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Purpose: To enhance the accuracy of real-time four-dimensional cone beam CT

(4D-CBCT) imaging by incorporating spatiotemporal correlation from the

sequential projection image into the single projection-based 4D-CBCT

estimation process.

Methods: We first derived 4D deformation vector fields (DVFs) from patient 4D-

CT. Principal component analysis (PCA) was then employed to extract distinctive

feature labels for each DVF, focusing on the first three PCA coefficients. To

simulate a wide range of respiratory motion, we expanded the motion amplitude

and used random sampling to generate approximately 900 sets of PCA labels.

These labels were used to produce 900 simulated 4D-DVFs, which in turn

deformed the 0% phase 4D-CT to obtain 900 CBCT volumes with continuous

motion amplitudes. Following this, the forward projection was performed at one

angle to get all of the digital reconstructed radiographs (DRRs). These DRRs and

the PCA labels were used as the training data set. To capture the spatiotemporal

correlation in the projections, we propose to use the convolutional LSTM

(ConvLSTM) network for PCA coefficient estimation. For network testing, when

several online CBCT projections (with different motion amplitudes that cover the

full respiration range) are acquired and sent into the network, the corresponding

4D-PCA coefficients will be obtained and finally lead to a full online 4D-CBCT

prediction. A phantom experiment is first performed with the XCAT phantom;

then, a pilot clinical evaluation is further conducted.

Results: Results on the XCAT phantom and the patient data show that the

proposed approach outperformed other networks in terms of visual inspection

and quantitative metrics. For the XCAT phantom experiment, ConvLSTM

achieves the highest quantification accuracy with MAPE(Mean Absolute

Percentage Error), PSNR (Peak Signal-to-Noise Ratio), and RMSE(Root Mean

Squared Error) of 0.0459, 64.6742, and 0.0011, respectively. For the patient pilot

clinical experiment, ConvLSTM also achieves the best quantification accuracy

with that of 0.0934, 63.7294, and 0.0019, respectively. The quantification

evaluation labels that we used are 1) the Mean Absolute Error (MAE), 2) the
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Normalized Cross Correlation (NCC), 3)the Structural Similarity Index

Measurement(SSIM), 4)the Peak Signal-to-Noise Ratio (PSNR), 5)the Root Mean

Squared Error(RMSE), and 6) the Absolute Percentage Error (MAPE).

Conclusion: The spatiotemporal correlation-based respiration motion modeling

supplied a potential solution for accurate real-time 4D-CBCT reconstruction.
KEYWORDS

ConvLSTM, PCA, radiation therapy, 4D-CBCT, spatiotemporal
1 Introduction

Stereotactic radiotherapy (SBRT) is commonly used in routine

clinical radiation therapy circumstances, especially for early-stage

cancer such as lung cancer (1). The high dose rate of the SBRT beam

also brings high risk for moving targets (e.g., lung cancer). Hence,

accurate image guidance plays a crucial role in precise lung SBRT.

In clinical routine, the most common image guidance tool is the

integrated 3D Cone Beam CT (CBCT) imaging system (2).

However, conventional static 3D-CBCT is unable to provide

qualified 4D lung motion during respiration.

Four-dimensional cone beam CT (4D-CBCT) imaging has been

developed to address this issue. 4D-CBCT can supply temporal image

sequences for moving organs such as the lung. Conventional analytical

4D-CBCT methods, such as the McKinnon–Bates (MKB) algorithm,

are widely used in commercial linear accelerators. However, the image

quality suffered from reduced contrast and the inevitable motion

blurring induced by the time-averaged prior image (3). Another type

of 4D-CBCT reconstruction method is the image deformation-based

scheme (4). For these kinds of methods, the deformation vector fields

(DVFs) calculation/estimation between the 0% phase and each other

phase is critical to achieve the final accurate 4D-CBCT. The DVF

optimization process is quite time consuming, and it raises a blind

treatment risk for initiating radiation pneumonia (5). Both the above-

mentioned analytical and deformable-based 4D-CBCT reconstructions

all use the full 360° range acquired projections. Recently, online real-

time CBCT estimation/reconstruction via single or only a few X-ray

projections has attracted more interest. It benefits oncologists not only

fast but also pretty low-dose real-time 4D-CBCT images compared

with the conventional full projection-based 3D-CBCT (6).

