiomic features

extracted from the regions of interest delineated by two radiologists in

16 patients. Only features with an ICC value greater than 0.75 were

retained for further study. The features filtered through ICC analysis

were subjected to the Mann-Whitney U test. Dimensionality

reduction of the features was performed using the least absolute

shrinkage and selection operator (LASSO) regression method with

10-fold cross-validation, identifying features that distinguish between

HER2-low expression and HER2-0 (Figure 4). The radscore for each

patient was calculated by multiplying the selected feature values by

their respective weight coefficients (Figure 5). Using logistic regression

analysis method, the radiomics model was constructed based on the

best eigenvalues of DCE-2 images.
Clinicopathological MRI feature modelling

To construct the clinicopathological MRI feature model, patient

data including age, maximum diameter of the tumor, clinical stage,
Frontiers in Oncology 04
lymph node metastasis status, type of time intensity curve (TIC), ER

expression, PR expression, and Ki-67 index were collected.

Continuous clinical feature variables were analyzed using t-tests,

and categorical clinical feature variables were analyzed using chi-

square tests or Fisher’s exact tests. Multivariate binary logistic

regression analysis was performed on the statistically significant

clinico-pathological mri features in the training set to determine the

correlation between each feature and HER-2 expression status in

breast cancer. Statistically significant variables were then selected to

construct the clinico-pathological MRI feature model.
Radiomic nomogram construction
and evaluation

Using the optimal radiomics features from the training set

combined with statistically significant clinicopathological MRI

features, a nomogram model was constructed and validated with

the validation set. The calibration curves were plotted to evaluate

the nomogram’s diagnostic accuracy in both sets. The Hosmer-

Lemeshow goodness-of-fit test was used to calibrate the curve and

evaluate the success of the nomogram. “The clinical application of

the model in predicting the pretreatment therapeutic response
FIGURE 3

Results obtained from a randomly-selected HER2 - case. (A) Subtraction image of pre- and post-contrast scans. (B) Enlarged image showing the
ROI (red region) delineated manually by an experienced radiologist, then, the segmentation was examined by another radiologist. (C) TIC curve
(platform type) of the DCE image. (D) Pathology results showing IDCS (HER2- gene confirmed by IHC).
FIGURE 4

LASSO regression model was used to analyze and select the characteristics of the differentiation between HER2-low and HER2-zero. (A) The l-
variation chart of the adjustment parameter was selected by cross-testing of the minimum standard 10 times. The vertical line describes the chosen
optimal l value of 0.002, with log (l) of -6.214 (B) Change chart of adjustment parameter l and LASSO screening feature and 16 radiomics features
with non-zero coefficients were selected.
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based on the differentiation between HER2-low and HER2-zero

breast cancer was evaluated using decision curve analysis.
Statistical methods

R3.3.1 and SPSS 26.0 software were used for statistical analysis.

Measurements conforming to the normal distribution are expressed as �x

± s. Comparison between groups of count data was conducted using

chi-square test or Fisher’s exact test. Multivariate logistic regression was

then used to evaluate the relationship between clinico-pathological MRI

features of breast cancer and HER-2 status in the training set. The

classification performance of radiomics features was measured using the

area under the receiver operating characteristic curve (AUC) and the

95% confidence interval (95% CI). Sensitivity, specificity, and accuracy

were calculated at the point where the Youden index was maximized.
Frontiers in Oncology 05
Results

Clinicopathological characteristics

Among the 118 enrolled patients, 78 patients were identified

as HER2-low, and 40 patients were HER2-zero. The allocated

training set included 54 HER2-low and 29 HER2-zero patients,

and the testing set included 24 HER2-low and 11 HER2-

zero patients.

Clinicopathological characteristics included age, maximum

diameter, ALN status, clinical stage, DCE-MRI TIC, and IHC

findings. In the training set, TIC curve (P=0.002), ER status

(P=0.031), PR status(P=0.025) showed statistically significant

differences between HER2-low and HER2-zero patients. For the

other characteristics, there were no significant difference between

the HER2-low and HER2-zero categories in the two datasets (Table 1).
FIGURE 5

Rad-score differed significantly between the HER2-low and HER2-zero groups in both the training (A) and testing sets (B).
TABLE 1 Comparison of clinical features between the training set and the testing set.

