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Jianyang Wang1, Xiangyu Ma1, Kuo Men1, Anhui Shi2,
Yuyan Gao3 and Nan Bi1*

1National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2Department of
Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China, 3Department of
Radiation Therapy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
Background: Postoperative radiotherapy (PORT) is an important treatment for

lung cancer patients with poor prognostic features, but accurate delineation of

the clinical target volume (CTV) and organs at risk (OARs) is challenging and time-

consuming. Recently, deep learning-based artificial intelligent (AI) algorithms

have shown promise in automating this process.

Objective: To evaluate the clinical utility of a deep learning-based auto-

segmentation model for AI-assisted delineating CTV and OARs in patients

undergoing PORT, and to compare its accuracy and efficiency with manual

delineation by radiation oncology residents from different levels of

medical institutions.

Methods: We previously developed an AI auto-segmentation model in 664

patients and validated its contouring performance in 149 patients. In this multi-

center, validation trial, we prospectively involved 55 patients and compared the

accuracy and efficiency of 3 contouring methods: (i) unmodified AI auto-

segmentation, (ii) fully manual delineation by junior radiation oncology

residents from different medical centers, and (iii) manual modifications based

on AI segmentation model (AI-assisted delineation). The ground truth of CTV and

OARs was delineated by 3 senior radiation oncologists. Contouring accuracy was

evaluated by Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean

distance of agreement (MDA). Inter-observer consistency was assessed by

volume and coefficient of variation (CV).

Results: AI-assisted delineation achieved significantly higher accuracy compared

to unmodified AI auto-contouring and fully manual delineation by radiation

oncologists, with median HD, MDA, and DCS values of 20.03 vs. 21.55 mm,

2.57 vs. 3.06 mm, 0.745 vs. 0.703 (all P<0.05) for CTV, respectively. The results of

OARs contours were similar. CV for OARs was reduced by approximately 50%. In

addition to better contouring accuracy, the AI-assisted delineation significantly

decreased the consuming time and improved the efficiency.
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Conclusion: AI-assisted CTV and OARs delineation for PORT significantly

improves the accuracy and efficiency in the real-world setting, compared with

pure AI auto-segmentation or fully manual delineation by junior oncologists. AI-

assisted approach has promising clinical potential to enhance the quality of

radiotherapy planning and further improve treatment outcomes of patients with

lung cancer.
KEYWORDS

lung cancer, postoperative radiotherapy, artificial intelligence, automatic contour,
target delineation
Introduction

Lung cancer is one of the most common types of cancer

worldwide, and postoperative radiotherapy (PORT) remains an

important intervention for this disease (1–4). Accurate

delineation of the clinical target volume (CTV) and organs at risk

(OARs) is essential for optimal radiation treatment planning and

delivery. However, manual delineation of these structures is time-

consuming and varies widely among radiation oncologists (5).

Hence, the promotion of accurate and efficient methods to

automate the process of radiation target delineations in clinical

scenarios is highly desirable (6, 7). Currently, artificial intelligence

(AI) technology not only develops rapidly, but also has found its

widespread applications in clinical medicine, especially radiation

oncology (8–10). The advent of deep learning algorithms has

revolutionized the medical data processing and image auto-

segmentation, offering novel opportunities to improve accuracy

and reduce variability during radiation planning (5). Deep

learning-based systems have shown great potential in automating

the segmentation of medical images, without the need for explicit

feature extraction or segmentation rules, and greatly facilitated the

promotion of intelligent oncology (11).

Previous studies have demonstrated the promising potential of

deep learning-based auto-segmentation models in improving the

accuracy and efficiency of auto-delineating target volumes in non-

small cell lung cancer (NSCLC) patients undergoing radiotherapy,

which reduced the inter-practitioner variabilities and the time cost

and allowed for rapid treatment planning and adaptive replanning

for the benefit of patients (12–15). Despite a high level of acceptance

among physicians for the adoption of AI contouring technology in

the real-world setting (16–18), there is a lack of high-level evidence

or prospective trials directly validating the clinical usefulness of AI-

assisted models, which limits the practical application of AI-

associated automated models in the field of radiotherapy.

