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Introduction: Patients with clinically node-negative breast cancer have a

negative sentinel lymph node status (pN0) in approximately 75% of cases and

the necessity of routine surgical nodal staging by sentinel lymph node biopsy

(SLNB) has been questioned. Previous prediction models for pN0 have included

postoperative variables, thus defeating their purpose to spare patients non-

beneficial axillary surgery. We aimed to develop a preoperative prediction

model for pN0 and to evaluate the contribution of mammographic breast

density and mammogram features derived by artificial intelligence for de-

escalation of SLNB.

Materials and methods: This retrospective cohort study included 755 women

with primary breast cancer. Mammograms were analyzed by commercially

available artificial intelligence and automated systems. The additional predictive

value of features was evaluated using logistic regression models including

preoperative clinical variables and radiological tumor size. The final model was

internally validated using bootstrap and externally validated in a separate cohort.

A nomogram for prediction of pN0 was developed. The correlation between

pathological tumor size and the preoperative radiological tumor size

was calculated.

Results: Radiological tumor size was the strongest predictor of pN0 and included

in a preoperative prediction model displaying an area under the curve of 0.68

(95% confidence interval: 0.63–0.72) in internal validation and 0.64 (95%

confidence interval: 0.59–0.69) in external validation. Although the addition of

mammographic features did not improve discrimination, the prediction model

provided a 21% SLNB reduction rate when a false negative rate of 10% was

accepted, reflecting the accepted false negative rate of SLNB.
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Conclusion: This study shows that the preoperatively available radiological

tumor size might replace pathological tumor size as a key predictor in a

preoperative prediction model for pN0. While the overall performance was not

improved by mammographic features, one in five patients could be omitted from

axillary surgery by applying the preoperative prediction model for nodal status.

The nomogram visualizing the model could support preoperative patient-

centered decision-making on the management of the axilla.
KEYWORDS

breast cancer, de-escalation, sentinel lymph node biopsy, artificial intelligence,
mammography, prediction model, personalized medicine
1 Introduction

Sentinel lymph node biopsy (SLNB) is the recommended

surgical axillary staging method in patients with clinically node-

negative breast cancer, although approximately 75–80% have non-

malignant axillary lymph nodes in the definitive pathology report

(1–4). Consequently, patients with negative sentinel lymph node

status (pN0) do not benefit from SLNB. The American College of

Surgeons Oncology Group Z0011(ACOSOG Z0011) study

questioned the necessity of axillary lymph node dissection and

showed that abstaining from ALND in patients with T1-T2

clinically node negative primary breast cancer with 1-2 sentinel

lymph nodes containing metastases was non-inferior to ALND

regarding overall survival. This raised the question of the necessity

of SLNB. The randomized Sentinel Node vs Observation After

Axillary Ultra-Sound (SOUND) trial recently showed that

abstaining SLNB in patients with T1 tumors having breast-

conserving surgery was non-inferior to SLNB regarding distance-

free survival at five years (5). However, implementation of the

findings from the SOUND trial is not applicable to all breast cancer

patients. The ASCO guidelines already recommended abstaining

from SLNB in 2021 for patients ≥ 70 years with a luminal subtype

undergoing breast-conserving surgery and the recommended

adjuvant endocrine therapy (2). There is an increasing awareness

of the importance of the long-term effects of surgery on patient’s

function and well-being. The Intergroup Sentinel Mamma study

(INSEMA) evaluating invasive disease-free survival and morbidity
information criterion;
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after breast-conserving surgery with or without SLNB reported that

morbidity was lower in the group without SLNB than in the group

with SLNB at one, three, and 18 months postoperative (3). This

warrants strategies for implementation of de-escalation of axillary

surgery and methods for preoperative identification of patients for

whom SLNB can be safely omitted.

Several clinicopathological models for prediction of axillary

lymph node (ALN) and sentinel lymph node (SLN) status have

been developed during the past decade (6–9). In 2019, Dihge et al.

(10) developed an artificial neural network (ANN) model to predict

pN0. The selected variables in the model are well known predictors

and most were previously included in Bevilacqua et al.’s prediction

model (7, 10). However, previous prediction models were developed

using postoperatively available variables, defeating the purpose of a

patient-centric preoperative decision tool for safe omission of SLNB.