Characteristic Training Set p Testing Set p

HER2-low HER2- HER2-low HER2-

Age(year) 54.4 ± 12.0 51.9 ± 12.5 0.384 55.0 ± 10.4 54.4 ± 9.9 0.874

Maximum
Diameter(mm)

22.1 ± 10.6 23.7 ± 13.2 0.543 21.7 ± 8.4 18.2 ± 10.3 0.293

Clinical Stage

I 4 1 0.539 2 1 0.541

II 19 8 12 6

III 31 20 10 4

ALN status

Nonmetastatic 42 20 0.238 19 7 0.371

Metastatic 10 5 5 4

ER

Positive 45 18 0.031 18 8 0.886

Negative 9 11 6 3

(Continued)
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Clinical model

According to tab2, TIC (p=0.002), ER status (P=0.031), and PR

status (P=0.025) were all significantly associated with HER2-low

status in the training set. The multivariate analysis revealed that TIC

was an independent clinic-radiological risk factor for HER2

(Table 2). To construct a clinicopathological MRI feature model,

ROC curve analysis showed that the AUC for predicting HER-2

expression status in breast cancer using the clinicopathological MRI

feature model was 0.692 (95% CI:0.584, 0.798) in the training set

and 0 . 6 75 ( 95% CI : 0 . 4 91 , 0 . 8 54 ) in th e t e s t s e t ,

respectively (Table 3).
Radiomics features of HER2-low and
HER2-zero

Logistic regression was used to model the final sixteen

radiomics features (Table 4). The ROC curve was used to evaluate

the model’s efficacy.
Frontiers in Oncology 06
Figure 6 depicts the ROC and violin plots for the training and

testing sets. When the Jorden index is maximum, the best cutoff

value is 0.673. The radiomics model’s AUC, sensitivity, and

specificity for preoperative HER2-low were 0.875 (95%

CI:0.800,0.951), 68.5%, and 93.1% in the training set and 0.845

(95% CI:0.717,0.972), 54.2%, and 100.0% in the testing set,

respectively. Rad-scores differed significantly in both the training

(a) and testing sets between the HER2-low and HER2- groups (b).
Development and testing of
radiomics nomogram

Figure 7 depicts a combined radiomics nomogram created by

incorporating significant clinical radiological risk factors and

radscore into the HER2 prediction algorithm. The nomogram

demonstrated superior predictive performance with AUCs of

0.892 (95% CI: 0.853-0.962) and 0.886 (95% CI: 0.777-0.996) for

both sets, respectively. Also, it outperformed the models

incorporating only the clinic-radiological semantic features or the

radiomics signature (Table 4). Figure 8 represents the combined

radiomics nomogram for predicting HER2 in BC patients, as well as

the nomogram’s calibration curve.

Figure 9 describes the clinical model’s Decision Curve Analysis

(DCA), the merged radiomics nomogram, and the radiomics

signature. The combined radiomics nomogram outperformed

both the clinical-radiological features and the radiomics signature

alone in the 20%-38% potential range.

The Delong test compares the prediction of the combined

model with the clinical model’s measured effectiveness (AUC

value), and the results revealed a statistical difference in the

training set (P <0. 01) and testing set (P = 0. 01). The Delong test

compares logistic regression model prediction to clinical model

measured effectiveness (AUC value). The results showed a statistical

difference in the training set (P <0. 05), but no statistical difference

in the test set (P = 0.105).
TABLE 1 Continued

Characteristic Training Set p Testing Set p

HER2-low HER2- HER2-low HER2-

PR

Positive 41 15 0.025 16 8 0.720

Negative 13 14 8 3

Ki-67 status

High(≥14%) 38 20 0.894 15 9 0.252

Low(<14%) 16 9 9 2

DCE-MRI TIC

I 8 5 0.002 2 2 0.155

II 16 19 5 5

III 30 5 17 4
DCE-MRI, Dynamic contrast-enhanced resonance; TIC, Time intensity curve; ER, Estrogen receptor; PR, Progestone receptor.
TABLE 2 Multivariate logistic regression analysis of clinicopathological
MRI features in training set.

