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Introduction: Effective strategies for early detection of epithelial ovarian cancer

are lacking. We evaluated whether a panel of 14 previously established circulating

microRNAs could discriminate between cases diagnosed <2 years after serum

collection and those diagnosed 2–7 years after serum collection. miRNA

sequencing data from subsequent ovarian cancer cases were obtained as part

of the ongoing multi-cancer JanusRNA project, utilizing pre-diagnostic serum

samples from the Janus Serum Bank and linked to the Cancer Registry of Norway

for cancer outcomes.

Methods: We included a total of 80 ovarian cancer cases contributing 80 serum

samples and compared 40 serum samples from cases with samples collected <2

years prior to diagnosis with 40 serum samples from cases with sample

collection ≥2 to 7 years. We employed the extreme gradient boosting

(XGBoost) algorithm to train a binary classification model using 70% of the

available data, while the model was tested on the remaining 30% of the dataset.

Results: The performance of the model was evaluated using repeated holdout

validation. The previously established set of miRNAs achieved a median area

under the receiver operating characteristic curve (AUC) of 0.771 in the test sets.

Four out of 14 miRNAs (hsa-miR-200a-3p, hsa-miR-1246, hsa-miR-203a-3p,

hsa-miR-23b-3p) exhibited higher expression levels closer to diagnosis,

consistent with the previously reported upregulation in cancer cases, with

statistical significance observed only for hsa-miR-200a-3p (beta=0.14; p=0.04).
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Discussion: The discrimination potential of the selected models provides

evidence of the robustness of the miRNA signature for ovarian cancer.
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Introduction

Epithelial ovarian cancer is the most lethal of the gynaecologic

malignancies, with poor long-term survival (5-year relative survival

of 40–45%) (1, 2). Effective strategies for early detection are lacking,

and non-specific early symptoms of disease (e.g., bloating, feeling of

fullness, frequent urination) (3, 4) contribute to delayed diagnosis.

The most widely used blood-based biomarker for ovarian cancer

early detection is CA125; however, screening with CA125 in

combination with transvaginal ultrasound (TVUS) has not

demonstrated a survival benefit in large screening trials (5, 6).

MicroRNAs (miRNAs) are short (18–24 nucleotide) non-coding

RNAs that regulate post-transcriptional gene expression, and which

have regulatory roles in a variety of cellular functions. More than

2,500 miRNAs have been identified in humans, in tissues, and in

circulation in MiRBase (7). Besides their common intracellular

localization, miRNAs are present and stable in all body fluids,

including blood plasma and serum (8). Aberrant miRNA

expression has been well characterized in cancer and other health

conditions, and combination signatures of individual miRNAs in

blood have been shown to be predictive for cancer risk and prognosis

(9–13). Preliminary studies have suggested that circulating miRNA

profiles are altered in women with ovarian cancer and distinct

miRNA profiles have also been found to be associated with the

prognosis of ovarian cancer patients (14, 15). A methodological

limitation of many early detection marker discovery studies as of to

date is that they have been based almost exclusively on comparisons

between women already diagnosed with cancer and cancer-free

controls. We have recently identified and validated a panel of

miRNAs using next generation sequencing and neural network

statistical models (16). This model was developed and validated in

independent study populations, and distinguishes between prevalent

invasive ovarian cancers and healthy women with overall sensitivity

of 75% at 100% specificity and with significantly better performance

than CA125 alone; further, the identified panel was specific to ovarian

cancer, with no predictive power for other types of cancers, and was

not correlated with circulating CA125 concentrations (16).

The aim of the current study was to evaluate the feasibility of

applying previously defined miRNA signatures from retrospective

case-control studies in an independent study with miRNA

sequencing data from samples collected prior to ovarian cancer

diagnosis, and to evaluate the performance of these signatures in

these pre-diagnosis samples.
02
Materials and methods

Small RNA sequencing data was generated as part of the large,

ongoing multi-cancer JanusRNA project (17) at the Cancer Registry

of Norway (CRN). JanusRNA has its origin in the large population-

based Janus Serum Bank Cohort (JSB) established in 1973 and is a

population-based prospective cancer biobank including 318,628

participants with serum samples collected between 1972–2004, as

previously described (18, 19). Incident cancer cases are identified by

linking the JSB to CRN, which was established in 1951 and includes

mandatory reported information on all new cancer cases in

Norway (20).
Study design and selection of participants
from the JanusRNA study

The overall design in JanusRNA is restricted to cases who

donated at least one blood sample up to 10 years prior to a

diagnosis, and a frequency matched control group that remained

cancer-free 10 years after blood donation. This resulted in the

inclusion of 80 invasive ovarian cancer cases with a total of 106

samples (n=14 with two samples and n=4 with three samples or

more) diagnosed up to 7 years following blood collection. A

common control set for all cancers included in JanusRNA were

measured together with other cancer types in the JanusRNA study

(17, 21). Due to a moderate batch effect between ovarian cases and

controls discovered using principal components analysis

(Supplementary Figure 1), controls were discarded in this study.

