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Heat shock protein 70 (HSP70) is a highly conserved protein functioning as a

“molecular chaperone”, which is integral to protein folding and maturation. In

addition to its high expression within cells upon stressful challenges, HSP70 can

be translocated to the cell membrane or released from cells in free form or within

extracellular vesicles (EVs). Such trafficking of HSP70 is also present in cancer

cells, as HSP70 is overexpressed in various types of patient samples across a

range of commonmalignancies, signifying that extracellular HSP70 (eHSP70) can

serve as a tumor biomarker. eHSP70 is involved in a broad range of cancer-

related events, including cell proliferation and apoptosis, extracellular matrix

(ECM) remodeling, epithelial-mesenchymal transition (EMT), angiogenesis, and

immune response. eHSP70 can also induce cancer cell resistance to various

treatments, such as chemotherapy, radiotherapy, and anti-programmed death-1

(PD-1) immunotherapy. Though the role of eHSP70 in tumors is contradictory,

characterized by both pro-tumor and anti-tumor effects, eHSP70 serves as a

promising target in cancer treatment. In this review, we comprehensively

summarized the current knowledge about the role of eHSP70 in cancer

progression and treatment resistance and discussed the feasibility of eHSP70

as a cancer biomarker and therapeutic target.
KEYWORDS
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1 Introduction

Heat shock protein 70 (HSP70) is a crucial member of the heat shock protein family

with a molecular weight of approximately 70 kD. This protein is highly conserved across

different species, indicating its essential role in maintaining cellular homeostasis. The

human HSP70 family has 13 homologs, among which mitochondrial HSP70 (HSPA9/
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GRP75/Mortalin) and endoplasmic reticulum HSP70 (HSPA5/

GRP78/BiP) are the most extensively studied members (1).

Despite differences in gene locus, amino acid residues, and

subcellular localization, the HSP70 family has a common

structure consisting of two major functional domains: a conserved

nucleotide-binding domain (NBD) at N-terminal and a more

variable substrate-binding domain (SBD) at C-terminal. The NBD

is crucial for binding to and hydrolyzing ATP, while the SBD can

bind to substrate proteins. Coupled with ATP hydrolysis, HSP70

interacts with substrate proteins, facilitating their correct folding,

preventing aggregation, and refolding damaged proteins (2). Thus,

HSP70 functions as a “molecular chaperone”.

Upon stressful challenges, HSP70 is highly induced and capable of

directly inhibiting cellular apoptosis (3). However, in pathologic

conditions like cancer, upregulated HSP70 induces disease

progression and treatment resistance (4). Extensive studies have

indicated that HSP70 is not only highly expressed in tumor cells but

also can be released extracellularly. Notably, such a type of transport or

extracellular expression is minimal in normal cells. Hence, extracellular

HSP70 (eHSP70) endows with “cancer” characteristics. This character

can be extended to two facets: first, it can be leveraged as a tumor

biomarker for development; second, exploration of the correlation

between eHSP70 and tumor progression can be undertaken to evaluate

its feasibility as a molecular target for cancer therapy. Numerous

researchers have robustly demonstrated the feasibility of these two

approaches; however, there is no corresponding approved strategy for

clinical application. In this review, we comprehensively summarized
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the current knowledge about the role of eHSP70 in cancer progression

and treatment resistance and discussed and explored the feasibility of

eHSP70 as a cancer biomarker and therapeutic target.
2 Translocation of eHSP70

HSP70 can be found on the cell membrane or be transported to

the extracellular milieu, either associated with extracellular vesicles

(EVs) or as free soluble protein (Figure 1). Among the existing

reports and databases, the HSP70 family members identified for

expression on the plasma membrane encompass HSPA1A, HSPA1B,

HSPA1L, HSPA2, HSPA5, and HSPA8, while those secreted

extracellularly in the form of exosomes include HSPA1A, HSPA1B,

HSPA2, GRP78, HSPA6, HSPA8, mortalin, HSPA12A, and HSPA13

(5). The association of HSP70 with the cell membrane does not seem

to be simply due to the lack of discernible membrane-binding motifs

or other translocation signatures within HSP70. However, extensive

studies have confirmed its insertion into lipid bilayers with high

affinity towards negatively charged phospholipids, particularly

phosphatidylserine (PS) (6–9). HSP70 spontaneously relocates from

the cytosol into the plasma membrane after oligomerization and

binding to PS (10). Lipid rafts are microdomains enriched in

cholesterol, glycosphingolipids, and protein receptors. It has been

discovered that HSP70 preferentially localizes in lipid rafts, with one

potential mechanism being facilitated via non-covalent interactions

with globotriaosylceramide (Gb3) (11, 12). Besides, palmitoyl-oleoyl
FIGURE 1

Translocation of extracellular HSP70. HSP70 can localize on the cell membrane or be transported to the extracellular milieu, either associated with
extracellular vesicles or as free soluble protein. PS, phosphatidylserine; Gb3, globotriaosylceramide; ABC, ATP-binding cassette.
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phosphatidylglycerol (POPG) and sulfogalactosyl ceramide, which

are also negatively charged, have been reported to mediate the

insertion of HSP70 into membrane structures (8, 13).

The secretion of HSP70 into the extracellular milieu also

appears complex. Free soluble HSP70 was initially believed to be

exclusively the result of passive release after cell death until several

reports indicated that this release mainly depends on active

mechanisms (14). One possible way is that HSP70 is exported via

secretory-like granules (15). Additionally, Mambula and

Calderwood found that HSP70 can infiltrate into endolysosomes

via ATP-binding cassette (ABC) family transporter proteins and

subsequently being released from cells after the fusion of

endolysosomes with the plasma membrane (16). HSP70 can also

be released into or onto EVs by either exocytosis of exosomes or by

budding of the plasma membrane (ectosomes) (17–19). Several

studies demonstrated that post-translational modifications may be

involved in mediating the translocation of HSP70 into exosomes

(20, 21). Moreover, oligomerized HSP70 was shown to be

preferentially loaded into exosomes (22, 23).

It is noteworthy that these mechanisms are not exclusively

activated in a single type of cell or under a uniform condition, and

multiple eHSP70 transport modalities may concurrently exist in the

same cell type. Moreover, there are many types of stimuli that
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induce HSP70 insertion into membrane structures or release into

the extracellular space. It is evident that these translocations mostly

occur in cancer cells. In response to stressful stimuli, such as

hypoxia, immune response, and therapeutic stress, cancer cells

may circumvent pressure by inducing the manifestation of

eHSP70. Hence, advanced exploration of the extracellular

transport of HSP70 and its triggering parameters can help

obstruct the intrinsic protection of cancer cells at its origin.
3 The role of eHSP70 as a
tumor biomarker

Previously, clinical studies indicated that HSP70 displays

specific expression in numerous tumors across diverse types of

samples, such as tumor tissues, peripheral blood, and urine,

verifying its predictive role in tumor diagnosis, treatment, and

prognosis (Table 1). Compared with healthy individuals or those

suffering from benign conditions, elevated expression of circulating

HSP70 is observed in the peripheral blood samples of cancer

patients, and its expression is significantly amplified in the cell

membranes within tumor tissues. This phenomenon spans a range
TABLE 1 Selection of studies assessing extracellular HSP70 as a potential cancer biomarker in patient samples.