A commonly used key predictor for pN0, pathological tumor size, is a

postoperative measure that could be replaced by radiological tumor

size. Studies have indicated that primarily mammographic tumor size

is similar to the postoperatively available pathologic tumor size, while

other imaging modalities often over- or underestimate the tumor size

(6, 7, 11). To our knowledge, a comparison of pathological tumor size

and radiological tumor size has not previously been described in the

setting of ALN status prediction.

Prediction models for ALN status using mammograms have

been presented using presence of microcalcifications, breast density,

and radiomic signatures, exclusively or in combination with

clinicopathological variables, most of which were postoperatively

obtained (12–15). In addition, several studies have investigated

using other breast imaging modalities for nodal prediction,

including ultrasound and contrast-enhanced mammography (16–

21). To our knowledge, no prediction model for pN0 currently

incorporates commercially available AI cancer detection features

from mammograms and exclusively preoperatively available

clinicopathological variables.

Thus, we aimed to evaluate non-operative nodal staging and the

possibility to omit axillary surgery by developing a predictionmodel for

pN0 using only preoperatively available data. The additional predictive

value of mammographic variables extracted by a commercially
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available AI cancer detection system and an automated breast density

assessment system in patients with clinically node-negative primary

breast cancer is explored. A nomogram is developed as a preoperative

decision-tool to enable a patient-centered approach to SLNB.

Additionally, we aimed to evaluate radiological tumor size as a

preoperative alternative to the postoperative pathological tumor size

as a predictor in a preoperative prediction model for pN0.
2 Materials and methods

2.1 Study population

A total of 770 women diagnosed with primary breast cancer

between January 2009 and December 2012 were prospectively

included in a registry at the Department of Pathology at the Skåne

University Hospital (Lund, Sweden). Patients with clinically node

negative primary breast cancer undergoing primary breast surgery

and SLNB were included as previously described by Dihge et al. (6,

10). Clinically node negative was defined as no palpable mass in the

physical examination. All patients underwent SLNB as axillary

staging, and if needed, axillary lymph node dissection. Another

cohort including 586 patients from Skåne University Hospital

(Malmö, Sweden in 2020) and Helsingborg Regional Hospital

(Helsingborg, Sweden in 2019–2020) was used for external

validation (22).
2.2 Clinicopathological data

Patient and tumor information was collected from patients’

electronic files and a pathology database, as described by Dihge et al.

(6, 10) and Skarping et al. (22). The histological type was divided

into two groups after variable selection: the first group included no

special type and lobular, and the second group included other and

mixed types (7). Estrogen receptor (ER) status, progesterone

receptor (PR) status, HER2 status, and Ki67 percentage were

analyzed and categorized according to guidelines (23, 24). Mode

of tumor detection was divided into symptomatic presentation and

by the national mammography screening program. Tumor

localization was defined by location in the four quadrants and

central, and after statistical variable selection, categorized as upper

inner quadrant vs. other locations (7).

SLN status was categorized as negative or positive (pN0 or pN+).

pN0 was defined as breast cancer without lymph node metastasis or

with isolated tumor cells. pN+ was defined as ≥1 SLN with

micrometastasis or macrometastasis, defined as >200 cells and/or

cluster size of 0.2 – 2 mm, and cluster size >2 mm, respectively (25).
2.3 Mammographic images and image
analysis systems

All available mammographic images from screening and

diagnostic imaging were included in the analyses. A modified

Breast Imaging Reporting and Data System malignancy score (1–
Frontiers in Oncology 03
5) was used for mammographic and ultrasound images, as they are

part of the clinical routine work-up. For this study mammographic

malignancy score (1–5), ultrasound malignancy score (1–5), the

largest specified radiologic tumor size in mm, and laterality were

collected from the Picture Archiving and Communication System

(PACS). In cases of missing mammographic tumor size, size from

ultrasound was used since both modalities are preoperative and

included in the initial clinical work-up. Mammography has been

shown to have a high accuracy when compared to the surgical

specimen, while ultrasound tends to underestimate the tumor

size (26).

Transpara (version 1.7.0, Screenpoint Medical, Nijmegen, the

Netherlands), a breast cancer detection tool uses deep learning

algorithms to detect suspicious soft tissue lesions and

microcalcifications (calc) that may indicate breast cancer. Each

suspicious region is assigned a score between 1 and 100. When

used for screening mammography, Transpara sorts cases into ten

different risk categories (1-10) based on the regional suspicion

scores. It is calibrated to sort roughly equal numbers of cancers

into each category, with a goal of 90%+ of cancers in category 10

(27). Several retrospective studies (28–31) have shown Transpara to

be effective in increasing cancer detection and reducing workload in

screening, and the prospective Mammography Screening with

Artificial Intelligence (MASAI) trial has demonstrated it to be

effective in a clinical screening setting (32). Additionally,

Transpara has been reported to predict stage II breast cancer

years before diagnosis, indicating detection of properties beyond

the cancer diagnosis (33). For this study, the highest calc cluster

score and soft tissue lesion score were extracted from Transpara.

