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Multiple myeloma (MM) is an incurable malignant plasma cell disorder

characterized by the infiltration of clonal plasma cells in the bone marrow

compartment. Gene Expression Profiling (GEP) has emerged as a powerful

investigation tool in modern myeloma research enabling the dissection of the

molecular background of MM and allowing the identification of gene products

that could potentially serve as targets for therapeutic intervention. In this study

we investigated shared transcriptomic abnormalities across newly diagnosed

multiple myeloma (NDMM) patient cohorts. In total, publicly available

transcriptomic data of 7 studies from CD138+ cells from 281 NDMM patients

and 44 healthy individuals were integrated and analyzed. Overall, we identified 28

genes that were consistently differentially expressed (DE) between NDMM

patients and healthy donors (HD) across various studies. Of those, 9 genes

were over/under-expressed in more than 75% of NDMM patients. In addition,

we identified 4 genes (MT1F, PURPL, LINC01239 and LINC01480) that were not

previously considered to participate in MM pathogenesis. Meanwhile, by mining

three drug databases (ChEMBL, IUPHAR/BPS and DrugBank) we identified 31

FDA-approved and 144 experimental drugs that target 8 of these 28 over/under-

expressed MM genes. Taken together, our study offers new insights in MM

pathogenesis and importantly, it reveals potential new treatment options that

need to be further investigated in future studies.
KEYWORDS
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1 Introduction

Multiple myeloma (MM) is a malignant plasma cell disorder

characterized by the infiltration of clonal plasma cells (PCs) in the

bone marrow. It is the second most frequent hematologic

malignancy with an incidence of 5/100.000 in Europe (1). It

mainly affects the elderly with average age of diagnosis at 70 years

old and is slightly more common in male than female (2). It arises

from a premalignant condition termed monoclonal gammopathy of

undetermined significance (MGUS), which is observed in

approximately 3% of the population over 50 years old (3). The

progression risk from MGUS to symptomatic MM or other

lymphoproliferative disorders accounts for 1% per year (4).

Hallmark features of symptomatic MM include anemia,

hypercalcemia, renal insufficiency, osteolytic bone lesions and

increased vulnerability to infections (5).

Therapeutic advances over the past decades have significantly

extended survival and improved quality of life of MM patients. At the

moment, more than 20 drugs are available for the management of

multiple myeloma (6). The treatment decision is currently based on

age, performance status and risk stratification (7). Age-standardized

five-year survival has increased from 41% to 69% for patients under

69 years old and from 23% to 47% for patients between 70 and 79

years old (8). Despite significant progress, MM remains incurable and

inevitably all patients will experience relapses and eventually develop

refractory disease. Further research is needed to improve our

understanding of MM complex biology, which will enable the

identification of novel therapeutic targets and the subsequent

development of more effective treatments.

Intensive research of the past decades has revealed that MM is a

highly heterogenous disease with several molecular subtypes (9).

According to the International Myeloma Working Group, the

major subgroups are the hyperdiploid, the t(4;14)(p16;q32), the t

(11;14)(q13;q32), the t(14;16)(q32;q23) and the unclassified type (10).

Each subgroup is characterized by distinct genetic and molecular

alterations resulting in unique clinicopathological features, prognostic

implications and treatment outcomes. This diversity across MM

subgroups is the main reason for failure of treatments that

selectively interfere with specific MM targets. Nevertheless,

exploration of shared abnormal patterns within or even across

myeloma subgroups can surpass MM variability and identify

unifying molecular abnormalities or abnormalities shared by

members of a certain subgroup, which could guide precision-based

drug administration, drug development or even drug repurposing.

Gene expression profiling (GEP) has emerged as a powerful

investigation tool in modern myeloma research. Many GEP studies

have been conducted on MM with the purpose to reveal distinct

subgroups and to identify gene signatures that predict poor

treatment outcomes and inferior overall survival (11, 12).

However, so far, no thorough comparative analysis of the publicly

available datasets has been conducted to identify genes that are

consistently over/under-expressed across newly diagnosed multiple

myeloma (NDMM) patient cohorts.

