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Nanoparticle-enhanced
PD-1/PD-L1 targeted
combination therapy for
triple negative breast cancer
Caroline Linde, Yu-Ting Chien, Zhiqian Chen and Qingxin Mu*

Department of Pharmaceutics, University of Washington, Seattle, WA, United States
Breast cancer with triple-negative subtype (TNBC) presents significant

challenges with limited treatment options and a poorer prognosis than others.

While PD-1/PD-L1 checkpoint inhibitors have shown promise, their efficacy in

TNBC remains constrained. In recent years, nanoparticle (NP) technologies offer

a novel approach to enhance cancer therapy by optimizing the tumor

microenvironment and augmenting chemo- and immunotherapy effects in

various preclinical and clinical settings. This review discusses recent

investigations in NP strategies for improving PD-1/PD-L1 blockade-based

combination therapy for TNBC. Those include single or multi-therapeutic NPs

designed to enhance immunogenicity of the tumor, induce immunogenic cell

death, and target immunosuppressive elements within the tumor

microenvironment. The investigations also include NPs co-loaded with PD-L1

inhibitors and other therapeutic agents, leveraging targeted delivery and

synergistic effects to maximize efficacy while minimizing systemic toxicity.

Overall, NP approaches represent a promising avenue for enhancing PD-1/PD-

L1 checkpoint blockade-based combination therapy in TNBC and encourage

further developmental studies.
KEYWORDS

nanoparticles, triple negative breast cancer, PD-1/PD-L1 pathway, combination therapy,
tumor microenvironment
Introduction

Breast cancer is the second leading cause of cancer death in women worldwide (1). The

subtype that lacks ER/PR and HER2 receptors (triple negative breast cancer, TNBC) have 5-

year survival rates that are 8-16% lower than hormone-positive subtypes (2). Current

treatments mostly involve surgical removal of primary tumor with chemotherapy and

radiation (3). Monoclonal antibodies targeting PD-1/PD-L1 pathway (i.e., pembrolizumab)

have been recently added as a first line treatment with chemotherapy due to their longer

overall survival than chemotherapy alone (23 months vs. 16.1 months) (4). However, efficacy
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of these regimens relies on tumoral PD-L1 expression (combined

positive score [CPS] ≥10) (4). Despite improved survival, the

combination regimens still showed adverse side effects (4), and

their synergistic effects might not be optimal due to their different

pharmacokinetic profiles (5). Another PD-1/PD-L1 inhibitor

atezolizumab initially showed an improvement in progression-free

survival regardless of PD-L1 expression (7.2 months vs. 5.5 months)

when combined with the NP nab-paclitaxel, but did not show any

benefit (6 months vs. 5.7 months) when combined with free

paclitaxel, even for PD-L1 positive patients according to the

IMpassion131 trial (6). Therefore, innovative approaches to further

improve treatment outcomes are still highly demanded for TNBC (6).

Nanoparticle (NP) technologies have been investigated to

improve the outcomes for various cancers including TNBC. NPs

can load single or multiple agents and deliver them in controlled

and targeted manner, thus lessening the toxicity and

pharmacokinetic issues of free drugs (7, 8). They are proven to be

useful when combining immune checkpoint blockade with drugs

that stimulate the immune system (e.g., through immunogenic cell

death mechanisms) (9), and thus would be more effective than free

agents to combat the immunosuppressive TNBC tumor

microenvironment and enhance the PD-1/PD-L1 blocking

therapy. One example is the FDA-approved albumin-bound

paclitaxel formulation known as nab-paclitaxel, a ~130 nm NP

formulation (10), which shows faster drug distribution into tissues

and slower elimination than solvent- and surfactant-based Taxol in

clinical trials (11). The NPs improved the treatment outcome of

anti-PD-1 antibody pembrolizumab for the treatment of TNBC as

mentioned above (4, 12).
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In this mini review, we will discuss recent innovative