The scores were included in the set of candidate predictors as

continuous variables (0–100) and dichotomized as presence of

finding (0 vs 1–100). All available mammograms were included

and were manually cross-checked for laterality and correct tumor

localization in Transpara before data extraction.

LIBRA (version 1.0.5) is an automated breast density estimation

algorithm, which analyzes images based on gray-level values and

segments them into dense and non-dense areas, developed at the

University of Pennsylvania (17). Gastounioti et al. (34) and Keller

et al. (35), among others, have validated LIBRA as a breast density

measurement system. In this study, dense area [cm2] and density

[%] were extracted from LIBRA. Craniocaudal and mediolateral

oblique projections were available for all patients and therefore

included in the analyses. The mean values from LIBRA of the

projections on the ipsilateral side were used as the contralateral side

was not available for all patients. Moreover, several studies revealed

an association between breast density and breast cancer as well as

with ALN status (33–38).
2.4 Statistical analysis

Descriptive analyses were performed to explore the associations

between clinical, pathological, and radiological variables, and SLN

status using the Mann–Whitney U test and Chi-square test for

continuous and categorical variables, respectively. Pathological and

mammographic tumor size were compared using Pearson
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correlation and Bland-Altman analysis. Univariable logistic

regression was used for radiological variables to predict pN0. The

top ten variables included in the model published by Dihge et al.

(10) were used as a framework and included in a multivariable

logistic regression (MLR) analysis. In the published article, an ANN

model was developed with cross-validation and compared with an

MLR model. The performance of the simpler MLR model was

found to be marginally inferior. Therefore, we proceeded with the

MLR model (area under the receiver operating characteristics curve

(AUC) 0.73) in the present study, hence referred to as the

postoperative framework model (10). In this study, vascular

invasion and multifocality were excluded due to clinical

unavailability or poor preoperative quality. The postoperative

variables, Ki67 and pathological tumor size, were exchanged for

the preoperatively available variables, histological grade and

radiological tumor size. Stepwise backward elimination MLR with

a p-value threshold for removal of 0.157 was performed to obtain a

clinical preoperative model. Radiological variables were evaluated as

additional candidates to improve the clinical preoperative model,

using stepwise backward elimination. The model stability was

assessed by performing the model selection procedure in 1000

bootstrap samples as well as by five-fold cross-validation repeated

ten times. Prediction models were compared using AUC and the

Akaike information criterion (AIC). The SLNB reduction rate was

calculated with a cut-off based on a 10% false negative rate (FNR),

reflecting the clinically accepted FNR of SLNB (39, 40). In addition,

SLNB reduction rate was calculated with a 20% FNR for

comparison. Point estimates for the clinical preoperative

prediction model were illustrated by a nomogram. The proposed

prediction model was externally validated, temporally and

geographically, in a separate cohort. The calibration in the

validation cohort was evaluated using the Hosmer-Lemeshow

approach. Briefly, the predicted probabilities of pN0 were plotted

against the mean predicted probability of pN0 according to the

model. Perfect calibration will hence respond to 10 plot symbols on

a line with a 45-degree slope.

P-values were not corrected for multiple comparisons due to the

explorative nature of the study. All p-values are two-sided and

interpreted as level of evidence against the null hypothesis without

reference to a cut-off for significance. Stata (StataCorp. 2021. Stata

Statistical Software: Release 17. College Station, TX; StataCorp LLC)

was used for all statistical analyses.
3 Results

Mammograms were identified in 755 of the 770 patients

included in the study. All patients and images were included in

the LIBRA subgroup. Transpara failed to analyze mammograms

from three patients and 30 patients were excluded due to technical

issues in PACS. Inconclusive cases, according to radiologists, and

cases without a clear indication of tumor location in PACS were

excluded due to the inability to cross-check the AI findings. The

inclusion and exclusion of patients with annotated mammograms

are presented in Figure 1. The AI assessment of tumor localization

on mammograms was correct in 96.1% of the cases.
Frontiers in Oncology 04
The patient, tumor, and radiological characteristics of the

