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Introduction: Pathologists rely on whole slide images (WSIs) to diagnose cancer

by identifying tumor cells and subtypes. Deep learning models, particularly

weakly supervised ones, classify WSIs using image tiles but may overlook false

positives and negatives due to the heterogeneous nature of tumors. Both

cancerous and healthy cells can proliferate in patterns that extend beyond

individual tiles, leading to errors at the tile level that result in inaccurate tumor-

level classifications.

Methods: To address this limitation, we introduce NATMIL (Neighborhood

Attention Transformer Multiple Instance Learning), which utilizes the

Neighborhood Attention Transformer to incorporate contextual dependencies

among WSI tiles. NATMIL enhances multiple instance learning by integrating a

broader tissue context into the model. Our approach enhances the accuracy of

tumor classification by considering the broader tissue context, thus reducing

errors associated with isolated tile analysis.

Results: We conducted a quantitative analysis to evaluate NATMIL’s performance

against other weakly supervised algorithms. When applied to subtyping non-small

cell lung cancer (NSCLC) and lymph node (LN) tumors, NATMIL demonstrated

superior accuracy. Specifically, NATMIL achieved accuracy values of 89.6% on the

Camelyon dataset and 88.1% on the TCGA-LUSC dataset, outperforming existing

methods. These results underscore NATMIL’s potential as a robust tool for improving

the precision of cancer diagnosis using WSIs.

Discussion: Our findings demonstrate that NATMIL significantly improves tumor

classification accuracy by reducing errors associated with isolated tile analysis. The

integration of contextual dependencies enhances the precision of cancer diagnosis

using WSIs, highlighting NATMILs´ potential as a robust tool in pathology.
KEYWORDS

attention transformer, whole slide images, multiple instance learning, lung cancer,
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1 Introduction

The examination of tissue biopsy sections, specifically whole slide

images (WSIs), yields a substantial amount of phenotypic data and

serves as the fundamental basis for the field of cancer pathology (1).

Recently, there has been significant advancement in the field of deep

learning (DL) techniques (2). These methods have revolutionized the

construction of diagnostic machines that exhibit a high level of

accuracy. In fact, their performance in tasks related to cancer

classification and diagnosis has been seen to be on par with, or even

surpass, that of specialists who have undergone extensive training (3).

However, to create effective deep neural network (DNN) models for

cancer pathology, it has often been necessary to annotate everyWSI on

a pixel level using thorough ground-truth descriptions based on expert

opinions (4). The utilization of slide-level labels in a weakly supervised

scenario for training DNN classification models has exhibited

remarkable accuracy in classifying test data. This achievement has

significant implications for the implementation of adaptable

mathematical systems for decision-making in clinical practice, as

evidenced by previous studies (5–7).

In the context of cancer histology, DNN models do not process

WSIs as single images at a time like regular images. Instead, WSIs

are commonly broken into smaller units known as “tiles” that serve

as input elements. Using tile-level DL characteristics, the entire WSI

and tumor are classified. The Multiple Instance Learning (MIL)

framework is used in most weakly supervised WSI classification

algorithms to learn the slide-level label from each WSI as a “bag” of

tiles. MIL models are permutation invariant, meaning WSI tiles

have no specific ordering, which hinders their deployment and the

weakly supervised learning paradigm (8).

The motivation behind this work is to address the limitations of

current weakly supervised methods, which often overlook the

spatial dependencies among WSI tiles. This oversight can lead to

false positives and negatives, particularly given the heterogeneous

nature of tumors. To overcome this challenge, we propose a novel

and efficient hierarchical transformer model called Neighborhood

Attention Transformer Multiple Instance Learning (NATMIL).

The novelty of our approach lies in the Neighborhood Attention

mechanism, which localizes the Self-Attention operation to the

nearest neighbors of each pixel, without relying on a predetermined

window adjacent to the pixel. This updated definition permits all

pixels to possess a uniform rate of attention, which would otherwise

be diminished for edge pixels in zero-padded options. As the size of

the neighborhood increases, neighborhood attention exhibits

similarities to self-attention and can be considered equivalent to

self-attention when the neighborhood reaches its maximum size.

Moreover, the utilization of local attention offers the additional

benefit of preserving translational equivariance, which sets it apart

from blocked and window self-attention mechanisms.