The 2D- to 4D-CBCT estimation has been previously studied by

many groups in the past decades. Li (7) proposed a motion model

(MM) to predict 4D-CBCT via forward matching between 3D volumes

and 2D X-ray projections. You (8) reported a motion model free

deformation (MM-FD) scheme to introduce free deformation

alignment for promoting 4D-CBCT estimation accuracy. One

limitation of these iterative approaches is that they are quite time

consuming. On the other aspect, Xu (6) reported a linear model for
02
predicting 4D-CBCT via DRR (Digital Reconstructed Radiography)

and validated it with digital and physical phantom experiments.

However, the proposed linear model mismatches with the complex

relationship between the intensity variation and the real breathing

motion. Wei (9, 10) proposed a Convolutional Neural Network

(CNN)-based framework to extract the motion feature from 2D

DRRs to corresponding 3D-CBCT (e.g., one phase of 4D-CBCT).

However, all of the aforementioned 4D-CBCT prediction strategies

neglected the spatiotemporal correlation inherent in 4D-CBCT.

To address the issues, we propose a combined model that

contains 1) a convolutional LSTM (ConvLSTM) and 2) a principal

component analysis (PCA) model with prior 4D-CT to map a single

2D measured projection to one phase of 4D-CBCT. We evaluated the

model’s performance on both the XCAT phantom and pilot clinical

data. Quantitative metrics are used for network performance

quantification between our proposed method versus other state-of-

the-art networks.
2 Methods

The overall workflow is illustrated in Figure 1. In the training

stage, the 4D-DVFs are first derived from the 4D-CT (between 0%

phase and other phases) via the voxel-by-voxel image registration

algorithms (11–13). The DVFs then will be simply represented by the

first few PCA coefficients. In our experiment, we chose the first three

PCA coefficients. The PCA coefficient is further expanded to fully

cover the potential possible motion range for simulation. We then

performed random sampling and generated approximately 900 PCA

coefficient groups. These groups will be used to create the

corresponding 900 DVFs, which will in turn generate 900

deformed 4D-CT images with varying respiratory motions. Finally,

a forward projection will be performed at a single angle for all 900

4D-CT images to acquire 900 DRRs. A ray-tracing algorithm (14, 15)

is used in the forward projection simulation process. The generated

DRRs will be used to train the ConvLSTM network, which has three

output labels representing the first three PCA-modeled

coefficients labels.
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In the application stage, a single CBCT online projection that is

measured at the same angle will be sent into the trained network. The

network predicts three PCA labels to generate a phased 3D-CBCT.

Then, more online projections (with different respiration amplitudes)

will be continuously measured and sent into the network so that a

whole respiration cycle will be covered. In this way, a full-cycle PCA

label groups can be achieved and the whole 4D-CBCT. The entire

process is performed on time. Below, we summarize our work into

five parts: 1) motion modeling, 2) data processing, 3) network

architecture, 4) loss function, and 5) experiment design.
2.1 Motion modeling

As mentioned above, the 4D-DVF is initially obtained from 4D-

CT via deformable image registration (11–13). The 0% phase was

selected as the reference phase to achieve the 4D-DVF. We used

PCA, which is a commonly used data decoupling scheme for data

dimension reduction (16), to extract DVF’s feature label (e.g., the

principle components/eigenvectors). For computational efficiency

consideration, we select the first three PCA labels for mapping the

DVFs. Table 1 illustrates the accuracy of DVF estimation relative to

the number of PCA labels used. As expected, DVF accuracy

improves with an increasing number of PCA labels. However, this

also increases computational complexity. We found that by using

the first three principal components, it already achieved 97.22%

DVF information. Further increasing the PCA labels will not

dramatically increase the information anymore. Therefore, we

chose to discard the remaining PCA labels in our experiment.

