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The role of neck adipose tissue
in lymph node metastasis of
head and neck cancer
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Quan Wang, Jichang Wu, Haixia Hu, Hao Wang,
Mingliang Xiang* and Bin Ye*

Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital Affiliated to Shanghai
Jiaotong University School of Medicine, Shanghai, China
Previous studies indicated that adipose tissue significantly influences cancer

invasion and lymphatic metastasis. However, the impact of neck adipose tissue

(NAT) on lymph node metastasis associated with head and neck cancer remains

ambiguous. Here, we systematically assess the classification and measurement

criteria of NAT and evaluate the association of adipose tissue and cancer-

associated adipocytes with head and neck cancer. We delve into the potential

mechanisms by which NAT facilitate cervical lymph node metastasis in head and

neck cancer, particularly through the secretion of adipokines such as leptin,

adiponectin, and Interleukin-6. Our aim is to elucidate the role of NAT in the

progression and metastasis of head and neck cancer, offering new insights into

prevention and treatment.
KEYWORDS
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1 Introduction

Cervical lymph nodes metastasis (LNM) is crucial in the clinical staging of head and neck

cancer (HNC), and it serves as a vital indicator for assessing the progression and prognosis (1).

Although adipose tissue (AT) is the predominant tissue surrounding cervical LNM, its

relationship with LNM in HNC remains elusive. Previous studies have shown that breast

cancer and prostate cancers are surrounded by abundant AT, forming a unique

microenvironment between AT and cancer cells (2, 3). There exists a same crosstalk between

cancer cells and adipocytes in HNC. This interplay continuously alters the tumor

microenvironment, thus leading to the formation of specialized AT. AT can induce

metabolic reprogramming in cancer, facilitating the uptake of free fatty acids and glycerol

from adipocytes. This uptake serves as an energy source for oxidative phosphorylation in

mitochondria, resulting in an “anti-Warburg effect” that enhances the invasion and metastasis

of cancers such as breast and prostate cancers (2–4). AT releases higher levels of adipose-derived
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cytokines, such as leptin, Interleukin-6 (IL-6), and CC-chemokine

ligand 5 (CCL5), promoting cancer proliferation and invasion (2).

Esposito et al. identified a notable association between positive CCL5

staining in peritumoral adipocytes and LNM in breast cancer (5).

Further, adipocytes in breast cancer rely on the fatty acid synthase

ACSL3(acyl-CoA synthetase long-chain family member 3) to release

MUFA (oleic acid), enabling cancer to resist ferroptosis (6). In prostate

cancer, AT plays a role in recruiting immunosuppressive cells,

modifying the extracellular matrix, supporting neovascularization,

and inducing malignant tumor invasion (7). Yousuke Shimizu et al.

discovered the existence of 2% LNM in the prostatic anterior fat pad of

prostate cancer patients. Consequently, Urology guidelines recommend

the routine removal of prostatic anterior fat pad during radical

prostatectomy to minimize the risk of residual tumor tissue (8). It is

evident that AT significantly influences LNM in some malignant

tumors such as breast and prostate cancers.

Recent studies have identified an indirect link between AT and

the invasion and metastasis of HNC (9, 10). Studies focusing on

thyroid cancer (11), nasopharyngeal carcinoma (12), and oral

squamous cell carcinoma (13) have demonstrated associations

between body mass index (BMI) and incidence rate, aggressive

pathological features, and unfavorable clinical outcomes. Lymphatic

metastasis serves as a primary route for the local metastasis of HNC.

AT, the principal energy source in the tumor microenvironment,

facilitates lymphangiogenesis (14). Additionally, overwhelming

evidence supports the notion that AT is an endocrine tissue that

can secrete a variety of adipokines, such as leptin (15), adiponectin

(16), and IL-6 (17), which also contribute to cancer invasion (15).

Therefore, we analyzed and summarized the correlation between

NAT and lymph node metastasis in HNC. We started by

summarizing the current methodologies for quantifying NAT.