We have devised a method called the Neighborhood Attention

Transformer (NAT) that performs competitively. In conclusion,

our most significant contributions are as follows:
Fron
• Proposing a simple and adaptable sliding window attention

mechanism that preserves translational equivariance,

approximates self-attention as its span increases, and localizes
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each pixel’s attention span to its closest neighborhood. We

contrast Neighborhood Attention with window self-attention,

convolutions, and self-attention in terms of accuracy.

• Introducing a new hierarchical transformer that leverages

Neighborhood Attention (NA)’s efficiency, accuracy, and

scalability: the Neighborhood Attention Transformer

(NAT). We demonstrate its effectiveness on downstream

tasks upon classification.
By addressing the spatial dependencies among WSI tiles and

introducing a novel attention mechanism, this work aims to

significantly improve the accuracy and reliability of cancer

pathology models.
2 Related work

In the conventional approach, a WSI is commonly partitioned

into non-overlapping tiles of a predetermined size. These tiles are

subsequently assigned a weak label, determined based on the

diagnosis at the slide level, to be utilized as input for a Deep

Neural Network (DNN) (9). The MIL formulation allows for the

prediction of a WSI label (cancer yes/no, cancer type) to originate

either from the tile predictions (5, 10–12) or from a higher-level bag

representation arising from the aggregation of the tile features (8, 13–

15). The former method is referred to as instance based. The latter

method, which makes use of bag embeddings (8, 14), has been shown

to perform better in experiments. Recent bag-embedding-based

methods (16) use attention mechanisms, which give each tile a

score reflecting its importance in the overall WSI-level

representation. Most contemporary bag-embedding-based methods

include attention mechanisms (16), which award a score to each tile

indicating its relative contribution to the overall representation of the

WSI. Attention scores facilitate the automated identification of sub-

regions that possess significant diagnostic value and provide

information for the label at the WSI level (15, 17, 18).

Different attention-based MIL models investigate WSI tissue

structure in various ways. Many of them assume that the tiles are

unrelated and randomly distributed, which is why they are

permutation invariant. Based on this premise, a recent study (13)

suggested an attention-basedMIL pooling operator that can be taught

to automatically compute the bag embedding as the weighted average

of all tile features in the WSI. The adoption and modification of this

operator have been extensive, with the inclusion of a clustering layer

(15, 19, 20) to enhance the acquisition of semantically rich and

distinct class-specific features. Nevertheless, operators that are

permutation invariant lack the intrinsic ability to capture the

structural dependencies that exist between various tiles in the

input. For example, the DSMIL method [DSMIL (21)] employs a

non-local operator to calculate an attention score for each tile. This

value is determined by comparing the feature representation of the

tile with that of a crucial tile. Recently, transformer-based designs

have been introduced to examine the correlations among the various

tiles of a whole-slide image (WSI). These architectures typically

employ a learnable position-dependent signal to effectively integrate

the spatial information of the picture (22, 23). To optimize for the
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classification challenge and generate attention scores while

concurrently learning the positional embeddings, TransMIL (24)

uses a transformer-like architecture. However, transformer-based

methodologies might overlook the fundamental biological processes

that regulate the spatial organization of the slide.

The Stand-Alone Self-Attention (SASA) (25) technique is

considered one of the initial sliding window self-attention

patterns. Its primary objective is to substitute convolutions in

current convolutional neural networks (CNNs) (26). Striding the

feature map extracts key-value pairs like a convolution with zero

padding. While accuracy improved, the implementation had high

latency despite lower theoretical cost. Sliding window attention, first

used in Longformer (27) for language processing, was later used in

Vision Longformer (ViL) (28). Although Longformer and ViL’s

implementations differed from SASA, they were unable to grow to

larger windows and models due to computational overhead. Liu

et al. presented Window and Shifted Window (Swin) Attention

(29), non-sliding window-based self-attention mechanisms (30)

that split feature maps and apply self-attention to each partition

individually. Swin Transformer is a pioneering hierarchical vision

transformer. The feature maps are pyramid shaped, reducing spatial

dimensionality and boosting depth. Swin’s structure is widely

employed in CNNs, making it compatible with other networks

for downstream tasks like detection and segmentation. At

ImageNet-1K classification, Swin outscored DeiT, which utilizes a

convolutional teacher. Swin Transformer is the leading approach

for object detection on MS-COCO and semantic segmentation on

ADE20K. To address the slowness of SASA, Vaswani et al. (31)

introduced HaloNet, which employs a new blocked attention

pattern. While this modification does violate translational

equivariance, the benefits in terms of both performance and

memory are acknowledged. Three phases make up HaloNet’s

attention mechanism: blocking, haloing, and attention. Blocking

input feature maps into non-overlapping subsets creates queries.