Cancer type HSP70 type Patient
sample

HSP70 localization or
secretion mode

Use of eHSP70 as a biomarker Refs

Lung cancer HSP70 Plasma/serum Exosomes Diagnosis; metastasis; treatment response (24)

— Diagnosis; TNM stage; recurrence (25)

— Diagnosis (inverse correlation) (26)

Urine Exosomes Diagnosis (27)

Tumor tissue Cell membrane Diagnosis (28)

GRP78 Plasma — Diagnosis (29)

NSCLC HSP70 Plasma/serum Free soluble forms and
vesicles/exosomes

Diagnosis; radiotherapy response; gross tumor
volume; TNM stage

(30–32)

Exosomes Radiotherapy response (33)

— TNM stage (34)

GRP78 Serum — TNM stage; prognosis (35)

Autoantibody
against HSP70

Plasma/serum — Diagnosis (36)

SCLC HSP70 Serum — Diagnosis; TNM stage; prognosis (37)

ESCC Autoantibody
against HSP70

Serum — Diagnosis (38)

Breast cancer HSP70 Plasma/serum Exosomes Diagnosis; metastasis; treatment response (24)

Micro-vesicles Treatment response (39)

— Diagnosis; TNM stage; lymph node metastasis;
radiotherapy response

(40–42)

Urine Exosomes Diagnosis (27)

HSPA1A Serum — Diagnosis; histological grade; Ki67 expression (43)

(Continued)
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TABLE 1 Continued

Cancer type HSP70 type Patient
sample

HSP70 localization or
secretion mode

Use of eHSP70 as a biomarker Refs

GRP78 Tumor tissue Cell membrane Prognosis; chemotherapy response;
progesterone receptor and p53 expression

(44)

Colorectal cancer HSP70 Serum — Diagnosis; TNM stage; prognosis (45–48)

Tumor tissue Cell membrane Diagnosis, prognosis (inverse correlation) (28, 49)

Mortalin Serum — Prognosis (50)

Autoantibody
against GRP78

Serum — Diagnosis (51)

Gastric cancer HSP70 Tumor tissue Cell membrane Diagnosis, prognosis (inverse correlation) (49)

GRP78 Serum — Diagnosis (52)

Autoantibody
against GRP78

Serum — Diagnosis (53)

HCC HSP70 Serum — Diagnosis (54)

Autoantibody
against GRP78

Serum — Diagnosis; TNM stage; portal vein
invasion; metastasis

(55, 56)

Cholangiocarcinoma Autoantibody
against HSP70

Plasma — Diagnosis (57)

Pancreatic cancer HSP70 Serum — Diagnosis (58)

Tumor tissue Cell membrane Diagnosis (28)

Prostate cancer HSP70 Plasma — Diagnosis (59)

Ovarian cancer HSP70 Urine Exosomes Diagnosis (27)

GRP78 Serum — Diagnosis (60)

Endometrial cancer GRP78 Intraperitoneal
fat/plasma

— Diagnosis (61)

RCC GRP78 Serum — Diagnosis; TNM stage; histological grade (62)

HNSCC HSP70 Tumor
tissue/serum

Cell membrane and free
soluble forms

Diagnosis (63)

Glioblastoma HSP70 Plasma/serum Free soluble forms and vesicles Diagnosis; prognosis; radiotherapy response (30, 64)

Tumor
tissue/serum

Cell membrane Histological grade; prognosis (65)

NPC HSP70 Serum — Diagnosis; TNM stage (66)

Autoantibody
against HSP70

Serum — Diagnosis (67)

Melanoma GRP78 Serum Exosomes Metastasis (50)

AML/ALL HSP70 Plasma — Diagnosis; prognosis (53, 68)

Tumor tissue Cell membrane Diagnosis (28)

Autoantibody
against HSP70

Plasma — Diagnosis; prognosis (53)

GBC Autoantibody
against HSP70

Serum — Prognosis (69)

Neuronal cancer HSP70 Tumor tissue Cell membrane Diagnosis (28)
F
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eHSP70, extracellular HSP70; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; RCC, renal cell
carcinoma; HNSCC, head and neck squamous cell carcinoma; NPC, nasopharyngeal carcinoma; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; GBC, cancer of the
gingivobuccal complex.
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of common malignancies; thus, eHSP70 can serve as a biomarker

for cancer diagnosis (25, 26, 28, 29, 37, 40, 41, 43, 45, 49, 52–54, 58–

63, 66, 68). Additionally, eHSP70 expression has been observed to

positively correlate with the malignant behavior of tumors. Patients

with advanced non-small cell lung cancer (NSCLC) exhibit elevated

serum levels of HSP70 or GRP78, compared to the early-stage cases

(34, 69). In breast cancer, individuals with increased serum levels of

HSPA1A commonly display a higher histological grade and cell

proliferation index (Ki67) (43). Given these findings, a decrease in

eHSP70 levels often predict improved therapeutic responses. For

instance, the concentrations of circulating HSP70 decrease as the

tumor volume decreases after radiotherapy among patients with

glioblastoma. Reduced expression of circulating HSP70 predicts

prolonged overall survival (OS) in these patients (30, 64). It is worth

noting that elevated eHSP70 levels do not necessarily imply a poorer

outcome. Pfister et al. found that in patients with colon and gastric

carcinomas, the expression of membrane-associated HSP70

correlates significantly with an improved OS (49). Moreover, a

study also demonstrated that the concentration of circulating

HSP70 significantly decreased in patients with lung cancer

compared to healthy controls (26). These conclusions may

originate from the differences in patient characteristics, or the

paradoxical role of eHSP70 in tumor progression.

Nonetheless, quantifying the levels of HSP70 in patients’ blood

or other body fluids revealed inconclusive results, partly due to the

short half-life of HSP70 in blood. Consequently, several studies have

quantified circulating autoantibodies against HSP70. Elevated levels

of autoantibodies against HSP70 have been corroborated in

different cancers, including NSCLC (36), esophageal squamous

cell carcinoma (38), colorectal cancer (51), gastric cancer (70),

hepatocellular carcinoma (HCC) (55, 56), cholangiocarcinoma

(57), nasopharyngeal carcinoma (67), acute myeloid leukemia

(AML)/acute lymphoblastic leukemia (ALL) (53), and cancer of

gingivobuccal complex (69). In HCC, the presence of

autoantibodies against GRP78 was associated with clinical stage,

portal vein invasion, and metastasis (55). These findings prove the

potential of autoantibodies against HSP70 as alternative

cancer biomarkers.

Surprisingly, HSP70 also exists in the form of EVs in peripheral

blood or urine samples of patients with lung cancer (24, 27), NSCLC

(30–33), breast cancer (24, 27, 39), ovarian cancer (27),

glioblastoma (30, 64), and melanoma (50), protecting it from the

phospholipid bilayer membrane and making it more stable. This

discovery has thus opened up novel avenues for validating eHSP70

as an effective biomarker for cancers. The levels of exosomal HSP70

in plasma/serum samples of patients with lung cancer, breast

cancer, or melanoma are correlated with tumor metastasis (24,

50). Another study showed that among 35 patients with post-

therapeutic regression two years after the initial diagnosis of non-

metastatic breast cancer, escalating quantities of micro-vesicular

HSP70 were observed in two patients during treatment. Conversely,

patients who did not succumb to a relapse maintained unchanged

levels of this protein, suggesting the potential role of micro-vesicular

HSP70 in predicting therapeutic efficacy (39). Moreover,

Chanteloup and colleagues found that circulating exosomal
Frontiers in Oncology 05
HSP70 levels, but not free soluble HSP70, reflect HSP70 levels in

tumor biopsies. Exosomal levels of HSP70 were more sensitive

tumor dissemination predictors compared with circulating tumor

cells (24). Similar to purifying circulating tumor cells (CTCs),

efficacious EV isolation from diverse biological fluids is

technically challenging. There are several methods for EV

isolation, and the most commonly used method is differential

ultracentrifugation (UC). Other methods include density

gradients (DG), immunoaffinity, precipitation, size-exclusion

chromatography (SEC), ultrafiltration, and microfluidics (71).