factor OR (95%CI) P

DCE-MRI TIC

I 1 0.026

II 0.859(0.190,3.889) 0.843

III 6.271(1.078,36.468) 0.041

ER 1.683(0.249,11.374) 0.593

PR 2.556(0.476,13.721) 0.274

Radiomics score 3.385(1.686,6.798) 0.001
ER, estrogen receptor; PR, progestone receptor; DCE-MRI, Dynamic contrast-enhanced
resonance; TIC, Time intensity curve.
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Discussion

In our comprehensive study, we conducted an extensive

examination of clinical and radiomics characteristics with the aim

of predicting HER2-low and HER2-zero status in BC patients. Our

findings revealed that when incorporated into predictive models,

TIC, ER, and PR status exhibited significant contributions,

complemented by radiomics features. The integration of these

factors into a unified radiomics nomogram has yielded a

substantially enhanced predictive tool, holding considerable

promise for its potential clinical applicability in tailoring

personalized treatment strategies for HER2-low BC patients.

In approximately 60% to 70% of breast tumors, the HER2

receptor protein is detectably expressed by IHC, with a HER2 IHC

score of 1+ and above (25, 26). Studies reveal that score 3+ cells

have about two million HER2 receptor molecules on their

membrane, while score 1+ and 2+ BC cells have 100,000 to

500,000 HER2 receptor molecules (27). Recently, a subset of

breast cancers with low HER2 expression and no apparent ERBB2
Frontiers in Oncology 07
amplification has been approved for novel anti-HER2 medicines,

particularly HER2-targeting ADCs (28). This subset, referred to as

“HER2-low” BC, is characterized by HER2 with IHC 1+ or 2+ and

negative ISH (29). For instance, trastuzumab deruxtecan (DS8201a)

demonstrated an ORR of 37% in extensively pretreated patients

with HER2-low metastatic BC (13). Given their distinct biology,

treatment responses, and clinical outcomes, HER2-low tumors

should be recognized as a novel BC subtype separate from HER2-

zero (IHC 0) tumors. In the future, the definition of HER2 status in

BC will comprise a three-step approach including i) HER2 positive,

ii) HER2-negative, and iii) HER2-low breast carcinomas, with the

latter potentially benefiting from targeted treatment options.

Several studies have demonstrated the association between

classic imaging modalities like mammography (MG) and

ultrasound (US) with the HER2 status in BC patients. For

instance, breast density and a spiculated mass on MG have been

linked to HER2 status (29–31). However, the predictive power of

these variables for determining HER2 status is limited. In contrast,

MRI methods offer a more effective means to identify heterogeneity
TABLE 3 Comparison of predictive performance between training set and testing set model.

Model Training set Testing set

AUC*
(95%)

Accurary Sensitivity Specificity AUC*
(95%)

Accurary Sensitivity Specificity

T1WI model 0.875(0.800-0.951) 0.771 0.685 0.931 0.845(0.717-0.972) 0.686 0.542 1.000

Clinic model 0.691(0.584-0.798) 0.675 0.574 0.862 0.672(0.491-0.854) 0.686 0.708 0.636

Combined model 0.892(0.853-0.962) 0.807 0.796 0.828 0.886(0.777-0.996) 0.857 0.833 0.909
*AUC, area under the ROC, curve.
TABLE 4 Sixteen radiomic features were finally screened by LASSO regression.