developments in the use of NP technologies to improve the

therapeutic outcomes of PD-1/PD-L1 therapy of TNBC. First, we

will give a brief introduction of the PD-1/PD-L1 signaling axis and

an overview of the clinical studies that have investigated the

immune microenvironment of tumors before they are treated

with anti-PD-1/PD-L1 therapy combined with nab-paclitaxel or

liposomal doxorubicin. Then we will discuss the investigations of

preclinical NPs that are either loaded with single or multiple

therapies to optimize the tumor microenvironment for

combination with separately administered PD-1/PD-L1 blocking

therapy, or NPs co-loaded with the immune checkpoint blocking

agents and other therapies (Figure 1). The detailed information of

these NPs, including NP types, preparation methods, therapeutic

agents, therapeutic efficacy with immunological evaluation, and

safety/toxicity assessments, are summarized in Supplementary

Table S1.
PD-1/PD-L1 axis in combination
therapy of TNBC

The binding of cancer cell surface PD-L1 (programmed death

ligand 1) to PD-1 (programmed death receptor 1) on T cell surface

causes the termination of effector T cell proliferation and subsequent

apoptosis, resulting in cancer cell survival (13, 14). Expression of PD-L1

in TNBC has been correlated with both positive and negative clinical

prognoses, according to different studies. Some have noted that it is

associated with a large tumor size and lymph node metastasis, while
B

A

FIGURE 1

Nanoparticle approaches that improve the PD-1/PD-L1 pathway inhibition-based combination therapy of TNBC. (A) Two major types of nanoparticle
loading and combination approaches: nanoparticles loaded with one or more therapeutic agents and combined with free PD-1/PD-L1 blocker
separately, or nanoparticles co-loaded with the immune checkpoint inhibitor and other therapeutic agents. (B) Multiple mechanisms that are
involved in the enhanced therapeutic outcomes. (a) multi-agent nanoparticles increase the tumor targeting and retention in hard-to-target TNBC;
(b) the therapeutic agents reverse the TNBC immunosuppressive microenvironment; and (c) the PD-1/PD-L1 blockers inhibit the immunosuppressive
pathway. Figure created with BioRender.com.
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others have claimed that it is associated with higher tumor infiltrating

lymphocytes and shows a good clinical outcome (13). This could be due

to different methods of identifying the PD-L1 expression level, the

number of tumor infiltrating lymphocytes found in the tumor

microenvironment, and whether PD-L1 is found on the primary

tumor or on metastatic cells (14). Anti-PD-1 or anti-PD-L1 blocking

antibodies for TNBC must be used with chemotherapy for neoadjuvant

treatment (15). Chemotherapeutics may have immunomodulative

effects through multiple mechanisms including immunogenic cell

death (ICD), enhanced antigen presentation and MHC-I molecules,

dendritic cells activation, and decreased myeloid derived suppressor cell

(MDSC) levels, etc. (16). Some of them upregulate PD-L1 protein

expression in tumors, which enhances PD-L1 antibody therapy (17).

However, most of these drugs are non-cancer specific and have short

circulation, thus resulting in suboptimal outcomes when combined with

the PD-1/PD-L1 antibodies. Phototherapy (photothermal or

photodynamic) is another modality that can induce ICD (18), and

tumor normalization strategies can allow for improved immune cell

infiltration, thus improving immunotherapy (19). In this mini review,

different NP approaches are used to improve the effects of different

therapeutics in optimizing the tumor microenvironment for PD-1/PD-

L1-targeted therapy.
Clinical studies of nanoparticle
formulation-PD-1/PD-L1 inhibitor
combination therapy

Increased immune activity in the tumor before treatment is

correlated with the efficacy of nab-paclitaxel and pegylated liposomal

doxorubicin when combined with anti-PD-1/PD-L1 therapy (Table 1).