The mapping relationship between the DVF and the PCA labels

is given by Formula 1. Let the DVF size set be 3×NvoxelCT, where
Frontiers in Oncology
 03
NvoxelCT stands for 3D-CT voxel number; 3 stands for the 3D

motion. The DVF will be linearly mapped by Equation 1:

DVF(i) =ok
j=1p

(i)
j q(i)j (1)

Here, p and q stand for the eigenvectors and their

corresponding PCA coefficients. Index i and j represent the

respiration phase and eigenvectors, respectively.
2.2 Data processing

Being a regression task, ConvLSTM requires a large number of

training data-set samples. In this study, we performed data augmentation

and data enhancement. For data augmentation, we enlarged the

simulated respiration amplitudes by a 15% interval up and down

between two adjacent phases. This is because respiration is a time-
TABLE 1 PCA label versus DVF estimation accuracy.

Number of
PCA labels

information (%)
Increment of
information (%)

1 71.08 71.02

2 87.37 16.35

3 97.22 9.85

4 98.24 1.02

5 99.20 0.96

6 99.62 0.42

7 99.89 0.27

8 100.00 0.11
FIGURE 1

The workflow of the proposed method.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1390398
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1390398
continuous physiological motion. The concept of the 4D-CBCT phase is

an average reconstruction for projections in one re-binned phase. The

lung will move across the re-binned interface between two adjacent

phases. Our extended motion amount covers just a bit more than the

average motion range (7). This is to make sure all the possible motion

amplitude will be modeled for training data generation. We perform

PCA label random sampling to generate 900 DRRs as a training data set.

For data enhancement, we considered the influence of quantum

noise in the simulated DRRs. Given that quantum noise is typically

a combination of Poisson and Gaussian noise (17), we constructed a

linear noise combination as follows see Equation 2:

N = Poisson(I0exp( − pn)) + Gassian(0,s 2
e ) (2)

pn is the noise-free signal line integral; the index N means the

noise for each detector; I0 is the X-ray projection intensity; and s 2
e  

represents background electronic noise. I0 and s 2
e are set to be 105

and 10, respectively. DRR was then added to the simulated noise to

achieve the real projected image.

We also implemented an intensity correction scheme to minimize

the intensity mismatch between the simulated training DRRs versus the

measured CBCT projections. The correction is given by Equation 3:

I∧DRR = (IDRR − IProjection)�
sDRR

sProjection
+ IDRR (3)

where I∧DRR represents the corrected DRR intensity. IDRR   and

 sDRR  represent the mean and the standard deviation of the

original DRR intensity, and IProjection and sProjection represent the

mean and standard deviation of measured CBCT projection.
2.3 Network architecture

We use the ConvLSTM to explore the nonlinear mapping between

DRRs and the PCA coefficients. The network architecture is illustrated in

Figure 2. It contains a series of ConvLSTM cells and a regression layer.
Frontiers in Oncology 04
Conventional LSTM (18) contains a memory cell (Ct) and three

gate control cells: 1) the forget grate (ft), 2) the input gate (it), and 3)

the output gate (ot). Ct stores the foregone information, and the

three gates update the cell. The LSTM sorts the relationships

between all of the time flags; meanwhile, it ignores the internal

information within each time flag. However, ConvLSTM (19),

instead, explores the local features within each time flag via the

convolutional operators. For the tth ConvLSTM cell, the internal

operations will be represented by (19), see Equations 4–9:

it = s (Wxi ∗Xt +Whi ∗Ht−1 + bi) (4)

ft = s(Wxf ∗Xt +Whf ∗Ht−1 + bf ) (5)

ot = s (Wxo ∗Xt +Who ∗Ht−1 + bo) (6)

Gt = tanh(Wxg ∗Xt +Whg ∗Ht−1 + bg) (7)

Ct = ft ∘Ct−1 + it ∘Gt (8)

Ht = ot ∘ tanh(Ct) (9)

s is the sigmoid function, tanh stands for the TanHyperbolic

function, ∗ and ∘ represent the convolutional operator and

Hadamard product, respectively. Xt is the input of the current

cell, and Gt is a candidate storage unit for information transmission.