Number Features coefficient

1 original_gldm_DependenceVariance 0.15336797

2 wavelet.LHL_glcm_InverseVariance 0.04272137

3 wavelet.LHH_firstorder_Skewness 0.45739730

4 wavelet.HLH_glrlm_LowGrayLevelRunEmphasis 1.36739971

5 wavelet.HLH_glrlm_ShortRunLowGrayLevelEmphasis -1.79856221

6 wavelet.HHL_firstorder_90Percentile -4.18110675

7 wavelet.HHL_firstorder_InterquartileRange -9.21333167

8 wavelet.HHL_firstorder_Kurtosis 0.78092404

9 wavelet.HHL_firstorder_RobustMeanAbsoluteDeviation 13.86883477

10 wavelet.HHH_glcm_ClusterProminence 0.42960439

11 wavelet.HHH_glrlm_ShortRunLowGrayLevelEmphasis 0.65581663

12 wavelet.HHH_gldm_LargeDependenceHighGrayLevelEmphasis -0.36074322

13 wavelet.HHH_glcm_MaximumProbability -0.10348222

14 wavelet.HHH_glrlm_LongRunHighGrayLevelEmphasis -0.37411624

15 wavelet.HLH_gldm_LowGrayLevelEmphasis 0.08949765

16 wavelet.HHH_glrlm_ShortRunEmphasis 0.36279122
GLDM, A Gray Level Dependence Matrix; GLCM, Gray Level Co-occurrence Matrix; GLRLM, A Gray Level Run Length Matrix.
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in a quick, direct, and non-invasive manner (32). Dynamic

contrast-enhanced images, due to the increased permeability in

tumor tissue, provide valuable information on the tumor’s

morphology (shape, size, and extension), kinetic contrast agent

uptake, angiogenesis, and prognostic features such as type and

grade (33).

AI-based models have demonstrated remarkable accuracy in

cancer prediction and therapeutic efficacy based on genetics and

hormonal parameters (34, 35). Additionally, recent research by

Chen and Guo et al. utilized PET/CT, X-ray, MR, and radiomics to
Frontiers in Oncology 08
predict HER2 expression (36, 37). Notably, MRI-based machine

learning radiomics has shown promise in predicting HER2

expression levels and pathologic response following neoadjuvant

treatment in HER2 overexpressing BC (38). Furthermore, Jiandong

Yin et al. reported that semiquantitative kinetic parameter maps of

HER2-positive BC exhibit greater heterogeneity and texture

complexity compared to HER2-negative BC, serving as potential

imaging biomarkers to distinguish between the two subtypes (23).

Despite this progress, the distinction between HER2-low and

HER2-zero BC had not been addressed in radiological research
FIGURE 6

The violin plot of the radscore in the final model for the prediction of HER2-low status. Violin plots of the radiomics score (Rad-score) in the training
set (A) and testing set (C) (p < 0.05). ROC curves of training set (B) and testing set (D) based on the radiomics model.
FIGURE 7

Comparison of receiver operating characteristic (ROC) curves of the clinical model (green line), the radiomics signature (blue line), and the combined
clinical nomogram (red line) for the prediction of difference between HER2-low and HER2- in the training (A) and testing (B) sets, respectively.
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until now. In this study, HER2 status was determined using IHC

and FISH, and radiological features from DCE-MRI were employed

to differentiate between HER2-low and HER2-zero states. The

logistic regression (LR) models achieved favorable AUC values in
Frontiers in Oncology 09
the training set (0.875, 95% CI: 0.833-0.966) and testing set (0.845,

95% CI: 0.661-0.979), indicating that radiological analysis using

DCE-MRI images can effectively distinguish between HER2-low

and HER2-zero BC subtypes. These findings highlight the potential

of DCE-MRI radiomics as a valuable tool for HER2 status

assessment in BC patients.

In this study, a radiomics model based on radiation

characteristics was utilized to screen for 16 radiology parameters

related to HER2 expression. Notably, the coefficients of gray level

run length matrix (GLRLM) Low Gray Level Run Emphasis,

GLRLM Short Run Low Gray Level Emphasis, first order 90

Percentile, first order Interquartile Range, and first order Robust

Mean Absolute Deviation (rMAD) were found to be higher. The

GLRLM was used to quantify the consecutive pixel runs with the

same gray value, representing the length of the pixel number. The

positive correlation between HER2-low BC and the pixel number’s

length suggests differences in tumor aggressiveness and cell growth

rates (39).