Though we will not elaborate in this comprehensive review, we

believe that groundbreaking methods can validate HSP70-exosomes

as a novel tumor biomarker.
4 The role of eHSP70 in
cancer progression

While delving into the application of eHSP70 as a tumor

biomarker, many researchers have attempted to validate the

feasibility of eHSP70 as a therapeutic target for cancer. This notion

originates from numerous studies indicating the significant role of

eHSP70 in several aspects of cancer progression, including proliferation

and apoptosis, extracellular matrix (ECM) remodeling, epithelial-

mesenchymal transition (EMT), angiogenesis, and immune

environment modulation.
4.1 Proliferation and apoptosis

eHSP70 regulates the proliferation and apoptosis of numerous

tumors, including colon cancer, hepatocellular carcinoma, breast

cancer, endometrial cancer, glioma, and others (Figure 2) (72–76).

The toll-like receptor (TLR) family constitutes a class of type I

transmembrane glycoproteins that can recognize damage-associated

molecular patterns (DAMPs) and participate in innate immunity (77).

As a ligand for TLR2 and TLR4, extracellular HSPA1A potently

stimulates proliferation and inhibits apoptosis in hepatocellular

carcinoma cells via TLR2 and TLR4 signaling pathway and

activation of nuclear factor-kB (NF-kB) (73). Cripto is a glycoprotein

anchored to the membrane via glycosylphosphatidylinositol (GPI) that

plays a pivotal role in tumor progression (78). It was found that the

interaction of Cripto and GRP78 at the surface of cell membranes is

crucial for cancer cell proliferation, potentially mediated via the

activation of mitogen-activated protein kinase (MAPK)-

phosphoinositide 3 kinase (PI3K) pathways and suppression of

transforming growth factor b (TGF-b)-dependent phosphorylation

of small mother against decapentaplegic 2/3 (SMAD2/3) (79, 80). In

prostate cancer cells, disrupting the attachment of membrane GRP78

and surfactant protein-D (SP-D), a constituent of the collectin family,

may interfere with the pro-tumorigenic role of extracellular GRP78

(81). Notably, GRP78 is not only secreted extracellularly but also

interacts with the membrane-localized GRP78 as a receptor. This

facilitates the proliferation of colon cancer cells by activating the

PI3K/protein kinase B (AKT) and Wnt/b-catenin signaling, thereby
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introducing an innovative paradigm for the role of autocrine GRP78 in

cancer progression (72).

In addition, some studies have focused on the intracellular to

extracellular transport of HSP70 to elucidate its primary

proliferating effect on tumor cells. Kim and colleagues revealed

that inhibition of histone deacetylase 6 (HDAC6), a cytoplasmically

localized deacetylase, can potentiate GRP78 acetylation, thereby

attenuating the translocation of GRP78 to the cell surface via the

PI3K/AKT signaling pathway. This event substantially inhibits the

proliferation of cholangiocarcinoma and promotes its apoptosis,

suggesting the pivotal role of membrane GRP78 in the progression

of cholangiocarcinoma (82). In hepatoma cells, insulin-like growth

factor I (IGF-I) similarly initiates GRP78 expression from the

endoplasmic reticulum to the plasma membrane via the PI3K and

MAPK pathways. This subsequently stimulates the phosphorylation

and activation of the IGF-I receptor (IGF-IR) via membrane GRP78

and promotes IGF-I-mediated cellular proliferation and

migration (83).
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4.2 ECM remodeling and EMT

ECM is a complex network composed of macromolecules

synthesized and secreted by cells that furnish biochemically and

structurally supportive functions to the cellular component. This

dynamic structure constantly undergoes a remodeling process,

playing a significant role in cancer invasion and migration. In

certain circumstances, this dynamic structure provokes another

hallmark of cancer, EMT (84, 85). Several studies have illustrated

that HSP70 can exert its effects on ECM remodeling and EMT via

expression on the cell surface, and corresponding extracellular client

proteins or membrane surface receptors associated with it have been

sequentially uncovered (Figure 2). Cell surface GRP78 was identified

to interact with the ECM adhesion molecule b1-integrin and mediate

cell-matrix adhesion and ECM degradation by modulating focal

adhesion kinase (FAK), thereby promoting colorectal cancer cell

migration and invasion (86). Podoplanin (PDPN), which plays an

important role in cell adhesion, is associated with mortalin released
FIGURE 2

Promoting role of extracellular HSP70 in cancer progression. Through an autocrine way or tuning the behavior of different types of cells in the
extracellular milieu, extracellular HSP70 is capable of enhancing cell proliferation, inhibiting cell apoptosis, and inducing ECM, EMT and angiogenesis
to exert tumor-promoting function. TLR2/4, toll-like receptor 2/4; NF-kB, nuclear factor-kB; SP-D, surfactant protein-D; TGF-b, transforming
growth factor b; SMAD2/3, small mother against decapentaplegic 2/3; ERK1/2, extracellular regulated protein kinases 1/2; PI3K, phosphoinositide 3-
kinase; AKT, protein kinase B; LRP, lipoprotein receptor related protein; IGF-I, insulin-like growth factor I; IGF-IR, IGF-I receptor; HDAC6, histone
deacetylase 6; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; PDPN, podoplanin; aSMA, a smooth
muscle actin; a2M, a2-macroglobin; EGFR, epidermal growth factor receptor; MMP-2, matrix metalloproteinase-2; CAFs, cancer-associated
fibroblasts; VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2; PLCg, phospholipase C g.
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by oral squamous cell carcinoma cells on their cell surface (87). This

suggests that extracellular mortalin potentially promotes tumor

growth and invasion through PDPN-mediated pathways. In liver

cancer, eHSP70 plays a critical role in regulating the EMT process

(88, 89). Despite its unidentified receptor, eHSP70 has been

confirmed to induce E-cadherin degradation and a smooth muscle

actin (aSMA) overexpression by activating the p38/MAPK signaling

pathway (88).

Activated a2-macroglobin (a2M*) is a natural circulating

ligand of cell surface GRP78 (90). In conjunction with a2M*,

membrane-associated GRP78 in hepatocellular carcinoma (HCC)

cells is capable of interacting directly with Src, a tyrosine kinase,

stimulating its phosphorylation and further facilitating the

interaction between Src and epidermal growth factor receptor

(EGFR). This effect can elicit the invasion and migration of HCC

by promoting invadopodia formation and paxillin redistribution

(91). Furthermore, eHSP70 may exert its function by orchestrating

cells within the TME or interacting with other molecular

chaperones. Cancer-associated fibroblasts (CAFs), a type of

tumor-associated stromal cells, provide a favorable environment

for the progression of malignant tumors through multiple

mechanisms, such as ECM remodeling and angiogenesis (92).