Thus, an alternative approach was adopted in which we compared

samples collected close to diagnosis to those further from diagnosis.

A detailed description of the data set used, and the samples

exclusion criteria is shown in Figure 1.

This study was conducted as part of the ongoing work of the

PREDICT consortium (Prospective Early Detection Consortium for

Ovarian Cancer), which has a specific focus on early detection

biomarkers for ovarian cancer identified in samples proximate to

diagnosis (i.e., <1.5–2 years). Thus, the cases from JanusRNA

diagnosed <2 years following blood collection were of primary

interest for potential earlier detection and were included in a

subgroup of cases diagnosed proximate to blood collection, with

the cases with ≥2 years between blood sampling and diagnosis as the

comparison group with samples donated more distant from blood
frontiersin.org
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collection. The selection of cases diagnosed <2 years after blood

collection is in line with the point at which discrimination is observed

between cases and controls in prior studies of protein-based

biomarkers (22). To avoid the possibility of any data leakage

between the training and test set samples, we selected only a single

serum sample for each individual. The samples for cases diagnosed <2

years following blood collection were matched to the samples for

cases diagnosed ≥2 years following blood collection according to age

and blood donor group using the optmatch package (v0.9–13) in R

(v4.0.0). Blood donor group is a technical confounder which

combines the effect of sample treatment at donation and storage

time (23). After the matching was completed, a total of 80 samples

(n=40 diagnosed <2 years following blood draw, n=40 diagnosed ≥2

years following blood draw) were used for the analyses.
Laboratory processing

RNA was extracted from 2 x 200 ml serum using phenol

chloroform phase separation and the miRNeasy Serum/Plasma kit

(Cat. no 1071073, Qiagen) on a QIAcube (Qiagen). Glycogen (Cat.

no AM9510, Invitrogen) was used as a carrier during the RNA

extraction step. Small RNA-seq was performed using NEBNext®

Small RNA Library Prep Set for Illumina (Cat. No E7300, New

England Biolabs Inc.). We performed size selection using a 3%

Agarose Gel Cassette (Cat. No CSD3010) on a Pippin Prep (Sage

Science) with a cut size optimized to cover RNA molecules from 17

to 47 nt in length. Sequencing libraries were indexed and 12 samples

were sequenced per lane of a HiSeq 2500 (Illumina). The average

depth was 18M reads per sample. Our small RNA sequencing

protocol has been previously described (21).
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Bioinformatics analyses

Raw reads were processed with the “sncRNA-workflow” pipeline

(v1.0.0) (21). This pipeline includes different steps, such as quality

control, adapter trimming, read mapping, read counting and the

creation of count tables. The mapping was performed with mature

miRNA reference from miRBase (v22.1) (7). AdapterRemoval was

used for adapter trimming (24), whilst Bowtie2 (25) was employed

for mapping reads to the human genome (hg38) with an average

mapping ratio of 70%. miRNA annotation was performed using the

SeqBuster tool. The miRNA counts were then normalised using a

read per million (RPM) normalization (26).
miRNA set selection

We evaluated two sets of miRNAs for validation based on our

previous publication (16). The miRNAs were identified using feature

selection by expression fold change and a miRNA algorithm was

derived using a neural network algorithm, using sequencing data; the

miRNAs and algorithm were subsequently validated using qPCR.

The original sequencing files were downloaded from GEO (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94533) and

processed using the same pipeline as described in the previous

sections. The primary set was acquired from Elias et al. (16), and

included 14 miRNAs: miR-23b-3p, miR-29a-3p, miR-32–5p, miR-

92a-3p, miR-150–5p, miR-200a-3p, miR-200c-3p, miR-203a-3p, miR-

320c, miR-320d, miR-335–5p, miR-450b-5p, miR-1246 and miR-

1307–5p. This signature has been reported to perform well

regardless of disease histotype and stage (16). The second set used
FIGURE 1

Samples included in the analysis and exclusion criteria (EOC, epithelial ovarian cancer).
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on Keller et al. (27), included the same miRNAs as previously listed

with the exception of miR-1307–3p replacing miR-1307–5p; this set

was evaluated in a secondary analysis.
Model development

The extreme gradient boosting (XGBoost) algorithm was used to

train binary classification models using the pre-defined 14 miRNAs.