Next, “haloed” nearby blocks are extracted as keys and values.

Attention is then given to extracted queries and key-value pairs. A

novel CNN architecture, ConvNeXt, was proposed by Liu et al. (32),

inspired by models like Swin. The aforementioned models do not

incorporate attention mechanisms; nevertheless, they demonstrate

superior performance compared to Swin in several visual tasks.

Our Neighborhood Attention approach localizes the field of

response to a window surrounding each query, eliminating the need

for additional strategies like Swin’s cyclic shift. We present

Neighborhood Attention Transformer, a hierarchy-based

transformer-like model using this attention mechanism, and

compare its performance to Swin on image classification, object

detection, and semantic segmentation.
3 Methodology

The NATMIL approach is founded on the premise that the

surrounding neighborhood of a tile contains important information

on the level of attention allocated to that specific tile by the model.

By establishing a parallel between our framework and the process of

analyzing a biopsy slide by a pathologist, one might conceptualize
Frontiers in Oncology 03
the act of zooming in and out of a particular sub-region as a means

to comprehensively explore its broader surroundings, so enhancing

our understanding of the adjacent micro-environment and tissue.

In NATMIL, the attention score of each tile is recalibrated by

combining the attention scores of its surrounding tiles. Figure 1

provides an overview of the model. It may be broken down into

four parts:

1. Each WSI undergoes a preprocessing step in which the tissue

area is automatically segmented and divided into several

smaller patches.

2. The patch and feature extraction module is composed of a

series of convolutional, max pooling, and linear layers. Its purpose is

to convert the initial tile input into low-dimensional feature

representations. Let  H = h1, h2,⋯, hi,⋯, hNf g, where each hi ∈
Rn�d . Here, d represents the embedding dimensions of a tile, n

represents the number of tiles inside a WSI, and N represents the

total number of WSIs.

3. An attention vector of dimension N × 1 is produced by a

Neighborhood Attention mechanism with a contrastive learning

block that incorporates the localizing self-attention to the nearest

neighboring pixels.

4. A feature aggregator and classification layer that combines

the slide-level prediction and tile-level attention scores produced by

the one prior to it.
3.1 Feature extractor

To estimate attention weights across instances that exhibit

identical feature representations, we present the use of self-

supervised contrastive learning. In this study, we focus on

SimCLR (33), a widely recognized self-supervised learning system.

In Figure 2 SimCLR facilitates the acquisition of semantically

meaningful feature representations by decreasing the dissimilarity

between many augmented iterations of identical picture data.

After partitioning the segmented tissue region into tiles, we

employ two distinctively enhanced variations of the identical tile as

an input to an instance-level feature encoder denoted as F(x), which

is built using a ResNet-50 architecture.

In the NATMIL framework, the last step involves the utilization

of a projection head. This projection head is implemented as a multi-

layer perceptron (MLP) containing two hidden layers. Its purpose is

to transform the feature representations into a distinct space where a

contrastive loss function is subsequently applied. During the training

process, the feature representations zi and zj, which correspond to

both viewpoints of the same tile that are differently augmented and

correlated, are utilized in order to decrease adjusted temperature-

scaled cross entropy as specified by Equation 1.

L(zt , zs) = l(zt , qs) + l(zs, qt) 1

The function sim( : ) represents cosine similarity, t represents

the variable temperature, and 1½k = i� ∈ 0, 1 is the value of a

function that evaluates to 1 only if k = i.