Peng and co-workers identified that GRP78 secreted by tumor

cells can induce the differentiation of bone marrow-derived

mesenchymal stem cells (BMSCs) to CAFs by activating the TGF-

b/Smad signaling pathway (93). Another study reported that

synergizing with HOP, HSP40, and p23 potentiates the activation

of HSP90a on matrix metalloproteinase-2 (MMP-2), thereby

enhancing breast cancer cell invasion and migration (94).
4.3 Angiogenesis

Angiogenesis is pivotal for nutritional supply and tumor

metabolism, particularly in hypoxic conditions. Hypoxia can

stimulate tumor cells to secrete vascular endothelial growth factor

A (VEGFA) that binds to VEGF receptor 2 (VEGFR2) on

neighboring vascular endothelial cells, thereby inducing the motility

of endothelial cells and remodeling of ECM (95). The association

between HSP70 and tumor angiogenesis was initially proposed by

Dong and colleagues. They discovered that the microvessel density

(MVD) of endogenous mammary tumors was significantly decreased

in GRP78 heterozygous mice, with no effect on the MVD of normal

organs (96). Subsequently, they investigated the role of GRP78 in the

TME, revealing that the vascular formation was suppressed during

the early phase of wild-type mammary tumors in GRP78

heterozygous mice. Similarly, the growth and metastasis of the

tumor were profoundly inhibited (97). This finding indicated that

GRP78 can contribute to tumor progression by promoting

angiogenesis. Although the exact mechanism has not been

elaborated, researchers believe that the extracellular expression of

GRP78 may be involved in VEGF-induced angiogenesis. Subsequent

studies verified these findings (Figure 2). Iha et al. observed that

exosomes secreted by gastric cancer cells overexpressing GRP78

increased the proliferation and migratory capacity of co-cultured

vascular endothelial cells, likely by the augmentation of AKT
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phosphorylation (98). Another study revealed that GRP78 was

notably overexpressed on the membrane of human umbilical vein

endothelial cells (HUVECs) following VEGF treatment, and ablation

of GRP78 significantly suppressed VEGF-induced phosphorylation

of phospholipase Cg (PLCg) and extracellular regulated protein

kinases 1/2 (ERK1/2) and inhibited endothelial cell proliferation

(99). These findings suggest that GRP78 not only contributes to

angiogenesis through the secretion of tumor cells but also via

epithelial cells. In addition, elevated HSP70 level was detected in

tumor tissue samples of certain patients and was positively correlated

with VEGF expression and MVD, substantiating the proangiogenic

role of eHSP70 in tumors (100, 101).
4.4 Immune response

The relationship between eHSP70 and immune response was

first discovered to facilitate the release of pro-inflammatory

cytokines from monocytes, such as interleukin (IL)-1b, IL-6, and
tumor necrosis factor-a (TNF-a) (102–105). It engages monocytes

via TLR2/4 in a CD14-dependent manner, stimulating the myeloid

differentiation primary response gene 88 (MyD88)/interleukin-1

receptor-associated kinase (IRAK)/NF-kB signaling cascade to

promote the production of pro-inflammatory cytokines (103).

Other receptors, including CD40, CD36, and CD11b, were also

found to mediate those effects, partly via the p38/MAPK pathway

(104, 105). Subsequently, an increasing body of evidence indicated

that eHSP70, contrary to its well-established oncogenic functions in

other aspects of cancer biology, plays a paradoxical role in immune

responses against cancer cells (Figure 3).

4.4.1 Immune-suppressive function
Myeloid-derived suppressor cells (MDSCs) interact with HSP70

secreted in the form of exosomes by tumor cells, such as breast

carcinoma, lung adenocarcinoma, ovarian carcinoma, and renal cell

carcinoma cells (27, 106). In a TLR2/MyD88-dependent manner,

exosomal HSP70 triggers p-signal transducer and activator of

transcription 3 (STAT3) in MDSCs, thereby activating MDSCs

and prompting the secretion of arginase-1 (ARG-1), inducible nitric

oxide synthase (iNOS), and IL-6 (106). Reactive oxygen species

(ROS) are important molecules that can enhance cancer

progression, partly by stimulating the expression of VEGF and

activating MMPs (107). Extracellular HSPA1A possesses the

capacity to activate neutrophils and augment their generation of

ROS by interacting with TLR2/4 on the surface of these innate

immune cells (108). Macrophages demonstrate robust phagocytic

proficiency in engulfing apoptotic cells. Specifically, during

chemotherapy or radiation therapy, these cells are capable of

phagocytosis and elimination of apoptotic tumor cells,

demonstrating both anti-inflammatory and pro-tumor activities

(109). A recent study revealed that HSP70 contained within EVs

derived from colorectal cancer can enhance the phagocytosis ability

of macrophages by upregulating macrophage receptors with

collagenous structure (MARCO) via the AKT-STAT3 signaling

pathways (110). Moreover, Tian et al. discovered that colorectal
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cancer cells can polarize macrophages into the M2 phenotype by

regulating fatty acid metabolism in macrophages via secretory

GRP78. By stabilizing adipose triglyceride lipase (ATGL), GRP78

can stimulate the synthesis of arachidonic acid (ARA) and

docosahexaenoic acid (DHA) and enable them to interact with

and activate peroxisome proliferator-activated receptor g (PPARg),
resulting in the M2 polarization of macrophages (111).

4.4.2 Immunostimulatory function
Nevertheless, eHSP70 is believed to be more inclined towards

exhibiting an anti-tumor role through its substantial effect on

various aspects of innate and adaptive immunity. In 2001,

Multhoff and colleagues delineated that HSP70 located on the

membrane of tumor cells can activate natural killer (NK) cells to

evoke an innate immune response (112). Subsequent studies

unveiled that HSP70 can be secreted extracellularly in exosomes

or free soluble forms by various tumors, such as melanoma,

colorectal cancer, and pancreatic cancer, to activate NK cells (113,

114). NK cells can induce perforin-independent apoptosis in HSP70

membrane-positive tumor cells by releasing serine protease

granzyme B (115). This might be mediated by the interaction

between eHSP70 and type C lectin receptor CD94 on the surface

of NK cells (116–118). Additionally, two other mechanisms

indirectly regulate NK cell activation by eHSP70. eHSP70 was

reported to induce the expression of major histocompatibility

complex (MHC) class I chain-related protein A (MICA) on

dendritic cells (DCs). It activates NK cells and promotes the
Frontiers in Oncology 08
production of interferon-g (IFN-g) by binding to natural killer

group 2 member D (NKG2D) on NK cells (119, 120). eHSP70

can also interact with the triggering receptors expressed on myeloid

cells-1 (TREM-1) receptor on monocytes, resulting in the secretion

of TNF-a and IFN-g, stimulating IL-2 production by CD4+T cells,

and activating NK cells (121). Moreover, HSP70 released by tumor

cells into the TME can limit the conversion of a considerable

proportion of monocytes to the pro-tumor phenotype (122).