Validation of AI models in multi-centers and comparison with

pure AI segmentation tools and completely manual rendering can

increase clinical evidence and break the dilemma of difficulty in

popularizing and convincing AI models.
02
In this prospective, multi-center, validation study, we evaluated

the clinical utility of AI-based contouring model, which was

developed and validated in our previous research using the deep

dilated convolutional neural network (DDCNN) (13, 19), in

delineating CTV and crucial OARs for patients with lung cancer

receiving PORT. We compared three delineation strategies: (i)

unmodified pure AI auto-segmentation, (ii) fully manual contours

by junior radiation oncology residents, and (iii) independently

manual modifications based on AI segmentation (AI-assisted

delineation), aiming to identify the optimal delineation strategy

and determine the value of AI technology in clinical practice. We

hypothesize that the AI-assisted technique would outperform the

other two methods and further improve the efficiency and accuracy

of pure AI or fully manual contours. This research will provide

important insights into the clinical benefit and potential limitations

of using deep learning algorithms in radiotherapy for patients with

lung cancer.
Materials and methods

Study design and eligible criteria

In this prospective, multi-center study, 70 patients with lung

cancer undergoing surgery and suitable for PORT were

consecutively enrolled from 3 different medical centers (Cancer

Hospital of Chinese Academy of Medical Sciences [CAMS], Beijing

Cancer Hospital and Institute [BJCH], and Beijing Luhe Hospital of

Capital Medical University [LH]) from January 2020 to June 2023.

Patients with pathologically confirmed lung cancer after surgery

planning to receive PORT were included. Patients who developed

disease progression or failed to meet the indications for PORT for

any reason were excluded. A total of 55 eligible patients were

identified as the testing set and included into the final analysis

(Figure 1A). All participants adopted four-dimension computerized

tomography (CT) simulation scans for radiotherapy target

delineation. Patients were placed in a supine position, with their

hands crossed over their heads and fixed with cervical pleura or
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body membrane. The scanning thickness was 3 to 5 mm, and 55 sets

of localization images were finally collected. CT images from

different medical centers are transmitted into the Medical Digital

Imaging and Communication (DICOM) format.
Study procedures and contouring methods

As shown in Figure 1, the AI automatic delineation model was

developed using the DDCNN deep learning algorithm based on the

testing and validation set. Specifically, it was trained on a retrospective

set of 664 patients with lung cancer receiving PORT with manually

delineated CTV and OARs by 3 senior radiation oncologists (the

training set) (19), and was independently validated and optimized

using the external dataset of 149 patients diagnosed with lung cancer

(the validation set) between 2012 and 2016 at Cancer Hospital of

CAMS (8, 19). Subsequently, this multi-center trial, which

prospectively involved 55 patients and constituted the testing set,

sought to demonstrate the contouring efficiency and accuracy of

DDCNN AI auto-segmentation model in the clinical setting.

Each set of images from 55 eligible patients (the testing set) was

contoured in 3 different methods: 1) pure AI automatic

segmentation, which generated 55 sets of target volumes; 2) fully

manual contouring by 3 radiation oncology residents from 3

institutions, which totally generated 165 sets of targets; 3) AI-

assisted delineation, that is, independently manual modifications

from 3 radiation oncology residents based on AI auto-

segmentation, which generated 165 sets of contours (Figure 1B).

The order of the three methods was randomized and balanced

across patients to avoid potential biases. We evaluated and

compared the accuracy and efficiency of these 3 delineation

methods in the testing dataset.
Frontiers in Oncology 03
Ground truth of CTV and OARs delineation

The standard ground truth (GT) for CTV and OARs contours

was established by 3 senior radiation oncologists from 3 different

institutions, all of whom have extensive experience in radiotherapy

for thoracic cancer (N.B., A.S., and Y.G., with more than 10 years of

working experience in this field). in conformity to the protocol of a

phase III randomized controlled trial focusing on PORT in lung

cancer (NCT00880971) (2). To ensure unbiased evaluation, they

worked independently on the same set of PORT images without

knowledge of each other’s contours. The majority voting after

careful consultation and discussion was used to generate the GT,

and it was used to train the AI auto-segmentation model and serve

as the reference gold standard for evaluating the performance of

both automatic and manual delineations.
Deep learning algorithm for AI
segmentation model