H = h1,⋯, hi,⋯ hNf g, hi ∈ Rn�d of each WSI is generated

using the ResNet-50 network as the base encoder, whereas n is

the quantity of tiles and d is the embedding dimension.
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3.2 Neighborhood Attention
Transformer module

To encode the feature embeddings of the individual tiles, we

utilize a transformer, T, layer to aggregate the feature embeddings

 H = h1,⋯, hi,⋯, hNf g, hi ∈ Rn�d , where d is the embedding

dimensions of a tile, n is the number of tiles inside a WSI, and N

is the number of WSIs.
Frontiers in Oncology 04
In this study, we propose the incorporation of a novel

mechanism known as Neighborhood Attention (NA). We define

attention weights for the i-th input with neighborhood size k, Ak
i , in

Equation 2 as the dot product of the i-th input’s query projection

and its k nearest neighboring key projections. Given an input X ∈
Rn�d , which is a matrix whose rows are d-dimensional token

vectors, and X’s linear projections, Q,K , and V , and relative

positional biases   B(i, j).
FIGURE 1

An overview of NATMIL model architecture. At first, preprocessing WSIs separates tissue from background. After splitting the WSIs into 256 × 256
tiles, a pre-trained feature extractor generates 1,024 feature representations for each tile. Tile feature representations function as input for our
Neighborhood Attention Transformer module. This module analyzes each patch and its neighbors, creating neighborhood descriptors and
calculating attention coefficients. The output layer combines tile-level attention scores from the previous layer to get a slide categorization score.
FIGURE 2

SimCLR training and inference. Two augmentations are done on a tile during training. Two augmentations of the same tile are supplied to a pre-
trained ResNet-50 on ImageNet with an additional projection head. ResNet-50’s final convolutional block and projection head involves minimizing
the contrastive across tiles. Features are retrieved from the refined ResNet-50 during inference. In the neighbor attention transformer module, patch
distances are determined.
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Ak
i =
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T
r1(i) + Bi,r1(i)

QiK
T
r2(i) + Bi,r2(i)
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QiK
T
rk(i) + Bi,rk(i)
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2

Next, in Equation 3 we define Vk
i , the adjacent values, as a

matrix whose rows are the k nearest neighboring value projections

of the i-th input:

Vk
i = ½VT

r1(i),V
T
r2(i),⋯,VT

rk(i)�, 3

Next, we define attention for the i-th token with neighborhood

size k as follows:

NAk(i) = softmax(
Ak
iffiffiffi
d

p )Vk
i   4

with the scaling parameter denoted by
ffiffiffi
d

p
as shown in Equation

4. For each pixel in the feature map, this process is repeated.

With two consecutive 3 × 3 convolutions and 2 × 2 strides, NAT

embeds inputs into a spatial size that is one-fourth that of the input as

shown in Figure 3. This approach bears resemblance to employing a

patch and embedding layer that consists of 4 × 4 patches. However, it

diverges by employing overlapping convolutions instead of non-

overlapping ones, thereby introducing valuable inductive biases.

However, the utilization of overlapping convolutions would result in

an escalation of expenses and an increase in the number of parameters

due to the implementation of two convolutions. Nevertheless, we

address this issue by reconfiguring the model, achieving an improved

trade-off. With the exception of the last level, all four NAT levels are

followed by a downsampler. Downsamplers double the number of

channels while halving the spatial size. Instead of the 2 × 2 non-

overlapping convolutions that Swin employs (patch merging), we

employ 3 × 3 convolutions with 2 × 2 strides. As a result of the

tokenizer’s fourfold downsampling, our model generates feature maps

with sizes of h
4 � w

4 ,
h
8 � w

8 ,
h
16 � w

16 ,
h
16 � w

16, The motivation for this

shift stems from the success of previous CNN structures, which has

since led to the development of various hierarchical attention-based

approaches, like PVT (34), ViL (28), and Swin Transformer (29).

Furthermore, Layer-Scale [29] is employed to provide stability in larger

variations. Figure 1 presents a visual representation of the entire

network structure.
3.3 Feature aggregation

Aggregate WSI representation g ∈ R1�d is adaptively calculated

as a weighted average of individual value vectors, each weighted by

Equation 5 its attention score in Equation 6.

g =o
N

i=1
ai(gi + ti) 5
Frontiers in Oncology 05
such that

ai =
expwT (tanh(VtTi )⊙ sigm(UtTi ))

oK
j=1expw

T (tanh(VtTi )⊙ sigm(UtTi ))
6

The learnable parameters in this context are denoted as  U ,V ,

and w. The symbol o ̇ represents element-wise multiplication. The

function sigm() refers to the sigmoid non-linearity, whereas tanh()

represents the hyperbolic tangent function.

At last, the classifier layer assigns each slide a score Wc ∈ Rc�d

ypred = Wcg
T 7

where c is the total number of classes mentioned in Equation 7.