In addition,W and b denote convolution kernels and the bias terms.

W and b have obvious meanings. For instance, Wxo is the input–

output gate convolution kernel, while bi is the input gate bias, etc.

Due to the characteristic of the convolutional operator,

ConvLSTM can acquire both temporal and spatial information

simultaneously (19–22). Our ConvLSTM network contains 40

hidden layers and 20 cell layers. Moreover, it has eight layers,

kernel size is 3, padding is set as “valid”, and the stride of the

convolution kernel is 1.
FIGURE 2

The ConvLSTM framework.
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The regression layer uses the feature map generated from

ConvLSTM to predict PCA coefficients. It contains a pooling

layer with two fully connected layers. By using the dominant local

information, the pooling layer reduces the computation cost. The

pooling was set to twice the down-sampling, and the dimensions of

the two completely connected layers are 1,024 and 3.
2.4 Loss function

The normalized mean square error builds the loss function and

is given in Formula 5. The PCA coefficients (e.g., output labels in the

network) in the loss function (see Equation 10) ensured that the first

coefficient has the highest estimation accuracy.

Loss =
1
No

N
i=1 ‖wcoeff ∘ (yi − G(xi,W)) ‖2 (10)

N is the training sample number; ‖ ‖2 represents the L2 norm,

and o is the element-wise product. G(xi,W) is the output of the

regression model. xi is the ith training image, yi is the PCA

coefficient, and W is the network parameters. wcoeff is the PCA

coefficients weight, which is set to be [ 2ffiffi
6

p , 1ffiffi
6

p , 1ffiffi
6

p ].

For model training, the ADAM optimizer was utilized with a

dynamic learning rate, initially set at 0.001. The batch size was set to

8, and the training ran for 200 epochs. In an environment

configured with Python 3.7 and an NVIDIA GeForce RTX 4080,

training the data for 200 epochs took approximately 36 h.
2.5 Experiment design

For network performance evaluation, we use XCAT phantom

and patient 4D-CT for the quantification. For testing, we simulated

an on-board CBCT projection and then sent it into the pre-trained

network to predict PCA coefficients. The quantification evaluation

labels that we used are 1) the Mean Absolute Error (MAE), 2) the

Normalized Cross Correlation (NCC), 3) the Multi-scale Structural

Similarity(SSIM), 4) the Peak Signal-to-Noise Ratio (PSNR), 5) the

Root Mean Squared Error (RMSE), and 6) the Absolute Percentage

Error (MAPE). MAE is used to quantify the accuracy of regression

models. y and ŷ represent the label and the predicted value of the

model, and i stands for the index of the regression model. We have

in Equation 11:

MAE =
1
mo

m
i=1 ŷ (i) − y(i)
�� �� (11)

In addition, NCC and SSIM (Multi-scale Structural Similarity Index

Measure) are used to evaluate the quality of the reconstructed image. See

Equations 12 and 13. S andT represent slice data with size ofH×W of the

original image and the reconstructed image, respectively. m,  d , and d 2

represent the mean, covariance, and variance of the slice image,

respectively.