The role of eHSP70 in antigen presentation by antigen-

presenting cells (APCs) and activation of T cells is noteworthy.

eHSP70 can induce the maturation of DCs by acting as a ligand for

CD40 or TLR4 (123, 124). Through the TLR4 pathway, eHSP70 can

increase the production of chemokines from tumor cells to recruit

DCs and T cells (124). Specifically, eHSP70 can promote the cross-

presentation of major histocompatibility complex (MHC) class I

molecules by APCs to differentiate between antigens, which results

in the activation of CD8+ T cells (125, 126). Activated CD8+ T cells

can further release a cytotoxic Tag7-HSP70 complex, which induces

tumor cell lysis via the tumor necrosis factor receptor 1 (TNFR1)

(127). Moreover, secretion of the Tag7-HSP70 complex can be

facilitated by the factor-associated suicide ligand (FasL) and

NKG2D receptors on the surface of CD8+ T cells (128). HSP70-

peptide complexes can also enter into the MHC class II presentation

pathway to augment antigen-specific CD4+ T cell responses. The

proliferation and cytotoxicity of CD4+ T cells can be enhanced by

the HSP70-antigen complexes or HSP70 plus IL-2 or IL-7/IL-12/IL-

15 (129, 130). Several studies found that HSP70 can bind to CD91
FIGURE 3

Dual role of extracellular HSP70 in immune response against cancers. Through activating different types of immune cells, extracellular HSP70 plays
an immune suppressive role as well as immunostimulatory role. MDSC, myeloid-derived suppressor cells; TLR, toll-like receptor; MyD88, myeloid
differentiation primary response gene 88; STAT3, p-signal transducer and activator of transcription 3; ARG-1, arginase-1; iNOS, inducible nitric oxide
synthase; IL, interleukin; ROS, reactive oxygen species; ATGL, adipose triglyceride lipase; ARA, arachidonic acid; DHA, docosahexaenoic acid; PPARg,
peroxisome proliferator-activated receptor g; AKT, protein kinase B; MARCO, macrophage receptor with collagenous structure; NK, natural killer;
IFN-g, interferon-g; NKG2D, natural killer group 2 member D; TCR, T cell receptor; MHC, major histocompatibility complex; MICA, MHC class I
chain-related protein A; TREM-1, triggering receptors expressed on myeloid cells-1; TNF-a, tumor necrosis factor-a; DC, dendritic cell; APC,
antigen-presenting cell; TNFR1, tumor necrosis factor receptor 1; FAS, factor-associated suicide; FASL, FAS ligand.
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on APCs to mediate both MHC class I and II presentations (131–

134). Other scavenger receptors, such as lectin-like oxidized low-

density lipoprotein receptor-1 (LOX-1), were also shown to be

HSP70-binding elements expressed on APCs (135–137).

Interestingly, studies on HSP70 structure indicated that SBD

plays a pivotal role in transporting antigens for binding to MHC

class I, while attachment of antigens to the N-terminal results in

efficient presentation on MHC class II (138, 139).

eHSP70 plays a pivotal role in cancer immume response.

However, its role in the secretion of pro-inflammatory cytokines

and activation of DCs and T cells remains controversial. Some

studies suggested that lipopolysaccharide (LPS) contamination, not

HSP70 itself, mediates this process (140–143). Therefore, numerous

researchers avoided LPS contamination during their experiments,

revealing that HSP70 itself can evoke these effects (105, 129).

Regardless, additional studies are warranted to illuminate

this ambiguity.
5 The role of eHSP70 in cancer
treatment resistance

Beyond its role in cancer progression, eHSP70 can contribute to

the treatment resistance of tumors. GRP78 was found to be released

by bortezomib-resistant solid tumor cells. By promoting the

phosphorylation of ERK and AKT and inhibiting p53-mediated

induction of BOK and NOXA in HUVECs, GRP78 can protect

these cells against the anti-angiogenic effects of bortezomib (144).

Extracellular GRP78 is also involved in the tamoxifen resistance by

binding to its partner protein CD44v at the COOH-terminal

proline-rich region (145). A recent study showed that tumor-

associated macrophages (TAMs) play vital functions in mediating

eHSP70-induced chemoresistance in breast cancer cells. Exposure

to epirubicin (EPI) induces breast cancer cells to secret HSP70,

which modulates the intracellular expression of TGF-b and directly

or indirectly amplifies the pro-tumor effects of TAMs (146).

Furthermore, transfer of eHSP70 via small EVs enhances

adriamycin (ADR) resistance through reprogramming energy

metabolism in recipient cells. eHSP70 may be linked to cell

stemness in cisplatin-induced cellular senescence, given that

HSP70 levels on the plasma membrane increase after treatment

with cisplatin (147, 148).

In addition to chemoresistance, eHSP70 is involved in

resistance to other treatments. Upon radiation exposure, the

membrane HSP70 expression level was significantly elevated in

tumor cells (149). A study revealed that reduced HSP70 expression

in the plasma membrane, rather than in the cytosol, diminishes the

expression of gH2AX, caspase 3/7, and Annexin V, and decreases

the post-irradiation survival rate of tumor cells. This elucidates that

eHSP70 has the potential capability to diminish the lethal effects of

radiotherapy on tumor cells (150). Cell surface GRP78 regulates the

radio-resistance of glioma stem cells (GSCs) by activating the

downstream b-site APP-cleaving enzyme 2 (BACE2), which

upregulates NF-kB and C/EBPb pathways (151). Recently, two

pioneering studies by Theivanthiran and colleagues unveiled the
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pivotal role of eHSP70 in tumor adaptive resistance to anti-

programmed death-1 (PD-1) immunotherapy. Through the

intrinsic NOD-like receptor protein 3 (NLRP3)-HSP70-TLR4

axis, tumor cells can induce the recruitment of MDSCs after

treatment with anti-PD-1 antibody. Specifically, eHSP70 regulates

this process in an autocrine manner. NLRP3 activation triggers

tumor cells to secret HSP70, which, in turn, interacts with TLR4 on

the membrane of tumor cells, leading to the release of Wnt5a and

upregulation of the CXCR2 ligand, CXCL5 (152). Furthermore,

downstream of the TLR4/Wnt5a signaling pathway, initiated by

eHSP70 in lung epithelial cells, may promote the recruitment of

MDSCs in distal lung tissues, establishing a premetastatic niche that

supports disease progression in response to anti-PD-1

immunotherapy (153).
6 Targeting eHSP70 for
cancer treatment

Recognizing the significant role of eHSP70 in cancer

progression, numerous studies assessed the feasibility of using

eHSP70 as a potential therapeutic approach for treating cancer.

However, owing to the dual role of eHSP70 in tumors, research

efforts can be divided into two directions: inhibiting the tumor-

promoting role of HSP70 on the membrane surface of tumor cells

(Table 2), and developing HSP70-based vaccines to stimulate the

immune response against tumor cells (Table 3).
6.1 Targeting cell surface HSP70

Misra and co-workers identified an antibody against the GRP78

COOH-terminal domain as a potential anti-cancer therapy, based

on the results that it can promote tumor cell apoptosis by

upregulating p53 expression and downregulating the activation of

AKT, ERK1/2, and p38 MAPK (154, 155). Subsequently, several

studies aimed to develop or evaluate monoclonal antibodies

directed towards the COOH-terminal domain of GRP78. In

pancreatic ductal adenocarcinoma (PDAC), the C38 monoclonal

antibody was proven to curtail cell motility and invasion by

inhibiting Rho-induced activation of Yes-associated protein

(YAP) and tafazzin (TAZ). Using C38 can significantly enhance

tumor cell radiosensitivity and increase the efficacy of radiation

therapy (156). C107 monoclonal antibody was identified to have the

ability of suppressing tumor growth as well. More crucially, its

inhibitory effect appears superior to C38 in melanoma (157). Liu

et al. reported another monoclonal antibody against GRP78 named

MAb159, which exhibited notable anti-tumor effects in multiple

tumor types, such as breast cancer, colon cancer, lung

adenocarcinoma, small cell lung cancer (SCLC), prostate cancer,

and leukemia. By blocking GRP78-induced activation of PI3K

signaling, MAb159 can inhibit tumor growth and promote tumor

metastasis in a mouse xenograft model (158).