The AI auto-segmentation method, based on DDCNN deep

learning algorithm, was trained on a retrospective dataset of 664

lung cancer patients undergoing PORT with manually delineated

CTV and OARs (the training set) (19). The model was developed in

our previous work and further optimized using a combination of

cross-validation. Overall, the training set, including CT images and

manual segmentation labels, was used to adjust the parameters and

establish a robust DDCNN-based auto-segmentation model. The

validation set was used to evaluate the performance of this AI

model, and further improve its contouring effectiveness.

Moreover, Figure 1C illustrates the detailed architectures of

deep dilated residual network (DD-ResNet), a robust deep learning
FIGURE 1

Study overview. (A) Flow diagram. (B) Examples of CTV and OAR delineated by different radiation oncologists using two methods. (C) Architecture of
DD-ResNet-101 and DDCNN. PORT, postoperative radiotherapy; DDCNN, deep dilated convolutional neural network.
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algorithm to automatically segment CTV and OAR structures. We

established a 4-stream dilated convolutional module and integrated

it with the ResNet-101 network. DD-ResNet could adeptly capture

original context information, leveraging different dilated factors to

achieve large receptive fields that could extract multi-scale

contextual features. The resulting multi-scale feature maps were

then added to a specific feature number and fed forward to the

ResNet-101. ResNet-101 is a fully convolutional network

architecture, and at large extracts low-level, mid-level, and high-

level visual features, which in turn are utilized in the pixel-level

classification task. Additionally, optimizing deep convolutional

networks can be challenging due to the vanishing gradients,

which adversely impact semantic segmentation tasks. In response,

residual networks (ResNet) add “shortcut connections” to their

convolutional layers, which sum with the outputs of those layers to

solve the problem of vanishing features.
Contouring accuracy and
consistency assessments

The delineation performances of junior radiation oncology

residents were evaluated by various metrics, including the Dice

similarity coefficient (DSC), mean distance of agreement (MDA),

and the Hausdorff distance (HD), referencing the GT contours

(20–22). The spatial overlap between any two contours was

calculated using the DSC:

DSC(A,B) =
2 A ∩​ Bj j
Aj j + Bj j

Herein, A represents the volume of the GT segmentations, while

B represents the volume of an auto-segmented contour. Their

intersection (A ∩ B) gives the volume that they have in common.

The DSC ranges from 0 to 1, and a DSC value of 0 indicates no

overlap while a value of 1 signifies complete overlap between the

two contours (the GT and junior resident radiation oncologists).

Meanwhile, MDA calculates the average distance between the

surfaces of two volumes, with a value of 0 indicating a

perfect agreement.

Furthermore, HD is defined as:

HD(A,B) = max (h(A,B), h(B,A))

The value h(A,B) indicates a point within A that is farthest from

any point of B and measures the distance from a point to its nearest

neighbor in B. The HD value can be calculated as the maximum

between h(A,B) and h(B,A), which represents the largest degree of

mismatch between A and B. Thus, the degree of overlap between

these two volumes increases as the HD value decreases. Both DSC,

MDA and HD were calculated using the MIM software (version

6.9.2, Cleveland, OH).