Then, we tried to research the associations between NAT and

LNM in HNC. Finally, we analyzed the mechanisms by which

NAT might promote LNM. Our aim is to identify potential NAT

risk factors for LNM in HNC, ultimately improving the prognosis of

patients with HNC.
1.1 Definition, classification, and function
of adipose tissue

AT, a specialized connective tissue, predominantly consists of

adipocytes (18). Beyond adipocytes, it also comprises adipose-

derived stem cells, preadipocytes, fibroblasts, lymphocytes,

macrophages, and vascular endothelial cells (19). It is essential for

mechanical support, thermoregulation, energy storage and release,

appetite, and immune regulation (18). BMI is calculated by the

formula: weight divided by height squared (kg/m²), which serves as

an indirect indicator of overall adiposity (20).

There are three principal types of AT, namely, white adipose

tissue (WAT), brown adipose tissue (BAT), and beige adipose

tissue. WAT is characterized by large unilocular lipid droplets

and a limited number of mitochondria (21). WAT is the most

abundant type in the adult neck (22). WAT primarily regulates the

storage and release of energy to cater to the needs of various tissues
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(23). White adipocytes can be converted to thermogenic beige

adipocytes following stimuli such as exercise or cold exposure, a

process termed “browning of WAT” (24). Beige adipocytes are

thermogenically active, bear a morphological and biochemical

resemblance to BAT, and include multilocular lipid droplets and

abundant mitochondria (25).

BAT is distinguished by small multilocular lipid droplets and a

profusion of mitochondria rich in cytochrome content (21). A series

of studies using 18F-FDG-PET/CT detection found that the most

common location of BAT in the adult neck is in the frontal aspect,

superficial and lateral to the sternocleidomastoid muscle, and

supraclavicular regions (26, 27). Although BAT constitutes a

minor portion of body mass, it is pivotal for non-shivering heat

production during cold exposure (18). Recent studies have revealed

intriguing links between BAT and cancer proliferation. Takahiro

Seki et al. observed that cold environment was found to activated

substantial BAT in the mice, leading to inhibited energy uptake and

consequent tumor cell apoptosis (28).
2 Relationship between BMI, NAT and
lymph node metastasis in HNC

2.1 Relationship between BMI, NAT and
lymph node metastasis in thyroid cancer

NC can serve as a direct indicator of NAT accumulation around

the respiratory tract or within the cervical subcutaneous AT layer,

while BMI provides an indirect assessment of NAT. Many studies

have delved into the prognostic value of NC and BMI in thyroid

cancer. Excluding patients with a tumor size greater than 2 cm, Kim

et al. found that male patients with lateral LNM had a notably larger

NC compared with those without metastasis. Thus, NC emerged as a

predictor of cervical LNM in male patients with thyroid cancer (29).

A retrospective cohort study involving 796 patients diagnosed with

early-stage papillary thyroid cancer found that when BMI was ≥18.5

kg/m², the average number of LNM in the central and lateral cervical

regions increased proportionately with BMI. For overweight patients,

the incidence of central and lateral cervical LNM was 55.3% and

37.9%, respectively. By contrast, these figures for the obese group

were 55.9% and 45.3%, respectively (30). Similarly, Li et al.

demonstrated that obese patients with papillary thyroid cancer had

a significantly higher incidence of metastasis to the central and lateral

lymph nodes compared with their normal-weight counterparts (31).

By contrast, Zhao et al. found that their findings did not reveal any

significant differences in cervical LNM across different BMI categories

(32). Numerous studies have demonstrated that overall AT and NAT

facilitate the process of LNM in thyroid cancer. However, disparities

between individual studies arise from variations in sample size, ethnic

background, and the inherent limitation of BMI (its inability to

distinguish between muscle and AT or to quantify specific AT

compartments). Although there is a strong correlation between

BMI and NAT, there is insufficient evidence to directly replace

association between BMI and HNC with that between NAT

and HNC.
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2.2 Relationship between BMI, NAT and
other HNC

BMI serves as a significant indicator of NAT. In the context of

oral cancer, Bao et al. analyzed BMI data from 1,395 oral cancer

patients between 2007 and 2018. They observed that underweight

patients exhibited inferior survival outcomes (HR = 1.585; 95% CI:

1.207–2.082) (13). Choi et al. employed contrast-enhanced CT

scans of the neck (from the anterior superior of the hyoid to the

third cervical spine and inferiorly to the first rib) in 79 patients with

various HNC. Using the 3D slicer tool, they measured NAT volume

changes both pre- and post-radiotherapy over one year. Their

findings indicated that patients with low NAT volume before and

after treatment had poorer overall survival rates. Further, significant

weight loss during treatment was also linked to diminished overall

and recurrence-free survival rates (33). An increased NAT volume

appears to improve the prognosis of patients with HNC. This

improvement might be attributed to the protective role of AT in

helping patients withstand the side effects of radiotherapy and the

nutritional challenges associated with cancer. Expanding on this,

Huang et al. studied 400 stage III or IVa nasopharyngeal carcinoma

patients. Their research probed the correlation between

pretreatment BMI and clinical outcomes in patients undergoing

chemoradiotherapy. The results revealed 5-year failure-free survival

rates of 44%, 61%, 68%, and 73%, and 5-year overall survival rates of

51%, 68%, 80%, and 72% for underweight, normal weight,

overweight, and obese groups, respectively (34). They postulated

that an adequate volume of AT could potentially ameliorate the

adverse effects of chemoradiotherapy in advanced nasopharyngeal

carcinoma cases and counteract cachexia in cancer patients.

Similarly, our research group has previously demonstrated that

adipose tissue and lipid metabolism related factors exhibited a

regulatory influence on the process of LNM and prognosis in

patients with HNC (35, 36). However, given the limited research

on the interplay between NAT and HNC, further studies are

essential to ascertain the exact impact of NAT on prognosis and

the potential mechanisms by which AT might promote cervical

LNM in HNC.
3 Mechanism of adipose tissue
promoting cervical lymph node
metastasis of HNC

3.1 Lymphangiogenesis enhanced by
adipose tissue

Lymphatic vessels in the human body play a significant role in

lipid transport and absorption. Peter et al. reported that the

expression of the fatty acid b-oxidation (FAO) pathway was

markedly elevated in lymphatic vessels compared with other

vessel types. Further investigation showed that by utilizing fatty

acids for b-oxidation, lymphatic endothelial cells enhanced the

expression of the lymphangiogenic factor-prox1, thus facilitating
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the formation of new lymphatic channels (37). The vascular

endothelial growth factor-C (VEGF-C) stands out as a potent

lymphangiogenic factor. Adipose-derived stem cells (ADSCs) are

known to secrete growth factors and exosomes, thereby modulating

the tumor microenvironment. A study carried out in 2018 unveiled

that following VEGF-C treatment, ADSCs-secreted miR-132 was

transferred to lymphatic endothelial cells via exosomes. The uptake

of miR-132 by these cells stimulated their proliferation, migration,

and formation of lymphatic channels. This discovery underscores

the regulatory role of ADSCs exosomes in VEGF-C-mediated

lymphangiogenesis (38). Collectively, these insights highlight the

importance of AT in lymphatic vessel development and

functionality. When primary tumors are present in the head and

neck regions, NAT might facilitate lymphatic metastasis of these

tumors by regulating lymphatic vessel.
3.2 Cancer-associated adipocytes

Adipocytes that interact with cancer cells are termed “cancer-

associated adipocytes” (4). The idea that adipocytes might influence

tumor progression was initially suggested by Spector et al. In 2003,

Puneeth et al. discovered that adipocytes surrounding breast cancer

tissues promoted tumor progression. This promotion was achieved

by the secretion of collagen VI, which induced an anti-apoptotic

transcriptional program and stabilized proto-oncogenes in tumor

cells (39). Subsequently, Dirat et al. revealed that breast cancer cells

exhibited increased invasiveness when co-cultivated with mature

adipocytes. Further, the number of lung metastases was enhanced in

mice injected with adipocytes co-cultivated with 4T1 tumor cells

compared with mice injected with 4T1 cells alone. Intriguingly,

when co-cultured with breast tumor cells, mature adipocytes

showed a marked reduction in the number and size of lipid

droplets and a decreased expression of adipocyte differentiation

markers such as hormone-sensitive triglyceride lipase (HSL),

resistin, and adiponectin. By contrast, upregulation of the

expression of proinflammatory cytokines (e.g., IL6, IL1b, TNFa)
and matrix remodeling proteins (e.g., MMP-11, PAI-1) was