Due to significant technological differences in the RNA profiles

between studies (Supplementary Figure 2), the original model [as

developed in Elias et al. (16)] could not be directly reapplied to the

JanusRNA dataset. XGBoost is a scalable tree boosting model

development method that uses regularization to handle overfitting

and high dimensionality. Previous research has suggested that

XGBoost outperforms complicated methods like deep learning on

tabular data (28). It can also capture non-linear relationships (29).

We utilized the R (v4.0.0) implementation of this algorithm, XGBoost

(v1.5.2.1). We randomly separated the dataset into training (70%)

and test (30%) sets (hold-out validation). The model performance

was evaluated on the test datasets using the area under the ROC curve

(AUC) value. We repeated the creation of training and test sets 5

times with different seed values and calculated AUC values. For each

repetition, the best value of the subsample hyperparameter was

selected using a grid search approach combined with a five-fold

cross-validation on the training set. The other hyperparameters were

set according to the results of our previous work (30) after having

considered the similar distribution of the two data sets. By reporting

the median AUC in the test set, we were able to validate the miRNA

sets and evaluate the presence of overfitting. Feature importance

values were exported using the xgb.importance function of the

XGBoost package. Then, we calculated average importance values

to sort the final list of miRNA biomarkers.

Finally, as an additional step in miRNA validation, we conducted a

negative control experiment by randomly generating five sets of 14

miRNAs (no filtering was applied for the selection). We then evaluated

the performance of these randomly selected miRNA sets using our

model development workflow, as described above. This allowed us to

establish a background comparison and compare the performance of

the randomly selected miRNAs with the performance of the a priori

defined miRNA sets. We evaluated Spearman correlations between the

a priori selected miRNAs and the randomly selected miRNAs given

expected correlations between individual miRNAs.
Linear trend assessment

Lastly, we checked if changes in selected miRNAs present

dynamics concordant with changes observed for comparison

between ovarian cancer cases and controls. Using univariable

linear regression, we estimated linear trends between normalized

miRNA expression and time to diagnosis. We calculated beta

coefficients and p-values. Beta coefficients greater than 0 indicated

that miRNA abundance was rising closer to diagnosis. The range

between -0.1 and 0.1 indicated no association. Those results were

compared to log2-transformed fold-changes (log2FC) obtained on

whole dataset in Elias et al. (16) using OmicSelector package (26).
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FIGURE 2

Timing of sample collection by time between blood collection and
diagnosis. We used 2 years prior to diagnosis as a threshold for the
comparison groups, which were later used in binary classification
models for validation and discovery.
TABLE 1 Baseline characteristics [n (%) or mean (standard deviation)] of
the study participants contributing serum samples and diagnosed with
invasive epithelial ovarian cancer in the windows 0 to <2 years and ≥2 to
7 years after blood collection.

Time between blood collection
and diagnosis

0 to
<2 years

2 to
7 years

P-value

Number of samples 40 40

Tumor histology 0.16

Serous 4 (10%) 4 (10%)

Endometrioid 8 (20%) 5 (12.5%)

Mucinous 6 (15%) 6 (15%)

Carcinoma, NOS 20 (50%) 23 (57.5%)

Clear cell 2 (5%) 2 (5%)

Age at blood
sampling, years

48.16(9.67) 45.23 (7.33) 0.13

Age at diagnosis, years 48.88 (9.57) 48.02(7.72) 0.66

Prediagnostic sampling
time, years

1.16 (0.46) 3.31 (1.39) <0.01

Disease stage 0.23

Localized/regional 19 (47.5%) 19 (47.5%)

Distant metastases 21 (52.5%) 21 (52.5%)
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Results

Mean age at diagnosis was 48.9 years in the cases diagnosed <2

years following blood collection and 48.0 years in the cases

diagnosed ≥2 years following blood collection. Tumor histology

was generally similar in both groups, though with a higher

proportion of carcinomas, not otherwise specified (NOS) among

cases diagnosed more distant from blood collection (58% vs. 50%),

and a somewhat higher proportion of endometrioid tumors in the

cases diagnosed more proximate to blood collection. Figure 2 shows

the timing of blood sample collection and diagnosis in the study

sample. The mean (SD) of years between blood collection and

diagnosis was 1.16 (0.46) years for early-case samples and 3.31

(1.39) years for late-case samples (Table 1).
Previously derived miRNA signature
discriminates between cases diagnosed
proximate to and distant from blood
collection in JanusRNA