primary cohort are presented in Table 1 and the external

validation cohort in Supplementary Table 1. Patient and tumor

characteristics were similar in the two cohorts, apart from the

prevalence of pN0. In the primary cohort, 35% were pN+, while

only 26% were pN+ in the external cohort. The patient and tumor

characteristics that showed the strongest evidence for association

with pN0 were pathological tumor size (p <0.001), mode of tumor

detection (p <0.001), multifocality (p <0.001), vascular invasion (p

<0.001), Ki67 (p <0.001), histological grade (p=0.007), age

(p=0.027), and histological type (p=0.046). The radiological

variables strongest associated with pN0 were radiological tumor

size (p <0.001), and the highest soft tissue lesion score (p <0.001).

A comparison of tumor size by pathological and

mammographic assessment is presented in Supplementary

Table 2. The agreement between tumor size variables was also

evaluated in a Bland-Altman plot of differences vs. average

(Figure 2). The mean pathological and radiological tumor sizes

were 16.7 and 17.1 mm, respectively, and the Pearson correlation

coefficient was 0.62.

The univariable logistic regression analyses of pN0 are

presented in Supplementary Table 3 and AUCs for radiological

variables in Supplementary Table 4. Radiological tumor size (odds

ratio (OR) 0.97 per mm, 95% confidence interval (CI) 0.95–0.98, p

<0.001) had the strongest evidence of association with pN0 in

univariable analyses.

The MLR resulted in a clinical preoperative model including

radiological tumor size, ER status, age, mode of detection,

histological type, and tumor localization (upper inner quadrant

vs. other), with an AUC of 0.68 (95% CI: 0.63–0.72) (Table 2). A

nomogram visualizing the point estimates for the clinical

preoperative model was developed (Figure 3). The remaining

radiological variables added to this model using the same method,

resulted in a combined preoperative model including radiological

tumor size, ER status, age, mode of detection, histological type,

tumor localization, highest soft tissue lesion score (continuous), and

soft tissue lesion (binary) with an AUC of 0.68 (95% CI: 0.63–0.72)

(Table 2). The corresponding AUC for the postoperative framework

model was 0.76 (0.71–0.80). Each model’s AIC is presented in

Supplementary Table 5. The candidate variable selection procedure

was evaluated in 1000 bootstrap samples as well as by cross-

validation. Radiological tumor size was selected in 96.5% of the

bootstrap analyses (Supplementary Table 6) and in 100% of the

cross-validation analyses. The clinical preoperative prediction

model was externally validated with an AUC of 0.64 (95% CI:

0.59–0.69). A Hosmer-Lemeshow calibration plot is presented in

Supplementary Figure 1. Applying the clinical preoperative

prediction model to assign pN0 resulted in a possible SLNB

reduction rate of 21% or 34% (Table 3), corresponding to a cut-

off that accepts a 10% or 20% FNR, respectively.
4 Discussion

In this study, a truly preoperative prediction model for pN0 in

primary breast cancer was developed combining radiological and
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TABLE 1 Patient, tumor, and radiological variables stratified by sentinel lymph node status.

All
(n=770)

pN0
(n=501)

pN+
(n=269)

P

Age, years (continuous)*c 64.7 (24.2–91.9) 65.9 (32.6–91.5) 64.2 (24.2–91.9) 0.027a

Pathological tumor size, mm (continuous)*d 15 (0.5–90) 13 (0.5–55) 18 (0.9–90) <0.001a

Missing 1 1 0

Mode of tumor detection**c <0.001

Symptomatic 321 184 (37) 137 (51)

Screening 449 317 (63) 132 (49)

Multifocality**d <0.001b

Yes 186 96 (19) 90 (33)

No 584 405 (81) 179 (67)

Tumor localization**c 0.108b

Central 22 14 (3) 8 (3)

Upper inner 105 76 (15) 29 (11)

Lower inner 46 32 (6) 14 (5)

(Continued)
F
rontiers in Oncology
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FIGURE 1

Flow chart of patient inclusion. At inclusion there were missing images (n=15) in PACS, additional images (n=30) were excluded due to technical
issues. Abbreviations: Laboratory for Individualized Breast Radiodensity Assessment (LIBRA); Picture Archiving and Communication System (PACS).
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TABLE 1 Continued

All
(n=770)

pN0
(n=501)

pN+
(n=269)

P

Upper outer 253 160 (32) 93 (35)

Lower outer 78 41 (8) 37 (14)

Overlapping 266 178 (36) 88 (33)