In addition to monoclonal antibodies, some other drugs,

compounds, or peptides were shown to disrupt the binding of
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HSP70 to its corresponding receptors or ligands on the cancer cell

membrane, and remarkably inhibit its function. Treating with

heparin derivatives can block autoantibodies binding to cell

surface GRP78 and decrease tissue factor expression/activity,

subsequently inhibiting tumor growth (159). By attenuating

GRP78–p85a complex formation on the plasma membrane, 2’-

fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone (CHM-1) can

reverse the inhibitory effect of apoptosis induced by the activation

of PI3K/AKT signaling in nasopharyngeal carcinoma (NPC) cells

(160). In colorectal cancer, the combination of a class III secretory

peroxidase derived from foxtail millet bran (FMBP) with the NBD

of cell surface GRP78 interferes with the downstream activation of

STAT3, thus promoting the intracellular accumulation of ROS and

cell grown inhibition (161). Isthmin (ISM) is a secretory 60-kDa

protein that potently induces endothelial cell apoptosis. Two studies

indicated that ISM or BC71 peptide derived from the ISM AMOP

domain (adhesion-associated domain in MUC4 and other proteins)

is capable of triggering the apoptosis of tumor cells and HUVEC by

inducing mitochondrial dysfunction and activating caspase-8 and
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p53 signaling pathways, thus inhibiting tumor angiogenesis (162,

163). Furthermore, analyzing exosomes from various tumor

samples indicated that A8 peptide aptamer can bind to the

extracellular domain of membrane HSP70, effectively disrupting

HSP70/TLR2 association and impairing the ability of tumor-

derived exosomes to activate MDSCs. Given the fact that

chemotherapy drugs, such as cisplatin and 5FU, augment the

abundance of HSP70 exosomes, facilitating the activation of

MDSCs and hindering the progression of anti-tumor immune

response, a combination of A8 with cisplatin or 5FU can prevent

MDSC activation (27).

Specifically, due to the high expression of HSP70 on the

membrane of tumor cells, several studies have profiled eHSP70 as

a molecular target for precision drug delivery. Chimeric antigen

receptor T (CAR-T) cell immunotherapy is emerging as an effective

cancer treatment; however, the application of CAR-T cell therapy in

solid tumors remains limited. One possible reason is the absence of

efficient tumor antigen targets (205). GRP78-directed CAR-T

(GRP78-CAR-T) cells have shown strong anti-tumor efficacy in
TABLE 2 Selection of studies assessing cell surface HSP70 as a cancer therapeutic target.

Drug/anti-
body names

HSP70
types

Cancer types Effects on tumors Mechanisms Refs

An antibody
against the
COOH-terminal
domain of GRP78

GRP78 Prostate cancer, melanoma Promotes tumor cell apoptosis
in vitro

Upregulates p53 expression; downregulates
the activation of AKT, ERK1/2, and p38
MAPK; Upregulates the JNK activity

(154, 155)

C38
(Anti-GRP78
COOH
domain antibody)

GRP78 PDAC Enhances tumor cell radiosensitivity Curtails cell motility and invasion through
inhibiting Rho-induced activation of YAP
and TAZ

(156)

C107
(Anti-GRP78
COOH
domain antibody)

GRP78 Melanoma Inhibits tumor growth in vivo — (157)

MAb159
(Anti-GRP78
monoclonal
antibody)

GRP78 Breast cancer, colon cancer,
lung adenocarcinoma, small
cell lung cancer, prostate
cancer, leukemia

Inhibits tumor cell proliferation and
promotes apoptosis in vitro; inhibits
xenograft tumor growth and
metastasis in vivo

Inhibits PI3K signaling (158)

Heparin
derivatives

GRP78 Prostate cancer Inhibits xenograft tumor growth Blocks autoantibodies binding to GRP78 and
decreases tissue factor expression/activity

(159)

CHM-1 GRP78 NPC Inhibits tumor cell proliferation and
promotes apoptosis in vitro

Inhibits PI3K-AKT signaling by attenuating
GRP78–p85a complex formation on the
cell surface

(160)

FMBP GRP78 Colorectal cancer Inhibits tumor growth in vitro and
in vivo

Promotes the intracellular accumulation of
ROS by interfering with the activation
of STAT3

(161)

ISM/BC71
peptide derived
from ISM
AMOP domain

GRP78 Breast cancer, melanoma Inhibits tumor growth and
promotes apoptosis in vitro and
in vivo

Triggers tumor cell apoptosis by inducing
mitochondrial dysfunction; triggers HUVEC
apoptosis by activating caspase-8 and p53
signaling pathways

(162, 163)

A8
peptide aptamer

HSP70 Melanoma Enhances tumor cell sensitivity to
chemotherapy drugs (cisplatin/5FU)

Blocks HSP70/TLR2 association and the
ability of tumor-derived exosomes to
activate MDSCs

(27)
fro
AKT, kinase-protein kinase B; ERK1/2, extracellular regulated protein kinases 1/2; MAPK, mitogen-activated protein kinase; JNK, c-Jun NH2-terminal kinase; PDAC, pancreatic ductal
adenocarcinoma; YAP, Yes-associated protein; TAZ, tafazzin; PI3K, promoting phosphatidylinositol 3; CHM-1, 2’-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone; NPC, nasopharyngeal
carcinoma; FMBP, a class III secretory peroxidase derived from foxtail millet bran; ROS, reactive oxygen species; STAT3, signal transducer and activator of transcription 3; ISM, isthmin; AMOP,
adhesion-associated domain in MUC4 and other proteins; HUVEC, human umbilical vein endothelial cell; TLR2, toll-like receptor 2; MDSCs, myeloid-derived suppressive cells.
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TABLE 3 Selection of preclinical studies and clinical trials assessing HSP70-based vaccines in cancer therapies.

Vaccine
types

Vaccine components Cancer types
Immunotherapy
effects

Immune
mechanisms

Refs

Preclinical studies

Peptide-
based vaccine

MAGE-HSP70
(MAGE1-MAGE3-MAGEn/HSP70, MAGE1-
HSP70/SEA, TL-MAGE1-HSP70/SEA, MAGE-
A1/HSP70)

HCC, melanoma Prophylactic and
therapeutic
antitumor effects

Humoral and
cellular
immune responses

(164–167)

PSCA-HSP70 Prostate cancer Therapeutic
antitumor effect

Humoral and
cellular
immune responses

(168)

Mela-HSP70 Melanoma Prophylactic
antitumor effect

Cellular
immune response

(169)

HPV16 E7-HSP70 Cervical cancer Prophylactic and
therapeutic
antitumor effects

Cellular
immune response

(170, 171)

EBV LMP2A-HSP70
(LMP2A (356–364) FLYALALLL-HSP70, LMP2A
(426–434) CLGGLLTMV-HSP70)

Melanoma Prophylactic and
therapeutic
antitumor effects

Cellular
immune response

(172, 173)

HSV VP22 (268–301)-HSP70 Lymphoma Therapeutic
antitumor effect

Cellular
immune response

(174)

MSLN-scFv/HSP70 Papillary ovarian cancer,
malignant mesothelioma

Therapeutic
antitumor effect

Cellular
immune response

(175)

A20-Id-ScFv/HSP70 Lymphoma Prophylactic
antitumor effect

Humoral and
cellular
immune responses

(176)