In terms of inter-observer consistency assessments, the

coefficient of variation (CV) is calculated as dividing the standard

deviation (SD) by the mean CTV volume, which is determined by

all observers for each patient and each delineation method. A higher

CV value indicates greater variability or lower consistency.
Frontiers in Oncology 04
Statistical analysis

The continuous variables were reported either as mean ±

standard deviation (SD) or median with interquartile range

(IQR), depending on the normality of the data. Paired t-tests or

Wilcoxon signed rank tests were conducted to compare the

accuracy and efficiency of different contouring methods on the

same set of images from one patient. The t-tests or Mann-Whitney

U tests were employed to analyze the differences in the continuous

variables between groups. Two-sided P value less than 0.05 was

considered statistically significant. SPSS 26.0 was used for data

processing and statistical analysis.
Results

Patient characteristics

A total of 55 lung cancer patients were finally included in the

testing set in this study. The median age of the 55 patients was 57

years old, with the majority of male patients. The main pathological

types were adenocarcinoma (60%), squamous cell carcinoma (7%),

and small cell lung cancer (20%). The primary tumor sites were

upper lobe (52.7%), middle lobe (5.5%), and lower lobe (41.8%).

The N2 stage was observed in 81.2% of patients during the surgical

phase. The baseline characteristics of the patients are presented

in Table 1.
Accuracy evaluation

Compared with the GT standard, the AI-assisted CTV

delineation had a significantly lower median HD (20.03 [IQR:

14.50, 27.01] vs. 21.55 [IQR: 16.11, 30.51], P< 0.05), and smaller

MDA (2.57 [IQR: 2.03, 3.52] vs. 3.06 [IQR: 2.32, 4.11], P< 0.05),

higher median DSC (0.745 [IQR: 0.715, 0.784] vs. 0.703 [IQR: 0.656,

0.750], P< 0.05). The accuracy of CTV delineation by two methods

in different centers is shown in Supplementary Table 1; Figure 2. In

the manual contour group, the DSC of CAMS group is the highest,

and the MDA of BJCH is the lowest. The accuracy of AI-assisted

delineation group in the LH group is greatly improved compared

with that of the simple manual contour group (DSC: 0.753 VS

0.639), p<0.05). The contouring accuracy of other OARs was

consistent with that of CTV. Additionally, the accuracy of the AI-

assisted delineation significantly outperformed fully manual

contours by junior radiation oncologists, with DSC greater than

0.8, among which the left and right lungs, heart and liver performed

better, with DSC greater than 0.9 (all P< 0.05). Supplementary

Table 2; Figure 3 presents the parameters of OARs accuracy.
Consistency assessment

As shown in Figure 4A, the mean volumes of CTV delineated by

AI -assisted and fully manual methods were 109.19 ± 28.18cm3 and
frontiersin.org
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109.74cm3 ± 28.16cm3, respectively (P=0.745), indicating no

significant difference in volume between the two methods. In terms

of OARs (Table 2), the volumes of left lung (1321.75cm3 vs.

1362.42cm3), right lung (1518.07cm3 vs. 1549.46cm3), esophagus

(32.78cm3 vs. 36.30cm3), liver (1345.02 cm3 vs. 1372.63cm3), and

spinal cord (40.31cm3 vs. 45.52cm3) delineated by AI-assisted

method were significantly smaller than those by fully manual

contours (all P< 0.001). However, no significant difference in the

volume of heart was observed. The CV of CTV in the AI-assisted arm

was numerically lower than that in the manual delineation arm (0.146

± 0.096 vs. 0.149 ± 0.098, P=0.493, Supplementary Table 3), CV of

heart, liver and spinal cord in the AI-assisted arm, was significantly

reduced by more than 50% compared with that in the manual

contouring arm (all P< 0.05, Figure 4B).
Efficiency analysis

As illustrated in Figure 5, the average time for CTV delineation

in the AI-assisted arm was 7.05 ± 1.55 minutes, and the average

time for delineating all OARs was 13.44 ± 2.84 minutes. The average

time to run the AI model was 56 seconds and 3.8 minutes,

respectively. In contrast, fully manual contours by junior

radiation oncologists took an average of 12.39 ± 2.28 minutes for

CTV delineation and 30.69 ± 6.18 minutes for OARs delineation.