Histological type**c 0.046b

NST and lobular 713 457 (91) 256 (95)

Other or mixed 57 44 (9) 13 (5)

Histological grade**c 0.007b

I 186 137 (28) 49 (18)

II 350 224 (45) 126 (47)

III 226 133 (27) 93 (35)

Missing 8 7 1

Vascular invasion**d <0.001b

Yes 91 27 (6) 64 (32)

No 526 390 (94) 136 (68)

Missing 153 84 69

ER status**c 0.056b

Negative 69 53 (11) 16 (6)

Positive 699 446 (89) 253 (94)

Missing 2 0 2

PR status**c 0.077b

Negative 122 89 (18) 33 (12)

Positive 646 410 (82) 236 (88)

Missing 2 0 2

HER2 status**c 0.606b

Negative 624 411 (89) 213 (87)

Positive 84 51 (11) 33 (13)

Missing 62 39 23

Ki67 (continuous)*c 15 (0–94) 14 (0–94) 17 (1–81) <0.001a

Missing 43 15 28

Radiological tumor size, mm (continuous)*c 15 (4–78) 13 (4–78) 17 (5–57) <0.001a

Missing 179 119 60

Highest calc cluster score (continuous)*c 0 (0–98) 0 (0–98) 0 (0–97) 0.445a

Missing 81 44 37

Calc cluster (binary)**c 0.976b

Present 243 161 (35) 82 (35)

Absent 446 296 (65) 150 (65)

Missing 81 44 37

Highest soft tissue lesion score
(continuous)*c

91 (0–97) 90 (0–97) 92.5 (0–97) <0.001a

(Continued)
F
rontiers in Oncology
 06
 frontiersin.org

https://doi.org/10.3389/fonc.2024.1394448
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rejmer et al. 10.3389/fonc.2024.1394448
preoperatively available routine clinicopathological variables. The

inclusion criteria were not restricted by age, tumor size, or type of

surgery. This supports that the model can be used on a case-by-case

basis evaluation of pN0 outside the ASCO guidelines on abstaining

SLNB in older patients with ER+/HER2- tumors (2). Radiological

tumor size was the strongest preoperative predictor of pN0 reflected

by its low p-value and high selection rate (≈100%) in bootstrap

analyses and cross-validation. This indicates that mammographic

tumor size could replace pathological tumor size in preoperative

models. Moreover, it was strongly associated with pathological

tumor size. The soft tissue lesion score was associated with pN0

in univariable analyses, supporting the hypothesis that

mammographic features could aid in preoperatively identifying

these patients. However, although associated with the outcome,
Frontiers in Oncology 07
addition of radiological variables to the clinical preoperative model

did not improve discrimination. The clinical and combined

preoperative model had AUCs of 0.68 (95% CI: 0.63–0.72),

indicating that the addition of radiological variables did not

improve the overall performance of the model. External

validation of the clinical preoperative prediction model resulted in

an AUC of 0.64 (95% CI: 0.59–0.69). The Hosmer-Lemeshow

calibration plot demonstrated that the prediction model

underestimates the probability of node negativity, although the

estimates follow the 45-degree line. A likely explanation is the

difference in pN+ prevalence between the cohorts. Nevertheless,

the clinical preoperative prediction model could putatively support

the omission of SLNB in 21% of patients, if a 10% FNR is accepted,

reflecting the accepted FNR of the SLNB procedure and support
TABLE 1 Continued

All
(n=770)

pN0
(n=501)

pN+
(n=269)

P

Missing 81 44 37

Soft tissue lesion (binary)**c 0.345b

Present 572 375 (82) 197 (85)

Absent 117 82 (18) 35 (15)

Missing 81 44 37

Breast density, %*c 16.8 (1.7–99.8) 16.1 (1.7–99.8) 18.7 (2.0–99.7) 0.215a

Missing 22 10 12

Breast dense area, cm2*c 22.9 (1.64–208.0) 22.2 (1.6–208.0) 23.4 (3.8–197.9) 0.529a

Missing 22 10 12

Mammography malignancy score**c 0.386b

1 26 16 (4) 10 (4)

2 8 7 (2) 1 (0)

3 59 41 (9) 18 (8)

4 205 143 (32) 62 (28)

5 369 236 (53) 133 (59)

Missing 103 58 45

Ultrasound malignancy score**c 0.100b

1 35 28 (6) 7 (3)

2 8 6 (1) 2 (1)

3 32 22 (5) 10 (5)