Herein, using publicly available transcriptomic data from

CD138+ cells from 2 bulk RNA-seq and 5 Affymetrix Chip

studies of NDMM patients against their controls we investigated
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gene expression profiles aiming to reveal transcriptomic

similarities across NDMM patients which could potentially serve

as therapeutic targets (13–19). We identified 28 genes that were

consistently differentially expressed (DE) across various studies,

with several of them not being considered as ‘key’ genes in MM

previously. Furthermore, we mined drug databases to identify

already approved drugs for other diseases that target these genes

and thus could be re-purposed for MM.
2 Materials and methods

2.1 Data mining

The Gene Expression Omnibus (GEO) database was mined for

publicly available transcriptomic data of CD138+ cells from

NDMM patients and healthy donors (HD) (20). The search

strategy contained the MESH TERMS ‘‘Multiple Myeloma’’ AND

‘‘Expression profiling by high throughput sequencing’’ OR

‘‘Expression profiling by array’’. Datasets were considered eligible

for this study if they fulfilled the following predefined inclusion

criterion: each candidate dataset ought to contain bulk RNA-seq or

microarray-based transcriptomic data from purified PCs derived

from bone marrow aspirates, both from HD and from NDMM

patients. An initial search identified 779 datasets. Each dataset was

screened for relevance and eligibility. Irrelevant datasets, duplicate

datasets, non-coding RNA-based datasets, datasets with unavailable

raw data and datasets where patients could not be clearly

distinguished from healthy individuals, based on UMAP

clustering (at the GEO website), were excluded. Overall, 2 bulk

RNA-seq datasets (accession numbers GSE153380 and GSE175384)

and 5 microarray-based datasets (accession numbers GSE116294,

GSE6691, GSE47552, GSE6477 and GSE16558) were included in

our analyses (Supplementary Figure 1).
2.2 Samples and patient characteristics

Prior to gene expression analysis we evaluated the credibility

of each NDMM and HD sample of the 7 datasets by using UMAP

plots at the GEO website, in order to assess whether samples from

NDMM patients were clustering together and not clustering with

samples from HD and vice versa. Thus, we excluded 3 samples

derived from HD of the GSE6477 dataset and 1 sample derived

from a NDMM patient of the GSE16558 dataset. In total,

transcriptomic data from 281 NDMM patients and 44 healthy

individuals were obtained and re-analyzed (Supplementary

Table 1). Cytogenetic abnormalities of each patient cohort are

summarized in Supplementary Table 2.
2.3 Data processing

2.3.1 Bulk RNA seq datasets
We downloaded the raw SRA data from the GEO studies

GSE153380 and GSE175384. The raw data from both studies were
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analyzed with FastQC and trimmed with Trimmomatic (21, 22). The

trimmomatic parameters were set to ILLUMINACLIP : TruSeq3-PE-

2:2:30:10 SLIDINGWINDOW:4:30 MINLEN:70 for GSE153380 and

ILLUMINACLIP : TruSeq3-SE:2:30:10 SLIDINGWINDOW:4:30

MINLEN:50 for GSE175384. Then, the trimmed reads were aligned

to the reference human genome (version GRCh38.110) from

ENSEMBL with STAR and the counts for each gene were obtained

(23). For each study the gene expression counts were cross-sample

normalized using the TMM method to enable the comparison of

NDMM patients and HD. Differential gene expression analysis was

conducted with DESeq2 and EdgeR on the raw gene expression

counts (24, 25). For a gene to be considered as DE, it should have a P-

value (after multiple-testing correction) less than 0.05 and absolute

log2 fold-change more than or equal to 2.
2.3.2 Microarray-based datasets
Each microarray-based dataset was analyzed through NCBI