NCC = oC
k=1oH

i=1oW
j=1 S(i, j) − msj j T(i, j) − mTj j

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oH

i=1oW
j=1(S(i, j) − ms)

2(T(i, j) − mT )
2

q (12)
Frontiers in Oncology 05
SSIM =
(2msmT + C1)(2dST + C2)

(m2
s + m2

T + C1)(d 2
S + d 2

T + C2)
= l(s,T) · cs(s,T) (13)

PSNR is defined based on MSE (Mean Squared Error). See

Equations 14 and 15:

MSE =
1
Noj ‖ S(j) − T(j) ‖2 (14)

PSNR = 10 ∗ loɡ10
MAX2

MSE
(15)

N is the image pixel number. MAX is the maximum possible

pixel value.

The definition of RMSE is given in Equation 16:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

i=1oN
j=1(Sij − T∗

ij )
2

H �W

s
(16)

MAPE is the average ratio of the absolute difference between the

predicted value and the true value to the true value. The definition

of MAPE is given in Equation 17:

MAPE =
1
noj

Sj − Tj

Tj

�����
����� (17)
3 Results

3.1 Network parameter optimization

Being a spatiotemporal sensitive network, the temporal

continuous image amount that the network can handle for data

training reflects its ability for accurate motion estimation. However,

Figure 3 indicates that the model prediction accuracy is not

dramatically influenced by the input image number. The MAE

values fluctuate between 47 and 57, and the SSIM remains

approximately 0.93. We found that the model achieves the best
FIGURE 3

Input image quantity vs. MAE/SSIM of model prediction.
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performance with four continuous temporal images with the lowest

MAE of 47.15 and highest SSIM of 0.95.

The selection of hyper-parameters for the ConvLSTMnetwork was

a critical aspect, as these parameters significantly impact the prediction

performance of the model. To determine the optimal configuration, we

conducted a series of ablation experiments focusing on the number of

hidden layers and cell layers within the ConvLSTM network. The

experiment results in Figure 4 reveal that increasing the number of

hidden layers decreased the MAE without significantly affecting

computation time, although it did increase the number of

parameters. Conversely, increasing the number of cell layers resulted

in a slower decrease inMAE and an increase in computation time, with

little change in parameter count. By balancing these factors, we

determined that a configuration with 40 hidden layers and two cell

layers provided the optimal trade-off, ensuring high prediction

accuracy while maintaining computational efficiency.
3.2 Convergence of loss function

The convergence of the loss function is decided by the

weightings. Table 2 shows the convergence comparison caused by

different weightings. Their MAE and NCC values are also

summarized in the table. We found that the second group

weighting (e.g., [2=
ffiffiffi
6

p
, 1=

ffiffiffi
6

p
, 1=

ffiffiffi
6

p
]) has the smallest first PCA

label error. Meanwhile, this group also got the highest NCC.
Frontiers in Oncology 06
Suitable choice of the pooling will also speed up loss function

convergence. See Figure 5. The figure compared loss convergence

curve with epoch with different pooling scheme such as Maximal

pooling, Converlutional pooling, average pooling, and even no

pooling at all. The results show that convolutional pooling

achieves the best convergence performance. The pooling

operation reduces the model’s parameters, hence accelerating

its convergence.