Finally, a classification score is generated by using the
FIGURE 3

An overview of NAT, with its hierarchical design. The model begins
with a convolutional downsampler and progresses through four
successive stages containing numerous NAT Blocks, which are
transformer-like encoder layers. The layers consist of a multi-
headed neighborhood attention (NA), multi-layered perceptron
(MLP), Layer Norm (LN) before each module, and skip connections.
Between stages, feature maps are downsampled to half their spatial
size and twice in depth.
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https://doi.org/10.3389/fonc.2024.1389396
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aftab et al. 10.3389/fonc.2024.1389396
representation learned from the well-attended patches to minimize

a cross-entropy loss.
4 Experiments

4.1 Datasets

We conducted several tests using the Camelyon and TCGA-

NSCLC datasets, both of which are widely utilized and publicly

available. The Camelyon dataset stands out as a particularly

significant open resource for studying breast cancer.

Among the largest public breast cancer datasets is Camelyon16

(35). It comprises a training set of 270 annotated biopsy slides

and an official test set of 129 slides from Radboud University

Medical Center and University Medical Center Utrecht in

the Netherlands.

The TCGA-NSCLC dataset encompasses two distinct subtypes

of non-small-cell lung cancer: lung squamous cell carcinoma

(TGCA-LUSC) and lung adenocarcinoma (TCGA-LUAD). For

LUAD, a total of 541 slides from 478 patients were obtained,

while for LUSC, 512 slides from the same 478 cases were collected.
4.2 Baseline model

We evaluated the performance of our neighborhood pooling

technique through a comparative analysis with classic pooling

operators like Mean-pooling and Max-pooling, and various state-

of-the-art Multiple Instance Learning (MIL) (36) methods. These

methods include AB-MIL (37), CLAM-SB, CLAM-MB (15), MI

Net, MIL-RNN (11), TransMIL (24), and DTFT-MIL (38).

The AB-MIL model incorporates attention mechanisms based on

the specific attributes of each individual tile. In contrast, the CLAM-

SB and CLAM-MB models also utilizeattention pooling operators

similar to AB-MIL but are further enhanced by an auxiliary clustering

layer. MI Net employs both max pooling and mean pooling

techniques to generate the WSI-level embedding. On the other

hand, the MIL-RNN model is an aggregation model that utilizes a

recurrent neural network. TRANS-MIL utilizes a transformer-based

aggregator, while DTFT-MIL employs the class activation map to

calculate the positive probability of an instance within the AB-

MIL framework.
4.3 Implementation

The tissue area was extracted from each slide using the publicly

accessible WSI-preprocessing toolkit developed by (15).

Subsequently, this region was divided into non-overlapping

patches of size 256 × 256 at a magnification of ×20. It is

important to note that variations in parameters during the feature

extraction process may result in different training and test sets,
Frontiers in Oncology 06
potentially leading to varied model performance outcomes.

Disseminating the extracted features allows other researchers to

utilize the same dataset for training and evaluating their models,

facilitating the comparison of different methodologies.

In our pipeline, the Neighborhood Attention Transformer

component incorporated Swin’s (29) training configuration

module, enabling the implementation of learning rate, iteration-

wise cosine schedule, and other hyperparameters. The results are

presented below.
5 Results

The outcomes of employing the NATMIL methodology for the

classification of WSIs in the Camelyon16 and TCGA-NSCLC

datasets are displayed in Tables 1, 2. All tests in this study

evaluate the performance using three metrics: the area under the

receiver operating characteristic curve (AUC), the slide-level

accuracy (ACC) with a threshold of 0.5, and the macro-averaged

F1 score. These processes facilitated an acceptable evaluation across

multiple techniques and datasets of varying sizes (39).
TABLE 1 Performance comparison of NATMIL against various baselines
on the Camelyon16 datasets.

Method ACC F1 AUC

ABMIL-GATED 0.871 ± 0.025 0.842 ± 0.017 0.910 ± 0.027

MIL-RNN 0.872 ± 0.014 0.852 ± 0.016 0.921 ± 0.027

CLAM-SB 0.879 ± 0.023 0.862 ± 0.020 0.926 ± 0.021

CLAM-MB 0.882 ± 0.026 0.868 ± 0.031 0.927 ± 0.011

TRANSMIL 0.884 ± 0.013 0.869 ± 0.021 0.930 ± 0.013

DTFT-MIL 0.885 ± 0.013 0.871 ± 0.031 0.933 ± 0.021

NATMIL 0.896 ± 0.013 0.872 ± 0.015 0.940 ± 0.027
TABLE 2 Performance comparison of NATMIL against various baselines
on the TCGA-NSCLC datasets.