GEO2R, comparing the NDMM and HD samples with default

parameters (26). DE genes were considered those with P-value

(after multiple-testing correction) less than 0.05 and absolute log2

fold-change more than or equal to 2. Gene symbols from the

microarrays were mapped to the reference ENSEMBL symbols

through HUGO (27). The DE genes from the microarray datasets

were subsequently compared with the lists of DE genes from the

RNA-seq datasets (identified by DESeq2).
2.4 Statistical analysis

All statistical analyses were conducted with the GraphPad

Prism 10 software. Results were considered significant when P-

values were less than 0.05. Trimmed mean of M (TMM) values were

used as expression measures to compare differences in gene

expression between subgroups (28). Normality of distributions

was assessed with the Shapiro-Wilk test. For non-parametric

metrical data, the Mann Whitney U test was used to compare

differences between 2 groups and the Kruskal-Wallis test was used

to compare differences between 3 or more groups. One sample T-

Test and Wilcoxon signed-rank test were used to compare a known

mean or a known median of the HD population against the value of

a NDMM patient, when appropriate. Graphs were illustrated with

GraphPad Prism 10 and R software. Values were logarithmically

transformed prior plotting to ease visualization.
3 Results

3.1 Consistently over/under-expressed
genes across several studies

First, we identified in each of the seven transcriptomic studies

those genes whose expression was significantly differentiated

between NDMM patients and HD. We applied a stringent

threshold of absolute fold change ≥ 4 (log2fc ≥ 2) and P-adj <

0.05 in order to obtain those genes with significant change. Next, we
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integrated the lists of DE genes from each individual dataset. We

identified 91 genes that were observed to be differentially expressed

between NDMM patients and healthy donors in at least 3 of the 7

datasets (Supplementary Table 3). By applying this very strict

criterion of 3 experiments, we ensured that any false positives due

to batch effects or other sources of variability between samples or

subgroups in any of the individual studies would be filtered out. To

further filter out our results, we excluded genes with no functional

significance. Thus, 31 of the above 91 genes coding for

immunoglobulin variants or HLA antigens were excluded.

Subsequently, the 60 remaining genes were all manually inspected

and 32 of them with no current bibliographic evidence of

involvement in MM or any other malignant disorder were also

excluded. Nevertheless, these 32 genes are not necessarily irrelevant

to MM and may comprise targets for future studies. After all these

filtering criteria, 28 MM-associated genes were identified with 22 of

them being over-expressed in the NDMM group (Table 1). For 2

genes (CXCL12 and VCAM1) there was a discrepancy of fold

change values between studies. Both genes were upregulated in

the NDMM group of 1 RNA-seq study but downregulated in the

NDMM group of 4 Affymetrix gene chip studies. We consulted

literature and designated these 2 genes as upregulated, which is in

accordance with current bibliographic evidence (29–32).

Reassuringly, 13/28 genes are already known to play an important

role in MM biology. These genes are HGF, DKK1, CCND1, PTPRC,

CD19, CCL3, CD81, EDNRB, CD27, VCAM1, CXCL12, LAMP5

and ST3GAL6. Interestingly, the relevance of the other 15 genes to

MM is less well documented and thus they may serve as new disease

markers or even therapeutic targets. These 15 genes are TSPAN7,

DUSP4, ADM, GADD45A, PRDM5, IFI6, NDNF, PRR15, BTBD3,

TGFBI, IFITM1, PURPL, MT1F, LINC01239 and LINC01480.
3.2 Functional characterization of the 28
MM genes

We further investigated the role of the 28 genes that were

consistently differentially expressed across various studies. Based on

their function, 9 of them modulate cell cycle (CCND1, HGF,

LAMP5, EDNRB, DUSP4, IFI6, MT1F, PURPL and TGFBI) (33–

41), 7 of them are involved in cell-cell interactions and signaling

(ST3GAL6, TSPAN7, VCAM1, PTPRC, CD19, CD27 and CD81)

(42–48), 3 of them contribute to myeloma bone disease (MBD)