Taken together, we observed a significant improvement in CTV and

OARs contouring efficiency by approximately 43.2% (5.34 ± 1.75

minutes) and 56.2% (17.73 ± 4.49 minutes), respectively (both P<

0.001). Supplementary Table 4 shows the time taken to delineate

CTV and OARs in different centers. Compared with the manual

contour, the CTV shorten time of the three centers is 5.09min,

5.55min, and 7.31min, respectively, and the OARs shorten time is

15.77min, 20.94min, and 26.87min, respectively.
Discussion

The PORT-C study from the Cancer Hospital of the Chinese

Academy of Medical Sciences confirmed that postoperative
FIGURE 2

MDA (A) and DSC (B) of CTV delineated by two methods in different centers. CAMS, Cancer Hospital of Chinese Academy of Medical Sciences;
BJCH, Beijing Cancer Hospital and Institute; LH, Beijing Luhe Hospital of Capital Medical University; M (blue), manual contour; A(orange), AI-
assisted delineation.
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TABLE 1 Baseline characteristics of 55 patients.

Characteristics N (%)

Age, median (range) 57 (28-81)

Gender

Male 38 (69.1)

Female 17 (30.9)

Tumor location

Left upper 11 (20.0)

Left lower 10 (18.2)

Right upper 18 (32.7)

Right middle 3 (5.5)

Right lower 13 (23.6)

Pathology

Squamous cell carcinoma 7 (12.7)

Adenocarcinoma 33 (60.0)

SCLC 11 (20.0)

Other 4 (7.3)

Pathological N category

N0 6 (11.0)

N1 2 (3.6)

N2 45 (81.8)

N3 2 (3.6)

Pathological T category

T1 27

T2 21

T3 5

T4 2
SCLC, small cell lung cancer.
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FIGURE 4

(A) CTV volumes delineated using two methods in 55 patients receiving PORT. The blue bar chart (CTV M) represents manual contour, and the
orange bar chart (CTV A) represents AI-assisted delineation. (B). Coefficient of variation (CV) of CTV and OARs. M, manual contour; A, AI-assisted
delineation. ns, no significance.
A B C

FIGURE 3

HD (A), MDA (B) and DSC (C) of OARs delineated by two methods. HD, Hausdorf distance; MDA, mean distance to agreement (mm); DSC, dice
coefficient; M (blue), manual contour; A (orange), AI-assisted delineation.
Frontiers in Oncology frontiersin.org06
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adjuvant radiotherapy did not improve DFS in patients with stage

IIA-N2 NSCLC who underwent complete resection and received 4

cycles of platinum-containing dual-drug adjuvant chemotherapy.

The Lung ART study, designed to assess whether patients with non-

small cell lung cancer benefit from postoperative radiotherapy after

surgical resection, has failed to demonstrate a significant survival

benefit for patients with non-small cell lung cancer who receive

postoperative radiotherapy compared to those who do not. In view

of the high level of evidence in the two phase III randomized

controlled studies, postoperative radiotherapy is no longer

recommended as a routine recommendation in the treatment

guidelines. However, radiotherapy can still be selected for patients

with high risk factors such as clinical N2, T3-4, proximal incisal

margin of bronchi, extravasal lymph node invasion, positive

mediastinal lymph nodes at multiple stations, insufficient number

of lymph nodes dissection, and high proportion of metastasis

(23, 24).

Accurately delineating CTV for PORT is a critical component

of radiation planning, and the quality of CTV delineation PORT

basically hinges on the level of clinical expertise possessed by

radiation oncologists performing the task. Due to the shortage of

medical facilities and workforce in some developing countries, there

can an obvious discrepancy in the expertise and clinical skills

among physicians from various regions (23–27). Since the
Frontiers in Oncology 07
globally coronavirus disease 2019 (COVID-19) pandemic, AI-

based technology has been paid close attention and promoted

more widely in the field of medicine (28–30). For patients with

lung cancer, accurate radiation target delineations can result in

lower normal organ toxicities and improved long-term survival (31,

32). To the best of our knowledge, this study is the first prospective,

multi-center trial to examine the clinical usefulness and practical

value of DDCNN model in the automatic delineation of CTV and

multiple OARs for lung cancer patients undergoing PORT. Our

findings demonstrated that the implementation of AI-assisted

technology could lead to significantly improved contouring

accuracy, greater interobserver consistency, as well as

considerable time savings.