Method ACC F1 AUC

ABMIL-GATED 0.859 ± 0.013 0.852 ± 0.017 0.880 ± 0.057

MIL-RNN 0.864 ± 0.023 0.862 ± 0.031 0.890 ± 0.038

CLAM-SB 0.839 ± 0.011 0.862 ± 0.023 0.897 ± 0.026

CLAM-MB 0.847 ± 0.009 0.866 ± 0.061 0.9320 ± 0.027

TRANSMIL 0.865 ± 0.020 0.872 ± 0.061 0.940 ± 0.027

DTFT-MIL 0.879 ± 0.022 0.862 ± 0.054 0.920 ± 0.027

NATMIL 0.881 ± 0.0303 0.882 ± 0.017 0.940 ± 0.027
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The results presented in the tables are further elucidated in

Figure 4, which illustrates the relationship between the

hyperparameter “k” and the corresponding area under the receiver

operating characteristic curve (AUC) values for the Camelyon16 and

TCGA-NSCLC histopathology datasets.

The figure demonstrates the impact of varying the

neighborhood size “k” on the performance of the NATMIL

model. For lower values of “k” (i.e., k ∈ 2, 3, 4), the model

exhibits similar behavior across both datasets, performing

consistently well under identical experimental conditions. This

consistency is expected, as nearby tiles convey significant

information regarding the risk of a tile being malignant. However,

as the value of “k” increases, there is a progressive decline in the

model’s performance, except for a notable improvement when “k”

equals 8.

This observed phenomenon can be attributed to recurring

patterns within tumors, occurring at intervals of approximately

eight tiles. Thus, the significance of employing models capable of

capturing both local adjacent information and overall trends in the

biopsy is underscored. It is also noteworthy that selecting either

“k = 4” or “k = 8” consistently yields satisfactory outcomes due to

the spatial configuration of tiles and their neighboring elements,

reminiscent of a grid-like topology.

NATMIL surpasses all previous MIL models in terms of

accuracy and AUC on the Camelyon16 cancer dataset. Notably,

within the Camelyon16 dataset, tumor cells might constitute a mere

5% of the WSI. The occurrence of tumor cells in tissue samples is

frequently observed at a low frequency, especially in metastatic

locations, where tumor cells are distributed among extensive areas

of normal cells (40). Therefore, the NATMIL model, which utilizes

a local neighborhood analysis to readjust attention coefficients,

demonstrated superior efficacy in detecting medically significant,

sparsely distributed malignant spots compared to alternative

models. The performance of NATMIL on the Camelyon16
Frontiers in Oncology 07
dataset exhibited substantial superiority over the other baselines.

The NATMIL model demonstrates a statistically significant

improvement of at least 1.5% in terms of AUC compared to other

currently available models.

We present the experimental results of the proposed methods

on CAMELYON-16 and TCGA lung cancer dataset in comparison

to the following baselines methods: i) classic AB-MIL; ii) RNN-

based RNN-MIL; iii) attention-based CLAM-SB, CLAM-MB; and

iv) transformer-based MIL, Trans-MIL.

For CAMELYON-16, most slides contain only small portions of

tumor over the whole tissue region. The proposed NATMIL

methods with different features have outperformed other existing

MIL methods except Trans-MIL, which used a transformer-based

aggregator, while Trans-MIL is significantly larger in model size and

computational complexity. The NATMIL achieves significant

performance at AUC of 0.7% better than DTFT-MIL, as the

model used different feature distillations.

For TCGA lung cancer, the proposed methods also achieve

leading performances, with NATMIL obtaining the best AUC value

of 94.2%. Due to the significantly larger tumor regions in positive

slides, even RNN and DTFT-based MIL methods perform well on

the TCGA lung cancer dataset resulting in less obvious superiority

of the proposed methods over other existing methods. In

comparison, for the much more chal lenging dataset

CAMELYON-16, the proposed method present robustness to the

situation of small portions of tumor regions in positive slides.