(DKK1, CCL3 and CXCL12) (49–51), 2 of them promote

angiogenesis (ADM and NDNF) (52, 53) and 7 of them are of

unknown functional role (PRDM5, BTBD3, PRR15, LINC01480,

IFITM1, LINC01239 and GADD45A). When considering the

mean P-adj value across studies, the DKK1 gene, coding for

a soluble inhibitor of WNT signaling, and the ADM gene,

coding for a vascularization peptide that enhances MM-driven

neo-angiogenesis, were among the most significant genes

(Supplementary Table 4) (49, 52). When considering the mean

log2fc value, the EDNRB gene, coding for a G-protein coupled

receptor, was the most over-expressed gene while the MT1F gene,

coding for metallothionein 1F, was the most under-expressed gene

(39, 54). When considering the number of individual datasets that
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identified a gene as significantly over/under-expressed, the HGF

gene was found significantly upregulated in 6 studies whereas the

CD27 gene was found significantly downregulated in all of the 7

studies. As expected, CCND1 spiked expression was detected in

patients harboring the t(11;14) translocation (55). Interestingly,

CCND1 gene was additionally over-expressed by NDMM patients

without chromosome 11 abnormalities indicating that cyclin D1

involvement in MM pathogenesis exceeds t(11;14) translocation
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and trisomy 11 (Figure 1). Other oncogenes were DUSP4 and

LAMP5 (35, 56–58). Both of them were over-expressed in the

NDMM group of the RNA-seq studies and one Affymetrix study.

Other genes of particular interest were ST3GAL6 and TSPAN7,

both mediating MM homing and migration (42, 43). Even though

the fold change and the p values of all the 28 genes were significant,

their expression measures were highly variable (Supplementary

Figure 2). Of note, IFI6, GADD45A, CCL3 and LINC01480 were

among the genes with the highest TMM values while TGFBI,

VCAM1 and CD19 were among the genes with the lowest values

(Figure 2). Next, we calculated the number of NDMM patients that

significantly over/under-expressed each of the 28 genes. We

compared the expression value of each gene of each patient with

the expression values of the HD in each of the 2 RNA-seq studies,

separately. A total of 9 genes (DKK1, PTPRC, CD19, CD27, MT1F,

EDNRB, PURPL, LINC01239 and LINC01480) were over/under-

expressed in more than 75% of NDMM patients of both RNA-seq

studies (Supplementary Table 5). Subgroup analysis of the 2 RNA-

seq studies did not reveal any gene whose up/down-regulation was

restricted in a specific subgroup. However, we did observe elevated

expression of LINC01480 gene in patients harboring t(4;14)

translocation, but more studies with higher number of

patients are needed to assess the significance of this finding

(Supplementary Figure 3).
3.3 Novel multiple myeloma genes

Our comparative analysis identified 11 genes whose relevance to

MM is less well characterized and 4 genes (MT1F, PURPL,

LINC01239 and LINC01480) that were not previously considered

to participate in MM pathogenesis. The putative tumor suppressor

gene MT1F was downregulated in the NDMM group of 3 datasets

with a mean log2fc value of 3.1 (59, 60). In contrast, 3 genes

encoding long non-coding RNA molecules (PURPL, LINC01239

and LINC01480) were upregulated in the NDMM group of the 2

RNA-seq studies and 1 Affymetrix study (40, 61, 62). It is worth

mentioning that only 3 of the 7 datasets (GSE152280, GSE175384

and GSE116294) had the capacity to identify expression of non-

coding RNA genes due to GEP platform usage and design of those

studies. Interestingly, the 3 long non-coding RNA molecules were

expressed by a large percentage of patients (88%, 85%, 83%

respectively) whereas the expression of PURPL and LINC01239

was almost absent in healthy donors. Mechanistically, of the 3 non-

coding RNA genes, PURPL is the only one that has been thoroughly

studied and is implicated in the pathogenesis of several solid

malignancies by interfering with crucial signaling cascades and

pathways (40, 63–66).
3.4 Genes mediating malignant
transformation of PCs

Since multiple myeloma is preceded by MGUS and smoldering

myeloma (SMM), we hypothesized that genes mediating malignant

transformation of normal PCs should be over/under-expressed in
TABLE 1 List of the 28 overlapping differentially expressed genes
across datasets.