Suitable choice of pooling will also speed up loss function

convergence. Figure 6 compares the loss convergence curve with

different pooling schemes such as maximal pooling, convolutional

pooling, average pooling, and even no pooling. The results show

that convolutional pooling achieves the best convergence

performance. The pooling operation reduces the model’s

parameters, hence accelerating its convergence.
3.3 XCAT simulation results

The XCAT phantom-based digital experiment was first

performed. Four state-of-art network structures (e.g., CNN/Unet/

ResNet/ConvLSTM) were tested with the phantom to compare

their performances. As shown in Table 3, for the two test cases, the

ConvLSTM outperforms other models in PCA coefficient

prediction, especially for the first coefficient. The bold values

provided in Table 3 means that ConvLSTM achieves the best

PCA coefficient match compared with that of the ground truth

for XCAT phantom. By utilizing PCA to reduce the dimensionality

of the DVFs, the ConvLSTM network focuses on the most

significant components of respiratory motion. This not only

improves computational efficiency but also ensures that the

network is learning the most relevant features for accurate

motion prediction. Figure 6 presents the reconstructed results

based on the PCA coefficients predicted by ConvLSTM versus

CNN/UNet/ResNet. The reconstructed coronal plane and sagittal

plane images and the different images between each reconstruction

and the ground truth image are summarized in Figures 6A, B.
FIGURE 4

Influence of ConvLSTM cells on the model’s prediction. “H” stands
for the number of hidden layers; “L” denotes the number of
cell layers.
TABLE 2 Weighting influence on MAE/NCC.

loss function
weighting

MAE
NCC

1st 2nd 3rd

[1=
ffiffiffi
3

p
, 1=

ffiffiffi
3

p
, 1=

ffiffiffi
3

p
] 9.09 9.23 9.36 0.96

[2=
ffiffiffi
6

p
, 1=

ffiffiffi
6

p
, 1=

ffiffiffi
6

p
] 6.29 9.81 10.06 0.98

[
ffiffiffi
3

p
/

ffiffiffi
6

p
,

ffiffiffi
2

p
/

ffiffiffi
6

p
, 1=

ffiffiffi
6

p
] 8.01 9.19 10.01 0.96
FIGURE 5

Training results by using different pooling optimizations. These
pooling operations are set to twice the down-sampling, and the
model only performs a single pooling operation.
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Table 4 summarizes the quantification evaluation comparison

between each network. The results indicate that ConvLSTM

outperformed other networks for all of the evaluation labels.
Frontiers in Oncology 07
3.4 Pilot clinical results

Table 5 shows two cases of the real and predicted first three

PCA coefficients of the patient data results. It is well known that the

higher the principal component order, the higher the PCA

contribution rate. As can be seen from Table 5, the first principal

component of the model based on ConvLSTM is closest to the true

value, just as the bold values illustrated. Figure 7 shows the

reconstructed coronal images based on the PCA coefficients

predicted by CNN/UNet/ResNet and ConvLSTM network. We

can see that all models have successfully reconstructed the
TABLE 3 Comparison of prediction results versus ground truth of
XCAT data.

Model
PCA coefficients

Test Case1 Test Case2

CNN
[−1,121.3269

366.0489 −114.1392]
[5,736.9881

−391.8785 28.2141]

Unet
[−1,201.9354

394.0645 −66.5190]
[5,723.7266

−291.1034 56.5676]

ResNet
[−1,124.9048

378.9768 −60.8043]
[5,610.0141

−292.2644 90.5484]

ConvLSTM
[−1,173.5433

407.5900 −53.5265]
[5,742.6875

−246.5791 181.1309]

Ground
Truth

[−1,163.5334
454.6699 −78.2698]

[5,787.5347
−258.0560 186.0697]
Values in bold indicate that our proposed method achieves the best quantification results
compared to the ground truth.
TABLE 4 Quantification comparison of prediction and reconstruction of
each model on the coronal plane in XCAT TestData1.

Model MAPE PSNR RMSE

CNN 0.2092 55.0287 0.0024

UNet 0.0464 62.0018 0.0015

ResNet 0.0628 56.6748 0.0025

ConvLSTM 0.0459 64.6742 0.0011
A

B

FIGURE 6

Visualization of images result of TestCase1 in different anatomical surfaces for each model with the training data generated from XCAT. (A) Coronal
plane; (B) sagittal plane.
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anatomical structures, but ConvLSTM achieves the smallest

different image to the ground truth. Table 6 summarizes the

quantification evaluation comparison between each network on

the clinical TestCase1. According to the result, we can see that

ConvLSTM supplies a prediction with the minimum error

compared with the ground truth, certified that ConvLSTM

outperformed other networks. Traditional CNNs and other

networks mainly focus on spatial features, which limits their

ability to accurately model dynamic processes like respiratory

motion. The ConvLSTM’s ability to integrate convolutional

operations with LSTM’s temporal processing allows it to

effectively model the temporal evolution of respiratory motion,

leading to more accurate 4D-CBCT reconstructions.