observed. In various solid tumors such as breast cancer (4),

prostate cancer (7), melanoma (40), and colorectal cancer (41),

the invasion of tumor cells into the surrounding AT is linked to a

profound reduction of lipid in adipocytes. Nieman et al. noted that

ovarian cancer preferentially metastasizes to the omentum, which is

rich in adipocytes. They further found that co-culturing adipocytes

with ovarian cancer cells led to a direct lipid transfer from

adipocytes to the cancer cells. This process allowed cancer cells to

utilize fatty acids by b-oxidation (42). In addition, cancer-associated

adipocytes have been found to release high levels of cytokines and

growth factors such as IL-6, CCL2, CCL5, IL1b, TNFa, and VEGF,

which collectively contribute to enhanced tumor cell proliferation,

invasion, and angiogenesis (43). Consequently, the interaction

between cancer-associated adipocytes and cancer cells in the

tumor microenvironment serves to bolster the survival,

proliferation, and metastatic potential of the cancer through

direct lipid exchange or adipokine secretion (44).
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3.3 Adipokine in the tumor
microenvironment promotes lymph node
metastasis in HNC

3.3.1 Leptin
Leptin is a product encoded by the LEP gene on human

chromosome 7. It is a 16 kDa adipokine synthesized and secreted

by adipocytes, primarily playing a crucial role in regulating energy

metabolism and promoting cell proliferation. Both leptin and its

receptor are highly expressed in thyroid cancer, salivary gland

carcinoma, oral squamous cell carcinoma, and laryngeal cancer.

Further, the expression of leptin and its receptor is positively

correlated with cancer invasiveness indicators including tumor

size and LNM (45–49). Cheng et al. assessed the levels of leptin

and its receptor in 49 primary tumors and 15 LNM using

immunohistochemistry. They discovered that leptin and its

receptor were expressed in 37% and 51% of papillary thyroid

carcinomas, respectively. The co-expression of leptin and its

receptor in primary tumors was associated with a higher

likelihood of LNM (50). Leptin can stimulate tumor cells invasion

and inhibit tumor cells apoptosis. Eliane et al. found that in SCC-9

and SCC-4 oral squamous cell lines, leptin promoted the expression

of genes related to angiogenesis and invasiveness such as E-

cadherin, Col1A1, MMP2, and MMP9, thereby enhancing cell

proliferation and invasiveness (49). Further, leptin can enhance

the migration of thyroid cancer cells through the PI3K/AKT and

MEK/ERK signaling pathways (51). Through an in vitro study,

Shahab et al. determined that overexpression of the leptin receptor

can inhibit apoptosis by upregulating BCl-XL and XIAP (anti-

apoptotic genes) (47).

3.3.2 Adiponectin
Adiponectin is a primary adipokine secreted by AT that can also

be produced by cardiomyocytes, skeletal muscle cells, and

lymphocytes (52). Adiponectin belongs to the complement factor

C1q-like protein superfamily. Adiponectin primarily functions in

regulating glucose metabolism and stimulating FAO (53). Recently,

a strong inverse correlation was shown between adiponectin levels

and the incidence of various malignant tumors, such as colorectal

cancer, breast cancer, prostate cancer, leukemia, and endometrial

cancer. Adiponectin is also considered a potent anticancer factor

that inhibits cancer growth. In endometrial cancer, adiponectin

activates AMPK and downregulates Bcl-2 and MMP-9 expression,

consequently inhibiting the invasion of tumor cells and promoting

tumor cell apoptosis (54). However, research on the association

between adiponectin and HNC is limited. Nicholas et al. found a

significant independent negative correlation between circulating

adiponectin levels and the risk of thyroid cancer (55). Cheng

et al. determined that AdipoR1 was expressed in 27% of primary

malignant tumors, while AdipoR2 was found in 47% of primary

malignant tumors via immunohistochemical staining of 49 thyroid

tumor samples and metastatic lymph nodes. In addition, negative

expression of both adiponectin receptors was significantly

correlated with extrathyroidal invasion, multicentricity, and
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higher TNM staging (56). Ersilia et al. discovered that

adiponectin inhibited the proliferation of papillary thyroid cancer

cell lines (BCPAP and K1) and anaplastic thyroid cancer cell lines

(CAL62). Current research suggests that adiponectin exerts its effect

by binding to its receptors and regulating AKT/mTOR/PI3K and

MAPK signaling pathways, which are associated with cell

proliferation and energy modulation, thereby inhibiting the

activity and growth of thyroid cancer (16). Evidently, adiponectin

serves as a protective adipokine against HNC. Therefore, reduced

levels of adiponectin in obese individuals can potentially promote

the onset of HNC.