Gene
Name

Gencodev44_ensembl Mean
log2fc
value
across
datasets

Number of Individ-
ual datasets that

identified each gene
as differen-

tially expressed

ADM ENSG00000148926 3.1 4

BTBD3 ENSG00000132640 3.2 3

CCL3 ENSG00000277632 2.7 3

CCND1 ENSG00000110092 3.4 3

CD19 ENSG00000177455 -2.8 4

CD27 ENSG00000139193 -2.9 7

CD81 ENSG00000110651 -2.3 4

CXCL12 ENSG00000107562 3.4 5

DKK1 ENSG00000107984 4.6 5

DUSP4 ENSG00000120875 2.7 3

EDNRB ENSG00000136160 5.3 4

GADD45A ENSG00000116717 2.5 5

HGF ENSG00000019991 3.7 6

IFI6 ENSG00000126709 2.3 4

IFITM1 ENSG00000185885 2.2 3

LAMP5 ENSG00000125869 4.2 3

LINC01239 ENSG00000234840 4.5 3

LINC01480 ENSG00000270164 2.3 3

MT1F ENSG00000198417 -3.1 3

NDNF ENSG00000173376 2.9 4

PRDM5 ENSG00000138738 2.5 3

PRR15 ENSG00000176532 3.1 3

PTPRC ENSG00000081237 -2.6 4

PURPL ENSG00000250337 4.4 3

ST3GAL6 ENSG00000064225 2.7 3

TGFBI ENSG00000120708 -3 3

TSPAN7 ENSG00000156298 4.2 3

VCAM1 ENSG00000162692 3.8 5
Table 1 summarizes the list of 28 genes that were consistently differentially expressed between
newly diagnosed multiple myeloma patients and healthy donors across various studies. It
indicates the mean log2fc value of each gene across datasets and the number of individual
datasets that identified each gene as differentially expressed (absolute log2fc ≥2 and
P-adj <0.05). Genes are presented with alphabetical order. Positive log2fc indicates
upregulation in the NDMM group.
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MM precursor stages. We compared the 28 MM genes with DE

genes between normal PCs and PCs from patients with MGUS and

SMM (Supplementary Data). Cross-comparison revealed an

overlap of 10 genes implying that these genes might contribute to

MM development. More precisely, 7 (HGF, CCND1, GADD45A,

DUSP4, NDNF, BTBD3 and ST3GAL6) and 3 (CD81, CD27 and

PTPRC) of the 28 genes were found upregulated and downregulated

respectively in patients with premalignant plasma cell disorders

compared to healthy individuals.
3.5 Druggable gene products

Prompted by the necessity for additional treatment options for

MM patients, we investigated whether existing FDA-approved or

experimental drugs target any of the 22 over-expressed MM gene

products that our study identified. Towards this end, we mined

Drugbank, ChEMBL and IUPHAR/PBS databases (67–69).

Additionally, for genes encoding soluble molecules we also

evaluated the existence of drugs inhibiting their binding receptors.

Our search revealed that 31 FDA-approved and 144 experimental

drugs target 8 of the 22 MM products (HGF, CCND1, DKK1,

EDNRB, VCAM1, ADM, CCL3, CXCL12) (Supplementary

Table 6). Afterwards, we focused on the 31 FDA-approved drugs

and their targets for further investigation. By inspecting the current

literature, we examined which of them target an MM gene product as

a primary mechanism of action (MOA) and found that 14/31 drugs

antagonize an MM gene product as a dominant MOA. Interestingly,

of the 14 short-listed drugs only 2 (Plerixafor and Motixafortide) are
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currently used for the treatment of MM patients for stem cell

mobilization prior autologous transplantation (70, 71). Next, we

mined ClinicalTrials.gov and examined whether any of the

remaining 12 FDA-approved drugs (not specifically for MM) are

undergoing or have completed clinical trials in MM patients (72).