4 Discussion

In this study, we proposed a spatiotemporal consistent scheme

via ConvLSTM and PCA motion modeling to estimate online 4D-

CBCT. The network learns the motion features from patient 4D-CT

with hundreds of simulated DRRs under a fixed angle. Both digital

XCAT phantom experiments and pilot clinical studies were

performed to prove the algorithm’s efficiency. We compared our

proposed method’s efficiency with other popular networks such as
Frontiers in Oncology 08
CNN/Unet/ResNet. Quantification results indicate that ConvLSTM

outperforms its competitors. ConvLSTM is an architecture that

integrates Convolutional Neural Networks (CNN) with Long Short-

Term Memory (LSTM) networks, enabling the application of

convolution operations at each time step to effectively capture

spatial information in temporal data. Compared to CNN, U-Net,

and ResNet architectures, ConvLSTM can link the feature

information of the current projection with that of adjacent

projections, providing enhanced temporal and spatial feature

connectivity. Hence, it will be able to supply enough information

for motion estimation with temporal correlation.

In this work, our goal is to develop a real-time 4D-CBCT

imaging model utilizing projection images with high temporal
TABLE 5 Comparison of prediction results versus ground truth of patient data.

Model
PCA coefficients

Test Case1 Test Case2

CNN [−676.5737 −36.4397 −26.6990] [−87.5940 −117.7669 12.5394]

Unet [−747.2873 −81.1768 −34.4381] [−81.5389 −102.9164 11.1525]

ResNet [−673.7071 −74.0461 −21.3157] [−107.5652 −120.5355 14.5815]

ConvLSTM [−712.0823 −23.8481 −45.7298] [−99.6298 −112.0357 20.4654]

Ground Truth [−715.3792 −26.7257 −20.5198] [−101.5152 −127.8026 19.3956]
Values in bold indicate that our proposed method achieves the best quantification results compared to the ground truth.
FIGURE 7

Visualization of images result of TestCase1 for each model with the training data generated from 4D-CT.
TABLE 6 Quantification comparison of prediction and reconstruction of
each model on the coronal plane in patient DataTest1.

Model MAPE PSNR RMSE

CNN 0.2206 57.8427 0.0037

UNet 0.3313 53.6098 0.0060

ResNet 0.2706 55.4795 0.0048

ConvLSTM 0.0934 63.7294 0.0019
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resolution. The model inference for PCA labels is remarkably fast,

taking approximately 0.006 s for one projection. This rapid

inference is critical for maintaining real-time processing

capabilities, ensuring that the model can handle a continuous

stream of projection images without significant latency. However,

the reconstruction time for a single volume of 4D-CBCT is

approximately 5 s on a personal desktop computer. While this is

relatively fast given the complexity of the task, it underscores the

computational demands associated with high-resolution 4D

imaging. Our ongoing work focuses on optimizing this

reconstruction time further, possibly through hardware

acceleration or more efficient algorithms, to achieve even

faster performance.

Despite the promising results, our study has several limitations

that need to be addressed. First, the study relies on simulated data

for training the network, including simulated respiratory motion

and noise models. While these simulations aim to mimic real-world

conditions, they may not fully capture the complexities of actual

patient data, potentially affecting the model’s performance in

clinical settings. Second, the proposed model depends heavily on

the consistency of the patient’s respiration pattern between the

initial 4D-CT scanning and the online treatment stages. Any

significant variation in the patient’s breathing pattern during

treatment could impact the accuracy of the 4D-CBCT

reconstruction. Third, the pilot clinical evaluation was conducted

with a limited number of patients. Although the results were

promising, a larger and more diverse patient cohort is necessary

to validate the robustness of the proposed method.
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