Counts differed substantially across the evaluated miRNAs

(Figure 3A). The miRNA signatures had median AUCs of 0.771

(IQR: 0.056) with an average of 0.781 (95% CI: 0.72, 0.84) for the

miRNA signature from the Elias et al. (16) dataset (Figure 3B) and
Frontiers in Oncology 05
0.753 (IQR: 0.076) with an average of 0.728 (95% CI: 0.64, 0.82) for the

miRNA signature previously evaluated in the Keller et al. (27) dataset

(Supplementary Figure 3) in the test datasets. The ROC curves for each

of the five train/test split repetitions in the two miRNA sets are shown

in Supplementary Figure 4. Randomly generated miRNAs had a

median AUC of 0.587 (IQR: 0.135) and an average AUC of 0.6 (95%

CI: 0.55, 0.65) (Figure 3B; 5 sets of 14 miRNAs shown in

Supplementary Figure 5) The correlations between a priori selected

and randomly selected miRNAs (Supplementary Figure 6) explain the

above the average performances of the randomly generated miRNAs.

When we investigated the feature importance of the a priori selected

miRNA set models, we found that miR-200a-3p was the most

important miRNAs for both sets followed by miR-29a-3p, mir-203a-

3p and miR-1246 (Figure 3C). The miRNA that differed between the

two sets was ranked 7th in feature importance in the primary set (miR-

1307–5p) and 4th in the secondary set (miR-1307–3p). The

misclassification plot (Figure 3D) shows the prediction probabilities

of ovarian cancer diagnosed within the 2 years subsequent to blood

collection in the five test sets using the primary miRNA signature.

Although all the probabilities are included within the 0.42–0.53 range,

the majority of those over 0.5 were assigned to the ovarian cancer cases

diagnosed within 2 years of blood collection, demonstrating the

prediction performance of the model.

Lastly, we examined the concordance between up- and

downregulation in miRNAs observed in ovarian cancer cases and
B C

D

A

FIGURE 3

Evaluation of miRNA set from dataset described in Elias et al. (16) in JanusRNA ovarian cancer case set. (A) miRNA counts for the evaluated panel, by
time between blood collection and diagnosis (<2 years, ≥2 to 7 years; microRNAs log10 transformed for visualization and zero values omitted from
the plot); (B) Boxplots of model performance for the primary evaluated miRNA signature and random miRNA set; (C) Feature importance for each of
the included miRNAs (D) Misclassification plot of the test samples based on the miRNA signature, y axis represents prediction probability for a given
observation to have been sampled within 2 years prior to diagnosis.
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controls in Elias et al., compared to the linear trend we observed over

time prior to diagnosis (Table 2; Supplementary Figure 7). We found

that no temporal trend was observed for 10 out of 14 miRNAs. In the

remaining miRNA, the trend was consistent with the change reported

in the study by Elias et al. This miRNA exhibited an increase in

expression over time and was also associated with upregulation in the

original comparison of ovarian cancer cases and controls. However,

among these miRNAs, only miR-200a-3p demonstrated a statistically

significant observed trend.
Discussion

In this study we evaluated sets of miRNAs previously identified

as potential early detection markers in prevalent ovarian cancer

cases and controls in an independent study population with serum

samples collected prior to diagnosis, demonstrating that these

miRNA sets discriminated between cases diagnosed in the relative

short-term following blood collection (<2 years) and those

diagnosed later (≥2–7 years). The obtained median AUC metrics

on the test set exceeded the threshold of 0.75, which is recognized as

a criterion for potential clinical usability (31). This indicates that

significant and discriminatory changes occurred in the selected

miRNA sets over time as ovarian cancer developed. The consistent

performance of these miRNAs suggests that they form a robust set

worthy of further evaluation and validation.
Frontiers in Oncology 06
This provides support for the potential of these miRNAs for

ovarian cancer early detection, though further studies are required.

We compared cases diagnosed proximate to blood collection against

those diagnosed more distant from blood collection for this study.

Ideally, a representative cancer-free control group would have been

used for comparison, as any early signal of a developing neoplasm

more than 2 years prior to diagnosis would interfere with the

performance of the miRNA sets in the current setting. Further, the

performance of the a priori defined miRNA signature was observed in

the context of limited comparability of the sequencing methodology

between our study and the study in which the signature was derived;

this was a limitation of this study. Despite extensive effort to unify the

approach for post-sequencing analysis, marked heterogeneity in the

data was noted across the sequencing profiles, suggesting inherent

differences in sequencing technologies that made a direct transfer of

models impossible between the two datasets. Our observation that the 5

sets of 14 randomly selectedmiRNAs all had AUCs >0.50 is in line with

the correlations between individual miRNAs within the a priori

selected and randomly select sets.