We came across 3 completed clinical trials (NCT01582295,

NCT03201250 and NCT01866293) that evaluated the effectiveness

of Cabozantinib, with poor results as monotherapy in relapsed/

refractory MM patients. Collectively, after all these filtering steps

we identified 11 FDA-approved drugs that target 4 of the 28 MM

gene products (EDNRB, HGF, CCL3, ADM) and have not yet

undergone evaluation in MM patients (Table 2). These drugs

represent potentially important therapeutic options and should be

given priority for future studies.
4 Discussion

Gene expression profiling has emerged as a powerful tool which

has led to a significant improvement in our understanding of MM

biology. From hybridization-based assays, such as microarrays, to

high throughput sequencing approaches, GEP studies have

undoubtedly proven to be useful in molecular classification,

patient stratification, survival prediction and treatment response

prognostication (73–76). Combined with the enormous amount of

transcriptomic data available in public domain, GEP studies

represent a valuable tool in modern myeloma research.

To offer a more comprehensive view of transcriptomic

abnormalities of NDMM patients we analyzed publicly available
A B

FIGURE 1

Comparison of relative expression of CCND1 gene between newly diagnosed multiple myeloma (NDMM) patients and healthy donors (HD) from
GSE153380 (A) and GSE175384 (B) datasets. P-adj values were calculated with DESeq2. Cytogenetic abnormalities are included using a color code.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1390105
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Giannakoulas et al. 10.3389/fonc.2024.1390105
mRNA data of NDMM patients and HD from 7 studies. We first

extracted DE genes with great significance (log2fc ≥2 and

P-adj <0.05) between NDMM patients and healthy individuals

from each study, separately. Subsequently, by comparing the lists of

DE genes and by applying strict filtering criteria we identified 28

MM-associated genes that were consistently DE, with 22 of them

being upregulated in the NDMM group. Even though the fold change

and the p-values of all the 28 genes were significant, their expression

measures were highly variable, with TMM values ranging from less

than 1 to greater than 100. It is reasonable to assume that genes with

higher expression values are more likely to be involved in MM

pathogenesis. However, it is erroneous to set a threshold and filter the

genes with lower values based on the assumption that they probably

represent transcriptional noise rather than truly over/under-

expressed genes. For example, the PTPRC gene coding for CD45,

which is known for its partially positive surface expression in normal

PCs and its partially heterogenous surface expression in MM PCs,

was among the genes with the lowest TMM values (77–79).

Additionally, due to many levels of complex gene regulation, a

non-linear relationship exists between mRNA and protein

abundance and function. Thus, mRNA expression measures alone

are inadequate to draw safe conclusions and should be complimented

by other omics and functional assays.

Reassuringly, 13 of the 28 genes that we identified are well

documented to play a role in MM, thus serving as a quality control

for our methods and criteria. CCND1 and DKK1 were among the

genes that have a well-established relationship with MM. CCND1
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encodes cyclin d1 which facilitates cell cycle progression from G0

towards S phase (80). Interestingly, even though overexpression of

cyclin D1 is mostly associated with t(11;14) translocation, we

observed that even patients without the aforementioned

translocation had elevated expression measures of CCND1 gene

implying that cyclin D1 involvement in MM exceeds t(11;14)

translocation. DKK1 encodes a soluble factor which shifts the

normal balance of bone remodeling in favor of resorption (81,

82). Of note, among the list of 144 experimental drugs that we

extracted from drug databases, we observed 2 investigational

monoclonal antibodies that neutralize DKK1 protein (BHQ-880

and DKN-01).

In addition to ‘known’ MM genes, we identified 4 genes that

were not previously considered to contribute to MM biology, with 3

of them encoding long non-coding RNA molecules .

Mechanistically, the lncRNA gene PURPL is of great interest

since it is implied to inactivate p53 protein in colorectal cancer

(40). Nevertheless, it should be stated that PURPL’s mRNA

abundance was overall low compared to the other genes that have

an established linkage with MM pathogenesis and therefore further

functional assays are needed to characterize its impact.

Interestingly, we observed that 9 of the 28 genes were over/

under-expressed by the great majority (>75%) of NDMM patients.

We also examined if any gene was over/under-expressed in a

subgroup-specific manner, but results were inconclusive, possibly

due to the relatively small number of samples per subgroup.