Smlg-Id-ScFv/HSP70 CLL — Cellular
immune response

(177)

TCL-
based vaccine

DT-TCL-HSP70407–426 Breast cancer Prophylactic
antitumor effect

Humoral and
cellular
immune responses

(178)

Dribble-HSP70407–426 Lung cancer Therapeutic
antitumor effect

Cellular
immune response

(179)

DNA vaccine HPV16 E7-HSP70 Cervical cancer, lung
metastatic melanoma

Prophylactic and
therapeutic
antitumor effects

Cellular
immune response

(180–185)

DKK1-HSP70 Multiple myeloma Prophylactic and
therapeutic
antitumor effects

Humoral and
cellular
immune responses

(186)

AFP-HSP70 HCC Therapeutic
antitumor effect

Cellular
immune response

(187, 188)

PSCA-HSP70 Prostate cancer Therapeutic
antitumor effect

Humoral and
cellular
immune responses

(189)

OVA257–264-HSP70 Lymphoma Prophylactic
antitumor effect

Cellular
immune response

(190)

RNA vaccine HPV16 E7-HSP70 Cervical cancer Prophylactic
antitumor effect

Cellular
immune response

(191)

LV vector-
based vaccine

TRP2-HSP70 Melanoma, breast
cancer, glioblastoma

Therapeutic
antitumor effect

Cellular
immune response

(192)

DC vaccine
DCs pulsed with CEA576–669-HSP70L1

Colon cancer Therapeutic
antitumor effect

Cellular
immune response

(193)

DCs pulsed with HSP70-SPIONs and TCLs
Glioma Therapeutic

antitumor effect
Cellular
immune response

(194)

(Continued)
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several solid tumors, such as pancreatic cancer, lung cancer,

glioblastoma, and breast cancer, without obvious off-target effects

or T cell infiltration in major organs (206–212). Moreover, several

researchers have combined HSP70 binding peptide with other anti-

cancer proteins or encased it within nanoparticles to precisely and

effectively deliver chemotherapeutic drugs (213–220). For example,

Farshbaf and co-workers loaded bortezomib with nanostructured

lipid carriers (NLCs) modified with two proteolytically stable D-

peptides, D8 and RI-VAP (Dual NLCs). Due to the high affinity of

D8 for nicotine acetylcholine receptors on brain capillary

endothelial cells and the high specificity of RI-VAP for binding to

GRP78 on tumor cells, dual NLCs can pass the blood-brain tumor

barrier with superior glioma-homing properties. They effectively

deliver bortezomib and produce a potent anti-proliferative effect

(221). The fusion of HSP70 tumor-penetrating peptide with

nanoparticles can similarly be utilized to facilitate the delivery of

novel hybrid iron oxide (Fe3O4), resulting in radiosensitization in

triple-negative breast cancer cells (222). It is noteworthy that

targeting cell surface HSP70 not only enhances drug delivery

precision but also synergistically bolsters anti-tumor efficacy by

suppressing HSP70 function. More studies, particularly clinical

trials, are needed on the use of eHSP70 as a target for

cancer treatment.
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6.2 Developing HSP70-based vaccines

The development of HSP70-based vaccines is another key

research topic. Although no relevant vaccination has been

approved for clinical application, numerous studies have

demonstrated robust anti-tumor effects of various types of

vaccines that contain HSP70, effectively stimulating cellular or

even humoral immune responses. Peptide-based vaccines are

relatively easy to manufacture and usually composed of the

HSP70 protein integrated with tumor-associated antigens (TAAs)

or tumor-specific antigens (TSAs), such as melanoma-associated

antigen gene (MAGE)-HSP70 (164–167), prostate stem-cell antigen

(PSCA)-HSP70 (168), and Mela-HSP70 (169). Two studies

produced a promising human papillomavirus 16 (HPV16) protein

vaccine of E7-HSP70 that robustly induces E7-specific CD8+ T cell

immune response and resulted in significant prophylactic and

therapeutic effects against E7-expressing cervical cancer (170,

171). Other tumor-associated virus proteins, such as Epstein-Barr

virus (EBV) latent membrane protein 2A (LMP2A) (172, 173) and

herpes simplex virus (HSV) VP22 (174), were proved to generate

effective cellular immune response after fusion with HSP70 protein

in melanoma and lymphoma, respectively. Additionally, certain

tumor markers were shown to possess limited immunogenicity but
TABLE 3 Continued

Vaccine
types

Vaccine components Cancer types
Immunotherapy
effects

Immune
mechanisms

Refs

Preclinical studies

DCs pulsed with TCLs pulsed with HSP70407–426
and OK-432

HCC Therapeutic
antitumor effect

Cellular
immune response

(195)

DCs pulsed with HSP70-H22 tumor-peptide
complexes and soluble CD40L

Hepatoma Therapeutic
antitumor effect

Cellular
immune response

(196)

DCs pulsed with tumor cell-derived HSP70-
peptide complexes

HCC — Cellular
immune response

(197)

NK
cell vaccine

NK cells stimulated with HSP70-peptide TKD/IL-2
(+anti-PD-1 antibody)

Glioblastoma,
colon carcinoma

Therapeutic
antitumor effect

Cellular
immune response

(198–200)

HUVEC
vaccine

HUVEC-HSP70407–426 HCC Prophylactic and
therapeutic
antitumor effects

Humoral and
cellular
immune responses

(201)

Vaccine
combination
therapy

AAV-BTLA vaccine + HSP70 vaccine Lung
metastatic melanoma

Prophylactic
antitumor effect

Cellular
immune response

(202)

BTLA vaccine + HSP70 vaccine Cervical cancer Therapeutic
antitumor effect

Cellular
immune response

(203)

Clinical trials

Peptide-
based vaccine

HSP70-GPC3 vaccine
(+LAG-3Ig/Poly-ICLC adjuvants)

Gastrointestinal cancer Therapeutic
antitumor effect

Cellular
immune response

(204)
MAGE, melanoma-associated antigen gene; SEA, staphylococcal enterotoxins A; TL, tomato lectin; HCC, hepatocellular carcinoma; PSCA, prostate stem-cell antigen; HPV, human papillomavirus;
EBV, Epstein-Barr virus; LMP2A, latent membrane protein 2A; HSV, herpes simplex virus; MLSN, mesothelin; scFv, single-chain antibody variable fragment; Id, idiotypic determinant; Smlg, surface
membrane immunoglobulin; CLL, Chronic lymphatic leukemia; TCL, tumor cell lysate; DT, diphtheria toxin; Dribble, tumor-derived autophagome; DKK1, Dickkopf-1; AFP, alpha-fetoprotein;
OVA, ovalbumin; LV, lentiviral; TRP2, tyrosinase-related protein-2; DC, dendritic cell; CEA, carcinoembryonic antigen; HSP70L1, HSP70-like protein 1; SPIONs, superparamagnetic iron oxide
nanoparticles; NK, natural killer; TKD, TKDNNLLGRFELSG; IL-2, interleukin -2; PD-1, programmed death-1; HUVEC, human umbilical vein endothelial cell; AAV, adeno-associated virus;
BTLA, B and T lymphocyte attenuator; GPC3, glypican-3; LAG-3, lymphocyte activation gene-3; Poly-ICLC, poly-riboinosinic-poly-ribocytidylic acid-poly-L-lysine carboxymethylcellulose.
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considerable specificity. Hence, linking the HSP70 protein to

antibody fragments directed against them can dramatically

enhance immunogenicity (175–177). Given these findings, a

phase I study assessed the safety and efficacy of a novel vaccine

comprising multi-human leukocyte antigen (HLA)-binding HSP70/

glypican-3 (GPC3) peptides, a novel adjuvant combination of

lymphocyte activation gene-3 (LAG-3) Ig, and poly-riboinosinic-

poly-ribocytidylic acid-poly-L-lysine carboxymethylcellulose (Poly-

ICLC) against metastatic gastrointestinal cancers. Seventeen

patients received this vaccination therapy without dose-limiting

toxicity, supporting the feasibility of this approach (204).