Our study revealed that among 14 miRNAs analyzed, miRNA-

200a-3p was the only miRNA demonstrating a significant difference

in expression in samples collected more distant from diagnosis, as

compared to those collected proximate to diagnosis. While miRNA-

200a has been commonly linked to oncogenesis (32), our research is

pioneering in evaluating trends by timing of serum collection in the

time window prior to ovarian cancer diagnosis. Beta coefficients,
TABLE 2 Temporal linear trends in selected miRNAs prior to ovarian cancer diagnosis compared to differential expression results observed in
comparison between ovarian cancer cases and controls in original paper by Elias et al. (eLife 2017).

miRNA Elias et al. Our study

log2FC p-value beta p-value Interpretation

miR-200c-3p 1.56 0.000 0.08 0.27 No change over time

miR-320d 1.06 0.000 0.01 0.88 No change over time

miR-320c 0.79 0.000 0.02 0.78 No change over time

miR-200a-3p 1.03 0.000 0.15 0.04 Concordant and
significant trend

miR-1307–5p 0.50 0.000 -0.04 0.59 No change over time

miR-1246 1.10 0.001 0.13 0.08 Concordant and non-
significant trend

miR-203a-3p 1.05 0.001 0.12 0.11 Concordant and non-
significant trend

miR-450b-5p 0.87 0.002 0.06 0.44 No change over time

miR-23b-3p 0.60 0.003 0.14 0.07 Concordant and non-
significant trend

miR-32–5p 0.56 0.004 0.08 0.32 No change over time

miR-335–5p 0.48 0.004 -0.02 0.80 No change over time

miR-29a-3p 0.48 0.011 0.05 0.50 No change over time

miR-92a-3p -0.21 0.126 -0.03 0.71 No change over time

miR-150–5p 0.04 0.883 -0.01 0.91 No change over time
miRNAs were considered concordant if they exhibited similar increase/decrease over time prior to diagnosis (linear regression beta coefficient and p-value) when compared to up-/
downregulation (log2 fold-change; log2FC) reported in the Elias paper. Beta coefficients close to 0 (-0.1 < beta < 0.1) were interpreted as a lack of temporal trend.
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although not statistically significant, suggested similar trends for

miR-1246, miR-203a-3p, and miR-23b-3p, i.e. demonstrated

increased expression levels as the time to diagnosis decreased. The

dynamics of these miRNAs in circulation prior to ovarian cancer

diagnosis merit further investigation in larger studies, and evaluations

of differences in miRNA patterns in pre-diagnosis samples from

individuals with ovarian cancer and cancer-free controls are needed.

The relative stability of the remaining miRNAs could suggest that

either no relationship with cancer stage exists or that the observed

miRNA profile is associated with an increased risk of ovarian cancer

development. Our recent work suggests that the miRNA profile could

be associated with states linked to an increased risk of cancer

development, such as BRCA1/2 mutation (33) or exposure to risk

factors like ionizing radiation (34). The discovery of miRNA-related

states of increased cancer risk may be crucial for early detection and

possible screening in high-risk populations.

Beyond the findings on the miRNA signature, we have reached

two principal conclusions regarding our applied approach. First,

our initial aim was to perform validation of a previously developed

model. However, significant batch effects and technological

differences have rendered this validation impossible. Validating

published models requires aligning technologies from the point of

data generation and implementing normalization methods that are

suitable for per-sample analysis and do not rely solely on batch

effect correction. Unfortunately, currently available bioinformatic

tools were unable to adequately address the substantial differences

in the sequencing data in an unsupervised manner. To achieve

validation, it will be necessary to generate a larger common dataset

using a single platform, to which each group can apply various

modelling techniques. Secondly, the miRNA set that was previously

identified appears to possess predictive capacity. However, in order

to calibrate the model for a reproducible test, it is crucial that all

data originates from a common data generation stream. To address

batch effects in decentralized scenarios, rigorous quality controls

and adherence to a priori set normalization, filtering, and modeling

standards will be necessary during the testing phase. Both topics are

addressed in our ongoing research activities. Additionally, the

creation of a larger common dataset and strict adherence to

quality controls and standardized procedures are essential for

reliable results in decentralized scenarios.

Taken together, these findings using existing sequencing data

suggest that the evaluated miRNA sets previously identified for

ovarian cancer early detection are relatively robust in discriminating

between cases diagnosed proximate to blood collection from those

diagnosed more distant from blood collection. A unified approach

evaluating targeted panels of miRNAs and investigating performance

in pre-diagnosis samples is required to advance these markers toward

clinical utility.
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