Additionally, we compared the 28 genes with DE genes from
A B

FIGURE 2

Comparison of relative expression measures of the 28 genes between healthy donors (HD) and newly diagnosed multiple myeloma (NDMM)
patients. TMM values were obtained from GSE153380 (A) and GSE175384 (B) datasets. The mean TMM value of each gene of each group was
calculated, log-transformed and plotted. A color code is used to separate the HD group from the NDMM group. When a gene’s mean TMM value
equaled to 0, we plotted that value as 0.001. Genes are presented according to the intensity of their expression measures.
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patients with premalignant plasma cell disorders and HD and found

an overlap of 10 genes, implying that these genes might contribute

to malignant transformation of normal PCs.

Since drug repurposing is a valuable cost-effective and relatively

fast alternative to traditional drug discovery (83–85), we

investigated whether existing drugs target any of the 22 over-

expressed MM gene products. By mining three drug databases,

we identified 175 drugs that target 8 of the 22 MM genes. After

excluding the experimental drugs, the drugs that target MM gene

molecules with an off-target MOA, the drugs that are currently used

in MM treatment and the drugs that have already been evaluated for

the treatment of MM in previous clinical trials, we resulted in 11

drugs that target 4 MM key genes (EDNRB, HGF, CCL3 and ADM).

These drugs have already received FDA approval for the treatment

of other diseases and successfully passed safety requirements in

previous clinical trials. Therefore, they represent highly attractive

therapeutic options and should be explored further.

Endothelin receptor (EDNR) antagonists (Bosentan and

Macitentan) are currently used to treat patients with pulmonary

hypertension (86). They bind EDNR type A (EDNRA) and EDNR

type B (EDNRB) and inhibit endothelin 1 activity. Aberrant

activation of endothelin 1 axis is implied in several malignancies,

includingmultiple myeloma (9, 36). InMM, EDNRA is detected both

in primary myeloma cells and normal PCs while EDNRB is detected

only in primary MM cells (87). This previously reported restricted

expression pattern of EDNRB in myeloma cells is in accordance with

our findings and explains the high fold change of EDNRB gene that

we identified. Preclinical studies assessing efficacy of EDNR

inhibition showed promising results. Pharmaceutical EDNR
Frontiers in Oncology 07
blockage in MM cell lines with bosentan or macitentan decreased

viability of cultured cells (88, 89). Similarly, combination of bosentan

and bortezomib had stronger antiproliferative effects in myeloma cell

lines than bosentan or bortezomib alone implying a synergistic effect

of EDNR antagonists and proteasome inhibitors (87).

Hepatocyte growth factor receptor (HGFR) inhibitors antagonize

HGF/c-MET binding. Upon binding, c-MET transduces HGF-

mediated pro-survival signal by activating MAPK and PI3K/PKB

signaling pathways which in turn favor MM cell proliferation (34).

Interestingly, elevated serum levels of HGF correlate with poor

treatment response and inferior overall survival (90). Previous

clinical trials assessing HGFR inhibitors (Cabozantinib and

Sunitinib) as monotherapy in relapsed/refractory MM patients

failed to exhibit significant anti-tumor activity (91, 92). However,

these trials enrolled patients who had advanced disease which is

difficult to suppress with single-agent regimens. Our study suggests

that HGF has an important role in multiple myeloma. HGF gene was

up-regulated in 6 of the 7 studies whereas nearly 80% of NDMM

patients over-expressed the HGF gene compared to healthy

individuals. Undoubtedly, further clinical trials are needed with

HGFR antagonists before this drug class is abandoned.

CC motif chemokine receptor type 1 and 5 (CCR1 and CCR5)

inhibitors antagonize chemokine ligand 3 (CCL3), a proinflammatory

protein belonging to the C-C chemokine family. Tumor-derived CCL3

induces MBD by affecting bone resorption and formation (93, 94).

Additionally, CCL3 enhances MM-mediated anemia by suppressing

erythropoiesis through GATA1 downregulation (95, 96). According to

our findings, CCL3 gene was over-expressed by 50% of NDMM

patients. Although upregulation of CCL3 was not a unifying
TABLE 2 list of the 11 FDA-approved drugs that inhibit 4 MM gene products.