A clinical study that combined nab-paclitaxel with pembrolizumab

showed that a complete response was correlated with increased

immune activity in the pre-treated tumor through a gene set

enrichment analysis (20). Another study that combined nab-paclitaxel

with atezolizumab showed that tumor infiltrating lymphocytes were

associated with PD-L1 positive tumors, both of which were correlated

with progression-free survival and overall survival (21). A study

combined atezolizumab with pegylated liposomal doxorubicin and

cyclophosphamide and showed that high immune gene expression in

the tumor seemed to be essential for atezolizumab to be effective (22).

These studies demonstrate that increased immune activity in the

pretreated tumor microenvironment can lead to increased efficacy

when nanoparticles are combined with anti-PD-1/PD-L1 therapy. It’s

worth noting that these nanoformulations are intravenously infused,

which provides a 100% bioavailability to the systemic circulation.
Single or multi-therapeutic preclinical
nanoparticles that combine with anti-
PD-1/PD-L1 therapy

Some preclinical studies utilized NPs to carry a single novel

therapeutic function (similar to nab-paclitaxel) to increase the
Frontiers in Oncology 03
immunogenicity of the tumor. Wang et al. encapsulated the

chemotherapeut ic drug camptothec in in a l iposome

(Camptothesome). They combined alpha-PD-L1 (aPD-L1) with

Camptothesome for treatment of 4T1-Luc2 tumors. The NP is

internalized by clathrin-mediated endocytosis and escapes efflux

pumps that confer multidrug resistance. In comparison with

Onivyde (FDA-approved irinotecan liposomes), Camptothesome

was able to upregulate PD-L1 levels by about 2.5-fold in addition to

inducing ICD. When combined with aPD-L1, camptothesome

reduced the 4T1 tumor volume by 80-90% compared to vehicle

control (23). Liu et al. encapsulated the Hsp90 inhibitor 7-AAG in a

liposome, which increased ICD rather than cytotoxicity. They also

used an aminoethyl anisamide ligand to target the tumor. With this

NP, the tumor infiltrating T cell population in 4T1 tumors

increased by 10× and the memory CD8+ T cell population

increased to about 7% versus the 1% in the vehicle control. When

combined with aPD-L1, the tumor mass was reduced by ~50% (19).

In another study by Zhao et al., black phosphorous quantum dots
TABLE 1 Examples of nanoparticle formulations used in combination
with PD-(L)1 inhibitors for TNBC treatment in the clinic.

Regimen
Primary

Outcomes
Immunological
Assessments

Ref.#

Pembrolizumab +
carboplatin,
nab-paclitaxel

• PFS*: 5.8
months
• OS*: 13.4
months
• ORR*: 48%

• Tumors from patients w/
CR* had increased gene set
enrichment for: B cell
receptor antigen activation,
PD-1 signaling, TCR
signaling, MHC Class II
antigen presentation, and
antigen processing-cross
presentation
• IGHG1* enriched
expression correlated with
higher B cell and helper T
cell tumor infiltration and
led to ~60% probability of
20–40-month OS and
>75% probability of PFS
from 10-40 months

(20)

Atezolizumab +
nab-paclitaxel

• PFS: 9.3
months in PD-
L1 IC*+
patients
• OS: 28.9
months in PD-
L1 IC*
+ patients

• Intratumoral CD8+ and
sTIL+* were associated
with PD-L1 IC+ status and
improved PFS and OS

(21)

Arm 1: PLD* +
cyclophosphamide
+ atezolizumab
Arm 2: PLD +
cyclophosphamide
+ Placebo

Arm 1:
• PFS: 4.3
months
• ORR: 27.5%
Arm 2:
• PFS: 3.5
months
• ORR: 17.9%

• Only patients with high
immune gene expression
in the tumor seemed to
benefit from the addition
of atezolizumab
• Patients with high
immune gene expression
all had a PFS >12 months
• Low Treg levels were
associated with
increased PFS

(22)
front
*CR, Complete Response; IGHG1, Immunoglobulin Heavy Constant Gamma 1; sTIL, Stromal
tumor infiltrating lymphocytes; IC, immune cell; PLD, pegylated liposomal doxorubicin; PFS,
Progression Free Survival; OS, Overall Survival; ORR, Overall Response Rate.
iersin.org
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were coated with a cancer cell membrane for photothermal therapy

of 4T1 tumor using an 808 nm laser irradiation. The cancer cell

membrane increased NPs’ stability through reducing immune

system clearance, and it also increased tumor-site accumulation.