The most commonly used index in the accuracy analysis is the

DSC value (33). Our study results showed that, compared with fully

manual delineation, the contouring accuracy for CTV of the AI-

assisted delineation arm was improved by 5% (0.745 vs. 0.709),

relatively similar to the DSC value in mostly prior studies but

slightly lower than that in the research focusing on nasopharyngeal

cancer (34). The possible reasons include: 1) PORT targets for lung

cancer includes bronchial stump and high-risk lymph node area.

Determining the residual area after surgery depends on the changes

in CT values and window width and level. Unlike patients with

nasopharyngeal carcinoma receiving radical radiotherapy, it is
FIGURE 5

Time for manual and AI-assisted CTV (A) and OARs (B) delineation. M, manual contour; A, AI-assisted delineation. The numbers represent
different physicians.
TABLE 2 Two methods for delineating OAR volume (cm3).

Position Radiation oncologists AI-assisted delineation Difference P

Left lung 1357.46 ± 450.12 1321.75 ± 453.27 35.78 <0.001

Right lung 1549.31 ± 475.09 1518.07 ± 469.15 31.24 <0.001

Esophagus 36.30 ± 9.81 32.77 ± 9.79 3.52 <0.001

Heart 637.15 ± 119.98 639.88 ± 123.68 -2.73 0.664

Liver 1372.63 ± 354.06 1345.02 ± 350.97 27.61 <0.001

Cord 45.52 ± 12.72 40.31 ± 11.63 5.21 <0.001
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difficult to determine the range of delineation for target volumes

during PORT for lung cancer patients, since the primary tumor has

been removed. 2) Postoperative anatomical changes, including

unclear soft tissue boundaries and disorganized organ structures

resulting from different lung lobectomy, may affect the learning and

construction of AI automatic segmentation models to a certain

extent. Therefore, we believe that the introduction of multi-

radiomics into AI model training, integrating CT with magnetic

resonance imaging and positron emission tomography, on the basis

of adaptive postoperative anatomical partition atlas, will further

optimize the performance of the AI contouring model.

Moreover, our findings indicated AI-assisted delineation

improved the accuracy of OARs contouring by approximately

1%-5%. One possibility that the improvement of OARS is not as

large as that of CTV is that the DSC of the target region contoured

by manual method are all generally than 0.9, except for the

esophagus and spinal cord, and thus the degree of improvement

is not obvious. Both the esophagus and spinal cord are tubular

organs, and the target area of volumes is small, which is easy to

produce DSC difference. In addition, we introduced HD and MDA

values to further compare the contouring accuracy by comparing

the furthest and average distances of two volumes, and determined

the greater accuracy with the AI-assisted method.

After conducting inter-observer consistency evaluation, we

observed that the AI-assisted delineation yielded smaller

deviations compared to the manual approach. Inter-observer

variability in delineating target volumes has been deemed as a

major source of uncertainty during the radiotherapy planning (35).

Prior studies indicated that even among expert radiation

oncologists, significant inter-clinician deviations could be

observed during PORT for patients with lung cancer (36).

Compared with manual contour, our results found that the CV of

the AI-assisted group did not change much in the CTV and lung,

which may be due to 1) The delineation of CTV is related to the

physician experience. The primary radiation oncologists made

more modifications on the target area automatically generated by

AI, so there was no significant difference between the two groups; 2)

the delineation of delineation was not a traditional manual contour

boundary, could be finely modified according to the CT density

point selection range, narrowing the gap. 3) Because CV is a

statistical index, it is obtained through calculation, and small

operations may be ignored during calculation, resulting in

insignificant differences. Nevertheless, we found that the AI-

assisted group performed well in the delineation of the heart, liver

and spinal cord contours, highlighting the significantly improved

consistency across junior radiation oncologists and superior clinical

usefulness with the assistance of AI auto-segmentation technology.