Furthermore, the skewness of first-order statistics based on

histology of histograms was employed to quantify tumor

heterogeneity, considering the average asymmetrical grayscale

distribution. Higher frequency asymmetry in the grayscale

distribution indicates greater tumor heterogeneity and contributes

to distinguishing between HER2-low and HER2-negative tumors,

potentially influenced by factors such as cell proliferation time,

necrosis, and microcalcification (40).
FIGURE 8

The combined radiomics nomogram for the prediction of HER2 in breast cancer patients and the calibration curve of the nomogram. (A) The
combined radiomics nomogram established by incorporating the TIC curve and the radiomics score (B, C). The calibration curves of the nomogram
in training and testing sets. The X-axis represents a nomogram predicted probability of HER2, the Y-axis an actual HER2-low status, and the diagonal
dashed line indicates the ideal prediction by a perfect model.
FIGURE 9

The decision curve analysis (DCA) of the clinical model (green line),
the radiomics signature (blue line), and the combined radiomics
nomogram (red line) in the testing set. It depicts the clinical model’s
DCA, the merged radiomics nomogram, and the radiomics
signature. The combined radiomics nomogram outperformed either
the clinical-radiological features or the radiomics signature alone in
the 20%-38% potential range.
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These findings underscore the significance of the radiomics

approach in discerning and comprehending the distinctions between

HER2-low and HER2-negative BC, shedding light on potential factors

contributing to tumor heterogeneity and aggressiveness.

In this study, dynamic enhanced radiomic features were utilized

to assess their predictive efficacy for determining the HER2-low

expression state. Alongside this analysis, important clinical

information such as age and conventional MRI imaging features

like size and TIC type, were included. Pathological information,

including ER, PR, and ki67 expression, was also considered for joint

analysis with dynamic enhanced radiomic features. The results

indicated that the TIC type in conventional MRI imaging

characteristics was associated with HER2 expression at low and

zero levels. The clinical model achieved AUC values of 0.675 and

0.692 on the training and test sets, respectively. Notably, the TIC

platform type and outflow type were found to be closely related to

vascular permeability and angiogenesis in BC. Previous studies have

highlighted that HER2-positive BC can stimulate tumor

neovascularization and enhance vascular permeability through the

induction of endodermal growth factors (41). Moreover, the early

enhancement rate in tumors can reflect their blood supply, making

the TIC platform type and outflow type more common in HER2-

low BC (42).

In comparison to a single radiomic feature, the development of

a nomogram that combines the LR radiomic feature and TIC curve

demonstrated an improvement in distinguishing between HER2-

low and HER2-zero states. The predictive AUC of the model

increased from 0.875 to 0.892 in the training set and from 0.845

to 0.886 in the test set. This suggests that incorporating

conventional imaging features with radiomics features can further

enhance the model’s effectiveness. This approach simplifies

complexity and enhances the practicality and extensibility of the

model, providing potential benefits in clinical application.

The current study has several limitations. Firstly, it is retrospective,

small-scale, and conducted at a single center, which may limit the

generalizability of the results and the ability to accurately predict the

difference between HER2-low and HER2-zero BC. To improve

discrimination between HER2-zero and HER2-low, future studies

should consider utilizing additional neighboring slices at the 3D

level, as the current analysis was limited to one slice image (2D).

Moreover, while the prediction model used the commonly used LR

model, it was not compared with other widely-used machine learning

algorithms such as SVM, random forest, and decision tree. Further

investigations are needed to explore whether other methods can

achieve models with better prediction efficiency.

Conclusion

This study highlights the promising potential of using radiomic

features from breast DCE-MRI to differentiate between HER2-low

and HER2-zero BC. The findings suggest that this approach could

serve as a non-invasive and practical tool for predicting HER2-low

BC preoperatively, assisting oncologists in making clinical

decisions. However, to validate and further enhance the reliability

of these findings, larger sample sizes and prospective randomized

trials are necessary in future research endeavors.
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