Compared to single TSA or TAA, tumor cell lysates (TCLs)

encompass all self-tumor antigens and lack HLA-A2 restriction.

Therefore, using them as vaccines can generate robust anti-tumor

immune responses in a wide range of cancers (223). Fusion diphtheria

toxin (DT) and two tandem repeats of HSP70407–426 with TCLs elicit

strong humoral and cellular immune responses, leading to the growth

inhibition of breast cancer (178). In addition, a tumor-derived

autophagosome (Dribble) vaccine conjugated with HSP70407–426
significantly induced a higher expression of antigen-specific cytotoxic

T lymphocytes (CTLs) (179). Genetic vaccines encompass DNA or

RNA vaccines delivered by viruses or plasmids. Although no DNA

vaccine has been commercialized globally to date, this particular

strategy holds considerable promise. Studies indicated that the

combination of HSP70 and HPV16 E7 (180–185, 191), Dickkopf-1

(DKK1) (186), alpha-fetoprotein (AFP) (187, 188), PSCA (189), or

ovalbumin (OVA) (190) genes can induce potent immune responses

against cancers. Lentiviral transfer of tyrosinase-related protein-2

(TRP2)-HSP70 gene is another efficacious and durable strategy in

melanoma, breast cancer, and glioblastoma (192).

Several studies have prepared DC or NK cell vaccines

stimulated with HSP70 to elicit an effective anti-tumor response

by activating innate and adaptive immunity. Fusion protein

CEA576–669-HSP70L1 can promote DC maturation and activate

DC to produce cytokines, such as Il-12, IL-1b, and TNF-a, and
chemokines, such as macrophage inflammatory protein-1a (MIP-

1a) and MIP-1b. They subsequently elicit a potent CTL cytotoxicity
against colon cancer (193). Immunization of glioma-bearing rats

with DCs pulsed with superparamagnetic iron oxide nanoparticles

(SPIONs) coated with HSP70 and tumor cell lysates (TCLs) resulted

in a delayed tumor progression (194). In liver cancer, DCs pulsed

with TCLs stimulated with HSP70407–426 and OK-432, HSP70-H22

tumor-peptide complexes and soluble CD40L, or tumor cell-derived

HSP70-peptide complexes were all induced a cellular immune

response (195–197). Furthermore, three studies demonstrated that

NK cells stimulated with HSP70-peptide TKD/IL-2 may be a

promising therapeutic approach for treating glioblastoma and

colon carcinoma (198–200). A novel HUVEC-HSP70407–426
vaccine was reported to exert anti-angiogenesis effects by

attenuating tumor-induced angiogenesis and reducing MVD of

the intradermal tumor in mice (201). Other types of HSP70-based

vaccines, like vaccine combination therapy, are also promising

therapeutic approaches against cancer (202, 203). Interestingly,

HSP70-based vaccines may induce acquired resistance of tumors

to treatment. Geng et al. suggested that B7-H1 expressed by residual

tumor cells may be the underlying mechanism. Blockade of B7-H1
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by injection of a plasmid encoding the extracellular domain of PD-1

reversed this resistance and enhanced the therapeutic efficacy (224).
7 Conclusions

As a molecular chaperone, HSP70 is dynamically expressed and

transported in response to stress stimuli, such as hypoxia, nutrient

deficiency, immune stimulation, and therapeutic stress. Hence, the

amount of HSP70 protein secreted by cancer cells is partly associated

with the current state of the malignancy. This theory suggests that

eHSP70 possesses the potential as a tumor biomarker. Analyzing

clinical samples of cancer patients revealed that eHSP70 expression

can be detected in tumor tissues or various body fluids, and variation in

its expression level is associated with patients’ diagnosis, treatment

response, and prognosis. Various types of cancers may show specific

patterns of eHSP70 upregulation and downregulation that may

distinguish them from healthy individuals and from patients with

other non-cancerous conditions. Changes in eHSP70 expression may

even discriminate one type of cancer from another. Moreover, the

monitoring of therapeutic efficacy and potential recurrence can be

facilitated by analyzing the expression levels of eHSP70 across several

time points specific to each patient. Thus, it is not difficult to integrate

artificial intelligence (AI) tools. For instance, quantitative proteomics

and machine learning statistics can be integrated to construct a

comprehensive cancer prediction network that depends on eHSP70.

Nevertheless, the major challenge is how to detect eHSP70 expression

real-timely, accurately, and sensitively. Aside from cell membrane

eHSP70, the discernible forms of eHSP70 presently comprise the free

soluble form, exosomal form, and autoantibodies against HSP70. Each

one of these forms possesses advantages and disadvantages. The

simplified detection method of free soluble HSP70 is advantageous;

however, the short half-life of this form makes it challenging to

precisely quantify its expression in a real-time manner. Exosomal

HSP70 is more stable, but the current isolation technology for

exosomes remains immature, and autoantibodies against HSP70 lack

sufficient specificity and sensitivity. Therefore, overcoming these

technological challenges can greatly facilitate the clinical use of

eHSP70 as a tumor biomarker.

eHSP70 regulates the biological behavior of tumor cells. Not

only can eHSP70 activate several signaling pathways in tumor cells

in an autocrine manner but it can also tune the behavior of

endothelial cells, immune cells, and other cells by interacting with

extracellular components and membrane receptors. The diverse

function of eHSP70 forms a complex network in the TME. On the

one hand, it provides a favorable environment for tumor

progression by promoting ECM, EMT, angiogenesis, and

treatment resistance. On the other hand, it can act as a tumor-

associated antigen to stimulate the activation and maturation of

various immune cells, thereby provoking the immune response

against tumor cells. Although some studies suggest its

immunosuppressive role, most studies still support its

immunostimulatory function. Given these findings, studies

directly or indirectly targeted HSP70 on the membrane surface of

tumor cells or developed HSP70-based vaccines. However, none of

those therapeutic strategies have been approved for marketing. The
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inadequate safety and stability of HSP70-based tumor therapeutic

strategies are challenging. On one hand, eHSP70 has different

isoforms and is pivotal for preserving routine cellular activity. On

the other hand, targeting distinct tumor-associated cells, such as

cancer cells or immunocytes in the TME can potentially trigger

different responses. Hence, understanding the structure of eHSP70,

especially the SBD, and designing drugs based on this may be an

effective way to solve the low specificity of eHSP70-targeting drugs.

Furthermore, precisely targeting cell types that express eHSP70,

such as precisely targeting HUVECs to inhibit angiogenesis

promoted by eHSP70 or developing HSP70-pulsed DC vaccines,

would make HSP70-based cancer treatment mores stable without

affecting normal cell homeostasis or inducing unpredictable

responses. Uncoupling the pro- and anti-tumorigenic effects of

extracellular targets and membrane receptors of eHSP70 and

selectively inhibiting their pathological activity can allow us to

develop and assess HSP70-based anti-cancer therapies with

greater clinical efficacies.
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