The release of tumor associated antigens induced by photothermal

therapy increased the dendritic cell population in tumors to 32.80%

versus 9.96% in the vehicle control. When combined with aPD-L1
and near infrared light (NIR), nearly all tumor mass was eliminated

and the survival of the mice was still 100% after 2 months, whereas

it was 0% for aPD-L1 only group and the PBS control (18). Another
study targeted tumor associated fibroblasts (TAFs) by reducing ROS

levels, utilizing the traditional medicine puerarin carried in a

nanoemulsion (24). TAFs are an intertumoral cell population that

releases growth factors, recruits immunosuppressive cells, and helps

form a dense extracellular matrix that blocks drug delivery (25). The

nanoemulsion also included a aminoethyl anisamide targeting

ligand. In a 4T1 mouse tumor model, their NPs reduced alpha-

SMA positive TAFs to 3.5% of total cells, and reduced collagen

deposition (indicative of desmoplasia) in cells to 2.6% of total cells.

When combined with aPD-L1, the tumor mass was decreased by

about half, and the median survival time was 56 days, versus 41 days

for NanoPue treatment only, and 38 days for aPD-L1 treatment

only (24). It was also noted that all these NP-based regimens

inhibited lung metastasis.

NPs were also used to carry dual agents to increase tumor

immunogenicity. Feng et al. formulated NPs that were self-

assembled from indocyanine green and paclitaxel without using

additional excipient. The photodynamic effects increased dendritic

cell maturation frequency to ~50% in the 4T1 tumor, and paclitaxel

reduced T regulatory cells by 10-15% through cytotoxic effects.

Combined with aPD-L1, this NP nearly eradicated the primary

tumor and prevented lung metastasis in the 4T1 tumor. 75% of the

mice survived after 45 days, versus around 30% without aPD-L1,
and none survived only with aPD-L1 (26). Another study by Lu

et al. used photothermal therapy by developing a polyethylene-

glycol modified polydopamine (a polymeric photothermal

conversion agent) nano-construct, loaded with the toll-like

receptor 7 agonist R848 and carbon dots (a biocompatible

nanomaterial). R848 was designed to increase cytotoxic T

lymphocyte infiltration: with aPD-L1, the NP treatment led to a

2.1% cytotoxic T lymphocyte population in tumor tissue versus 1%

without aPD-L1, 0.6% without R848 and 0.2% without treatment.

Their NP, combined with near-infrared light irradiation and aPD-
L1, decreased 4T1 tumor mass in mice by 75% compared to

untreated mice. Finally, 80% of mice survived after 30 days, while

none survived without R848 or in the control group (27).

A couple of NP approaches carried three or more agents to form

more intricate and sophisticated systems, both involving the ROS

induction mechanism to induce ICD. This is in contrast to the

puerarin nanoemulsion study that decreased ROS levels because

chronic ROS can activate TAFs (24). Zou et al. combined

doxorubicin, adjudin (a male contraceptive and a potential anti-

metastasis agent), and D-a-tocopherol polyethylene glycol 1000

succinate (TPGS, an ROS inducer), into a self-assembled NP with

cRGD modification. These NPs had a pH-sensitive Schiff base and
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could release their drugs when endocytosed in lysosomes with a pH