Furthermore, efficiency gains are the key impetus for promoting

the translational application of AI tools in the field of clinical

medicine (37). Our study confirms the previous findings that AI-

assisted methods could significantly shorten the contouring time for

both CTV and OARs (13, 38).

The AI-assisted delineation model has different effects on

different levels of hospitals and has certain sociological benefits.

For cancer hospitals, the time can be clearly sketched, the efficiency

can be improved, and doctors can have more time for diagnosis and
Frontiers in Oncology 08
treatment. At the same time, it can effectively make up for the lack

of technology and experience in primary hospitals, provide more

accurate radiotherapy programs, and let primary doctors have a

reference standard for learning and comparison. It provides strong

evidence for promoting the popularization and application of AI

technology in hospitals at different levels. As shown in

Supplementary Figure 1, the comparison among different centers

shows that the manual delineation of LH Hospital is less accurate

and takes longer than that of the other two hospitals, but after the

assistance of AI, the improvement is the largest. The reason may be

that the doctors in lower-level hospitals are not proficient in the

anatomy and treatment principles, and there are not many

opportunities to delineate the target area in daily work. AI-

assisted delineation effectively helps clinicians complete the

definition of the target area, significantly shortening the gap with

other centers. However, due to the few enrolled patients, the results

may not be completely objective.

In the past, the time required for manually delineating primarily

depends on 3 factors: clear visualization of the target volume

boundaries, in-depth knowledge of anatomical structures and

lymph node regions, and comprehensive understanding of the

regions at high-risk of failure (13). Currently, the apparent

strengths of using AI-assisted model are that it not only facilitates

the tissue boundary visualization and radiation target identification,

but also provides physicians with instructive contouring

optimization, eliminating the overloaded need for manual

delineation slice by slice, resulting in a noteworthy improvement

in overall working efficiency.

We will standardize the collected clinical information and

images of patients, correlate them, and store them as the standard

image database of postoperative radiotherapy for lung cancer. The

target area of lung cancer radiotherapy mainly relies on the

mediastinal lymph node drainage area to be delineated, so we

split the existing CTV model and combined with IASLC standard

made the following modifications to the common lymph node

drainage areas 2, 4, 7 and 10:1) Set the area 2 to start from the level

of the lung apex; 2) 2L and 4L inner sections are sketched to the

middle line of the trachea, 2R and 4R inner sections are sketched to

the left margin of the trachea, allowing overlap; 3) The lower

boundary of zone 7 was sketched to 2cm below the carinae,

which was connected with zone 8. 4) Zone 10 was sketched

according to the lung window, including the main bronchial tree.

100 patients with PORT in the database were selected for zoning

sketching, and the AI model was optimized and tested. The results

show that the DSC value of the training set can reach 0.85, but the

DSC value of the test set is nearly 0.65. The partition model provides

a good idea, but it still needs to be further optimized, which is the

focus of the next step.

This study has certain limitations. First, given that this trial was

conducted in the context of COVID-19, the number of patients

presenting to the doctor and receiving PORT decreased

significantly, which negatively affected the patient recruitment

and sample size of this study. Meanwhile, because the results of

the Lung-ART and PORT-C trials were not published until after the

start of our trial, the indication for PORT was further restricted,

which also postponed the patient enrollment in this study. Besides,
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AI contouring model relies heavily on the quality and quantity of

input data, making it difficult to effectively segment patient images

with complex tumor morphology or unclear postoperative

anatomical structure, which might lead to the heterogenous and

instable performance of AI-assisted model. This study focuses on

the application accuracy of AI models in different centers, but does

not carry out subfamily analysis of CTV according to left and right

position and N stage. After the multi-center data were grouped

again, the number of patients in each group was too small, and the

experimental results had limitations. In the next step, the number of

patients should be added for grouping discussion.

Taken together, our study demonstrated that the AI-assisted

delineation model could greatly improve the contouring efficiency

of clinicians, reduce the time consumed by manual work, improve

the accuracy of both CTV and OARs delineation, narrow the

differences in expertise among different radiation oncologists

from various medical institutions, and therefore promote the

development of intelligent radiation oncology.
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