3.3.3 Interleukin-6
IL-6 is a multifunctional cytokine that plays a crucial role in the

broad biological activity of cancer cells. IL-6 is involved in immune

modulation and tumorigenesis. In pathological conditions of

obesity and cancer, IL-6 levels secreted by adipocytes are

significantly increased (17). Nandita et al. found that serum IL-6

levels positively correlated with tumor size, extrathyroidal invasion,

and distant metastasis in papillary thyroid carcinoma patients (17).

In prostate cancer (57), breast cancer (58), ovarian cancer (59),

non-small cell lung cancer (60), and endometrial cancer (61), IL-6

also had a correlation with clinical progression of the cancer.

Numerous studies suggest that IL-6 can promote tumor invasion,

inhibit tumor cell death, and facilitate tumor cell immune evasion

through various mechanisms. IL-6 binds to a specific binding

receptor on the cell membrane (IL-6R), leading to activation of

the JAK/STAT3 pathway and promoting thyroid tumor cell

invasion (62). Similarly, Mingyu et al. collected specimens from

normal tissues, vocal cord leukoplakia, and HNC. they found that

levels of IL-6 were higher than in normal epithelium. It was

discovered that IL-6 transcriptionally activates xCT, a key amino

acid antiporter, via the JAK2/STAT3 signaling pathway. The

upregulation of xCT induces ferroptosis resistance and tumor

progression, suggesting IL-6 as a novel oncogenic ferroptosis

inhibitor (63).

3.3.4 Other substances
Extracellular vesicles serve as a critical conduit for

communication between adipocytes and tumor cells. These

vesicles transport proteins and fatty acids related to lipid

metabolism. Once internalized by tumor cells, they enhance FAO

(14). Adipocytes cultured in high-fat conditions exhibit an

increased secretion of extracellular vesicles. The fatty acids from

these vesicles accumulate in the lipid droplets of cancer cells and are

subsequently released during fat autophagy, further driving FAO

(14). Further, cancer cells can release extracellular vesicles that

stimulate lipolysis in adipocytes (44). For example, extracellular

vesicles from lung cancer cells were found to be enriched with IL-6,

which triggers lipolysis in adipocytes by activating the STAT3

pathway (64). Beyond this, adipose tissue releases other

adipokines including interleukin-8 (65), IGFBP-2 (66), b-
hydroxybutyrate (67), CD36 (35), FASN (35) and IGF-1 (68),

which can influence tumor invasion.
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4 Conclusion

Given the association of breast cancer, prostate cancer, and other

malignant tumors with surrounding AT, as well as studies correlating

NC and BMI with LNM in HNC, it is evident that NAT foster

cervical LNM in HNC. On the one hand, NAT can directly fuel

tumors and nascent lymphatic vessels through FAO. In addition, it

might secrete adipokines or extracellular vesicles that modulate

tumor growth or alter the microenvironment around the malignant

tumor, thereby influencing malignant tumor invasion and migration.

On the other hand, HNC can induce the transformation of typical

adipocytes in the neck to cancer-associated adipocytes. This can shift

the metabolic expression patterns of HNC, creating a feedback loop

that fosters growth, migration, and LNM.

Currently, the bulk of research centers on the association

between BMI and HNC, with limited epidemiological and

foundational studies directly linking NAT to HNC. There is no

universally accepted methodology for quantifying NAT. Future

research should prioritize investigating the connection between

NAT and various HNC, delineate the alterations in submental

NAT instigated by HNC and discern the role of NAT in the

progression of HNC. Delving into the mechanisms by which

NAT drives HNC and LNM could provide novel insights and

strategies for the diagnosis and management of HNC.
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