of 5. They increased the ROS levels by 2.3-fold compared to free

doxorubicin in 4T1 cells. The authors specifically used an anti-

metastasis agent because chemotherapy can induce the epithelial-

mesenchymal transition effect that promotes metastasis. This study

also used a free D-peptide antagonist to block PD-L1 instead of the

antibody, to avoid the antibody-associated immune adverse effects

(28). Li et al. encapsulated epirubicin, Gox and hemin into zeolitic

imidazolate framework NPs that degrade at low pH (about 10×

more epirubicin was released in pH 5.4 than pH 7.4). They then

coated the NPs with calreticulin-overexpressed cancer cell

membranes. The NPs increased the ROS content by ~2.5 folds in

4T1 tumor tissue (23). These studies showed similar 4T1 tumor

inhibition rate (84.08% and 82.02%, respectively) when combined

with aPD-L1 without detectable metastasis in the lungs (28, 29).

Nanoparticles co-loaded with PD-L1
inhibitor and other forms of therapy
for TNBC

Co-loading a PD-L1 inhibitor and other therapies onto NPs

allows for synergistic effects through co-delivery into the tumor and

may help reduce immunological side effects. A micelle

encapsulating camptothecin and JQ1 was studied by Zhang et al,

combining the potent chemotherapy with JQ1 (a bromodomain and

extraterminal domain inhibitor that suppresses PD-L1 expression),

solving the issues of the agents’ poor solubility, short half-lives, and

off-target toxicity. Both drugs are conjugated to the polymer

backbone via disulfide bonds, susceptible to the high levels of

glutathione present within cancer cells. This demonstrated an

80.3% 4T1 tumor inhibition rate compared to 54.0% in the free

CPT and JQ1 group (30). A study by Zhang et al. combined Ce6 (a

photosensitizer) with a novel PD-L1 blocker known as Bristol-

Myer’s Squibb 202 (BMS-202) and formulated them into NPs using

a reprecipitation method. Under near infrared light, this BMS 202/

Ce6 NPs treatment showed similar efficacy to Ce6 NPs combined

with separately administered aPD-L1 in inhibiting the 4T1 tumor

(91.1% vs. 92.6%) (31).

A few recent studies involved the PD-L1 inhibitor metformin in

their formulation. Metformin causes the degradation of PD-L1,

circumventing the transient nature of PD-L1 blocking with

antibodies (32). One study first conjugated Ce6 with metformin

through an MMP-2 cleavable peptide. The conjugate then self-

assembled into NPs. The NPs had led to a 20% reduction in PD-L1

expression on 4T1 tumor cells and reduced the tumor weight by

nearly 61.5% (33). Another designed NP that was self-assembled

from metformin and chemotherapy SN38. This NP reduced PD-L1

expression by ~4× in MDA-MB-231 cells at an 80 ug/mL

concentration, decreased relative tumor volume by 80% in the 4T1

BALB/c mouse model and prevented lung metastasis. The survival

rate was 50% after 30 days with this NP as opposed to 0% in the free

drug and free aPD-L1 group (34). In another study, an

immunomodulator epigallocatechin gallate palmitate (PEGCG) and

metformin were self-assembled into micelles and then co-loaded with
frontiersin.org
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doxorubicin (PMD NPs). Epigallocatechin gallate induces apoptosis

of MDSCs and binds to laminin receptors highly expressed on breast

cancer cells; PMDs and separate administration of anti-PD-1

antibody reduced MDSCs by 10% compared to the PBS control.

They showed a tumor inhibition rate of 68.8% when anti-PD-1

antibody was separately administered (35). In addressing the

multifaceted nature of TNBC, some more ambitious and intricate

nanomedicine designs were also noted. For example, Zhang et al.

fabricated NPs composed of 4 agents to target cancer in multiple

ways: paclitaxel, repertaxin (a cancer stem cell antagonist), BMS-1 (a

PD-1/PD-L1 pathway blocker), and combretastatin A4 (targets

tumor micro vessels). This nanomedicine had 100% drug loading

capacity through self-assembly, obviating the need for additional

carriers which reduced the risk of carrier-induced side effects.