In the TCGA-NSCLC dataset, it was observed that NATMIL

had superior performance compared to the other baselines that

were taken into consideration. The max-pooling approach, which

employs the max operator as an aggregation function,

demonstrated superior performance compared to other methods.

The remarkable efficacy of max pooling on this dataset can be

attributed to the observation that tumor cells constitute

approximately 80% of the WSI in the TCGA-NSCLC dataset. The
FIGURE 4

The link between the hyperparameter “k” and the corresponding area under the receiver operating characteristic curve (AUC) values for the
Camelyon16 and TCGA-NSCLC histopathology datasets.
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probability of accurately labeling distinct malignant cells is

significantly elevated.
5.1 Ablation study

Our ablation investigation examined the efficacy of the

Neighborhood Attention (NA) design block and the surrounding

attention module. We tested how changing the neighborhood size k

affected the efficiency of our NATMIL model. As shown in Figure 4,

we observed that for low values of k (i.e., k ∈ 2,3,4), the model

behaved similarly after being trained under identical experimental

conditions. This consistency makes sense, given that nearby tiles

convey the most significant information regarding the risk of a tile

being malignant. The desirability of robustness in the selection of k

stems from the time-consuming nature of hyperparameter

adjustment. However, as the value of k increased, there was a

progressive decline in the model’s performance, except for a notable

improvement when k equaled 8.

The observed phenomenon can be attributed to the emergence

of recurring patterns within tumors, occurring at intervals of

approximately eight tiles. This underscores the significance of

employing models capable of capturing both local adjacent

information and overall trends in the biopsy. It was also noted

that the selection of either k = 4 or k = 8 consistently yielded

appropriate outcomes due to the spatial configuration of tiles and

their neighboring elements, which exhibit characteristics

reminiscent of a grid-like topology.

We examined the impact of our NAT design, which includes

convolutional downsampling and a deeper-thinner architecture. To

evaluate its effectiveness, we conducted an ablation study

comparing models utilizing self-attention and shifted window

self-attention. The model was gradually transformed into NAT,

and the outcomes are displayed in Table 3. The initial step

involved substituting the patched embedding and patched

merge techniques with the overlapping convolution design

employed in the Neighborhood Attention Transformer (NAT)

model. This led to an increase in accuracy of approximately 0.5%.

Upon implementing the second phase of reducing the model size

and computational load by increasing its depth and reducing its
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width, an approximate improvement in accuracy of 0.9% compared

to the initial step was observed. As a result, a minor decrease in

accuracy was observed. Nevertheless, by substituting Window-

Shifted Attention and Self-Window-Shifted Attention with our

Neighborhood Attention, a notable enhancement of 0.5% in

accuracy was observed.

Additionally, we conducted a kernel size investigation as shown

in Table 4. The experiment involved varying kernel sizes from 3×3

to 9×9 in order to examine the impact on the performance of

our model.
6 Conclusion

In this paper, we present the first effective and scalable sliding

window attention technique for vision, called Neighborhood

Attention. The first aggregation method employs the

independence assumption to provide an attention score for each

tile in the picture, whereas the second uses vision transformers to

produce an attention score that accounts for the correlation

between tiles.

To re-adjust the estimated attention ratings based on the

similarities they share, we have introduced NATMIL, a unique

MIL vision transformer-based method that considers the

interdependence of nearby tiles in a histopathological image. By

leveraging the pathologists’ existing slide-level labeling, NATMIL

improves performance, reduces their burden, and makes more

data available.
TABLE 4 Performance comparison of NATMIL with different kernel size
on TCGA-LUSC datasets.

Kernel size ACC AUC

3×3 0.8900 ± 0.0137 0.9260 ± 0.3206

5×5 0.8810 ± 0.9938 0.9263 ± 0.2637

7×7 0.8920 ± 0.0545 0.9304 ± 0.5445

9×9 0.8980 ± 0.0131 0.9401 ± 0.1238
TABLE 3 Accuracy performance of different attention and convolutions on the TCGA-NSCLC datasets.

Attention Downsampler #of layers #of heads #MLP Ratio AUC

Self-Attn Patch 2, 4, 6, 2 3 4 0.9061

Window self-Attn Conv 2, 4, 6, 2 3 4 0.9131

Neighbor Attn Conv 3, 4, 18, 5 2 3 0.9210

Convolution Conv 3, 4, 18, 5 2 3 0.9127
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