DRUG MECHANISM OF ACTION TARGETED GENE CURRENT USE SOURCE

CAPMATINIB HGF Receptor Inhibitor HGF Non-Small Cell Lung Cancer
DRUGBANK, ChEMBL,

IUPHAR/BPS

TEPOTINIB HGF Receptor Inhibitor HGF Non-Small Cell Lung Cancer
DRUGBANK, ChEMBL,

IUPHAR/BPS

AMIVANTAMAB HGF Receptor Inhibitor HGF Non-Small Cell Lung Cancer DRUGBANK, ChEMBL

BOSENTAN
Endothelin Receptor type A/

B inhibitor
EDNRB

Pulmonary
Arterial Hypertension

DRUGBANK, ChEMBL,
IUPHAR/BPS

MACITENTAN
Endothelin Receptor type A/

B inhibitor
EDNRB

Pulmonary
Arterial Hypertension

DRUGBANK, ChEMBL,
IUPHAR/BPS

ATOGEPANT CGRP Receptor Inhibitor ADM Migraine Prophylaxis
DRUGBANK, IUPHAR/

BPS, ChEMBL

ZAVEGEPANT CGRP Receptor Inhibitor ADM Migraine Treatment DRUGBANK, IUPHAR/BPS

RIMEGEPANT CGRP Receptor Inhibitor ADM Migraine Treatment
DRUGBANK, ChEMBL,

IUPHAR/BPS

UBROGEPANT CGRP Receptor Inhibitor ADM Migraine Treatment
DRUGBANK, ChEMBL,

IUPHAR/BPS

ERENUMAB CGRP Receptor Inhibitor ADM Migraine Prophylaxis
DRUGBANK, ChEMBL,

IUPHAR/BPS

MARAVIROC CCR5 Inhibitor CCL3 HIV infection
DRUGBANK, ChEMBL,

IUPHAR/BPS
Table 2 summarizes the list of 11 FDA-approved drugs that inhibit 4 of the 28 MM gene products (HGF, EDNRB, ADM and CCL3) along with their current use. These drugs have not yet
undergone evaluation in MM patients and thus represent potentially important therapeutic options that need to be further explored in the future.
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molecular abnormality, patients who over-expressed CCL3 gene had

abundantly high expression values underlining that CCL3 inhibition

with CCR1/5 antagonists could be a potential therapeutic approach for

patients whose disease complications (MBD and anemia) are driven by

CCL3 (Supplementary Figure 4).

Lastly, Calcitonin gene-related peptide receptor (CGRPR)

inhibitors antagonize the CT/CGRP family of peptides (97).

Members of the CT/CGRP family of peptides include calcitonin,

calcitonin gene-related peptide, amylin, intermedin and

adrenomedullin (98). Adrenomedullin, encoded by ADM gene, is a

peptide initially isolated from human pheochromocytoma tissues and

described as a hypotensive factor (99). Since then, intensive research

has revealed its versatile role in vascularization and vasodilation

(100). In addition to its physiological role, adrenomedullin is

implicated in the pathogenesis of several malignancies, including

breast cancer and melanoma (101). In accordance with the

documented role of adrenomedullin in various cancers, we

observed that high expression of ADM is a common feature among

NDMM patients. ADM gene was found upregulated in the NDMM

group of 4 datasets with a mean log2fc value of 3.1. Previous

functional assays revealed that adrenomedullin enhances MM-

driven neo-angiogenesis implying that CGRPR inhibitors represent

a drug class that could potentially reverse MM’s angiogenic

switch (52).

In conclusion, to our knowledge this is the first study that

performed a comparative analysis of publicly available gene

expression datasets in order to investigate abnormal transcriptomic

patterns of newly diagnosed multiple myeloma. Taken together, our

study offers insights in MM pathogenesis and reveals potential new

treatment options that, for starters, could be tested in pretreated MM

patients with no other therapeutic options. Future studies are needed

to further corroborate our findings and to evaluate the clinical

significance of these drugs and their targets.
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