Moreover, such design allowed for the low dose of paclitaxel (2

mg/kg compared to 10 mg/kg in common dosing regimens), which

minimized systemic toxicity and the killing of immunocytes.

Through repertaxin, this NP reduced cancer stem cells to 4.84% on

day 12 from 12.7% in the PBS group. The CA4 in the NPs reduced the

tumor micro vessel density by half compared to the PBS control.

With these advantages, this multi-agent approach led to significant

tumor growth inhibition (92.5%) and lung metastasis suppression

(>90%). 50% of the mice had their survival prolonged by 95 days (36).

Another study used a heparanase-sensitive micelle approach to co-

deliver docetaxel, NLG919, and a PD-1/PD-L1 inhibitor, HY19991.

NLG919 is an inhibitor of indoleamine 2,3-dioxygenase, a protein

that causes the death of CD8+ T cells and promotion of Treg cells.

The design allows for a controlled release of the drugs in the tumor in

response to heparanase and uses monocytes to phagocytize the

micelles and deliver them into the tumor. The monocytes

prevented the NPs from being eliminated and releasing drugs in

the blood. This delivery approach resulted in high intratumoral drug

concentrations of all three agents (6.85, 3.96, and 3.11 times higher

for docetaxel, NLG919, and HY, respectively), when compared to the

free micelles (no monocyte carrier) in a 4T1 tumor model. When

compared to the free drugs, the intratumoral drug concentrations

were 7, 4.7, and 4.5 times higher respectively at 8 hours. Such

enhancement ultimately led to a tumor inhibition rate of over 90%

and suppression of 4T1 lung metastasis by ~98% compared to saline

control. The free micelle tumor inhibition rate was only 48.51%.

Furthermore, after 60 days, 66.67% of the mice treated with the

monocyte-carried NPs still had survived, whereas the median survival

length of the mice that were treated with free drugs was only 30

days (37).

Some other studies used anti-PD-L1 antibody-conjugated NPs

to deliver drugs into PD-L1 high expressing tumor cells. In the

study of Pham et al., human serum albumin NPs were loaded with

paclitaxel through a pH-sensitive linker and conjugated with anti-

PD-L1 antibody. The design leveraged the glycoprotein60 receptor-

binding effects of albumin, the PD-L1 targeting ability, and a pH-

dependent release of paclitaxel and the PD-L1 antibody. This

formulation was combined with separately administered CTLA-4

antibody for treatment evaluations. In an EMT-6 tumor xenograft

model, the NPs combined with free anti-CTLA-4 were able to

decrease tumor mass by ~80%, in contrast to ~60% decrease
Frontiers in Oncology 05
without CTLA-4 antibody, and ~40% with nab-paclitaxel only

( 38 ) . I n ano th e r s t udy , an o l e i c a c i d con juga t ed

polyethyleneimine polymer complex was formed and loaded with

paclitaxel, chloroquine (an autophagy inhibitor), ovalbumin

(antigen), CpG (immunoadjuvant), and anti-PD-L1 antibody,

through a thin-film hydration and a self-assembly process. The

design enabled targeted tumor and lymph node delivery and

durable antitumor immunity. They showed that autophagosome

formation was promoted over 4× compared to the blank

nanoparticle control, and that in a 4T1 tumor model, the tumor

inhibition rate was ~80%. After 60 days, 60% of the mice treated

with this NP had survived, in contrast to 50% for mice treated with a

NP with no PD-L1 antibody and 0% for the 5% glucose (D5W)

control (39).

Finally, PD-L1 siRNA (siPD-L1) with high specificity to targeted

sequences was also utilized recently with NP approaches. In one

study, siPD-L1 was first combined with protamine to form a cationic

nanocore. LY3200882, a TGF-beta inhibitor that deactivates TAFs,

was then combined with a MMP2-responsive lipid layer as the

liposomal out-shell. Enabled by the MMP2-stimulated disruption

of the outer layer, this design facilitated the siPD-L1/protamine inner

core’s penetration of both tumor cells and TAFs. The NP

downregulated a-SMA by 31.5% and Collagen 1 by 52.4% in NIH/

3T3 cells, which showed that it could target TAFs and thus normalize

the tumor microenvironment. In a 4T1 and NIH/3T3 co-inoculated

tumor model (for a highly desmoplastic microenvironment), their

NPs decreased the tumor mass by about 85% (40). In another study,

the NPs were prepared by first forming a complex between melittin

and PD-L1 DsiRNA (Dicer-substrate siRNA) followed by the loading

of doxorubicin. The surface of the particles was then modified with

hyaluronic acid (HA), which binds to CD44 expressed on some

TNBC cells and which can be degraded by hyaluronidase in the ECM

(allowing for drug release). The HA coating resulted in a 3× higher

uptake of drugs in 4T1 cells compared to NPs with no HA coating

and free doxorubicin. The NPs also induced a 75% decrease in PD-L1

expression in 4T1 tumors as compared to the PBS control. This

resulted in a substantial reduction in 4T1 tumor weight, by about 75-

80%, with all the mice surviving after 40 days and no surviving mice

in the free drug groups (41).
Summary and outlook

Despite recent clinical advancements of PD-1/PD-L1 inhibitor-

based chemo-immunotherapy for TNBC, the therapeutic benefits

and applicable patient populations remain limited (4). Various drug

discovery and delivery approaches are being investigated to further

augment the immune checkpoint inhibitors’ efficacy either alone or in

combination with other modalities. NPs, owing to their unique

physicochemical properties and multifunctional capabilities, have

been investigated for the enhanced therapy of TNBC and have

demonstrated advantages in both clinical [e.g., nab-paclitaxel NPs

(10, 11)] and preclinical settings. Based on recent developments,

multiple mechanisms may have contributed to their enhanced

therapeutic outcomes, those include but are not limited to 1)
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reduced drug resistance (23, 42), 2) improved drug solubility and

pharmacokinetics (7, 8, 11), 3) active tumor targeting through ligand

or specialized membrane coating, etc. (18, 19, 24, 29, 31, 33, 35–41),

4) NP-enabled co-delivery of agents for better synergistic effects (27–

31, 33–41), and 5) stimuli-responsive drug release (28, 37, 38). With

these mechanisms, the NPs not only led to increased cytotoxic effects

to cancer cells, but also optimized the tumor microenvironment for

immunotherapy. The combination therapy with PD-1/PD-L1

blocking agents, either co-delivered by NPs or separately

administered were hence improved through enhanced efficacy and

reduced systemic toxicity, and ultimately, prolonged survival. It was

also noted that these NPs are generally considered safe as assessed in

each study without any significant toxicity being observed

(Supplementary Table S1). We also noted that most of these

studies used PD-L1 other than PD-1 inhibitors, likely taking the

advantages of NPs being able to target cancer cells rather than

immune cells. These recent advancements with NP strategies

demonstrated in preclinical murine cancer models manifest their

advantages and potential in treating TNBC in humans. Despite these

advantages, some challenges remain. For example, consistent size

distribution, shape and structure, surface charge, and compositions

are required for the NP formulations, which could complicate the

manufacturing processes (43, 44). Also, the previously claimed EPR

(enhanced permeability and retention) effect-based NPs have shown

different results in rodent models and humans, indicating that the

NPs need to be further optimized or re-designed to fit for the tumor

pathophysiology in humans (7, 45). In light of all above advantages

and challenge considerations, further formulation development and

optimization in the manufacturing of NPs, evaluations of NPs’

pharmacokinetics and drug release mechanisms, and efficacy and

safety assessments in multiple late-preclinical models (such as

humanized tumor models), are encouraged before translating into

clinical investigations.
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