4 132 96 (22) 36 (16)

5 453 286 (65) 167 (75)

Missing 110 63 47
Negative sentinel lymph node status (pN0), positive sentinel lymph node status (pN+), no special type (NST), estrogen receptor (ER), progesterone receptor (PR).
*Median (range).
**Number (%).
aMann–Whitney U test.
bChi-square test.
cPreoperatively available.
dPostoperatively available.
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the implementation of the ASCO guidelines and the results of the

SOUND trial (2, 5). The reduction rate is directly dependent on the

accepted FNR. The FNR reflecting SLNB could be considered

conservative, and accepting a higher FNR might be acceptable in
Frontiers in Oncology 08
clinical practice. Applying a 20% FNR resulted in a 34% SLNB

reduction rate. An alternative to a fixed cut-point, enabling a more

patient-centered care, would be to allow different cut-points to be

discussed and decided with the patient, on a case-by-case basis.

Pathological tumor size is a strong predictor of SLN status and

often included in published prediction models, although it is

assessed on the postoperative surgical specimen (10, 12, 13). In

accordance with previous research, pathologic and radiologic

measurements of tumor size were strongly correlated. The

correlation coefficient was 0.62, in the present study, which can

be compared to the correlation between pathologic tumor size and

radiologic tumor size measured by mammography or ultrasound,

depending on histological subtypes, in a study by Gruber et al. (11).

This indicates that radiologic tumor size could be used as an

alternative measure for pathological tumor size. Mammography

has also been shown to estimate the tumor size more accurately

than ultrasound, which underestimates the size with a varying

degree depending on the histological tumor type (11). In this

study radiologic tumor size was strongly associated with pN0

indicating that mammographic tumor size could replace

pathological tumor size as a predictor of pN0. However, there

may be subgroups, such as patients with dense breasts, in which

radiological tumor size needs further evaluation.
FIGURE 2

A Bland-Altman plot illustrating the difference in mean values
between the preoperative radiological tumor size and the
pathological tumor size from the surgical specimen.
TABLE 2 The clinical and combined preoperative prediction models for pN0. Backward variable selection with threshold p≥0.157 for removal.

Clinical preoperative prediction model Combined preoperative prediction model

OR (95% CI) P OR (95% CI) P

Radiological tumor size, mm
(continuous)*

0.965 (0.947–0.983) <0.001 0.977 (0.964–0.990) <0.001

Age, years (continuous) 1.024 (1.008–1.040) 0.003 1.018 (1.006–1.029) 0.002

Mode of tumor detection 0.001 0.001

Symptomatic 1 (reference) 1 (reference)

Screening 1.847 (1.267–2.693) 1.565 (1.198–2.045)

Histological type 0.025 0.035

Other or mixed 1 (reference) 1 (reference)

NST or lobular 0.419 (0.196–0.899) 0.565 (0.332–0.961)

ER status* 0.001 0.001

Negative 1 (reference) 1 (reference)

Positive 0.269 (0.123–0.587) 0.403 (0.234–0.694)

Tumor localization 0.100 0.063

Other 1 (reference) 1 (reference)

Upper inner quadrant 1.553 (0.919–2.624) 1.417 (0.981–2.048)

Highest soft tissue lesion
score (continuous)

0.984 (0.968–1.001) 0.076

Soft tissue lesion (binary) 0.087

Absence 1 (reference)

Presence 4.051 (0.814–20.15)

Constant 3.724 1.862
Negative sentinel lymph node status (pN0), odds ratio (OR), confidence interval (CI), no special type (NST), estrogen receptor (ER).
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The clinical preoperative and combined preoperative models

(AUC 0.68) had lower AUCs than the postoperative framework

model (AUC 0.76). This was expected as strong predictors,

determined on the surgical specimen, were excluded from the

model to make it clinically useful in a preoperative setting. The

AIC of the postoperative framework prediction model was lower

than those of the clinical preoperative and combined preoperative

models, which was expected considering the superior discriminative

capacity. Additionally, the AUC of the clinical preoperative
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prediction model was slightly lower in the external validation

cohort, which was expected. The difference may be due to

differences in prevalence of pN0 in the cohorts, where the

external validation cohort had a higher prevalence. Additional

analyses adjusting for the prevalence (data not shown) showed an

AUC similar to the AUC of the internal validation. A prediction

model for heavy nodal burden by Meteroja et al. (41) included

prevalence of the outcome as a variable in the model to adjust for

differences between populations. This is, however, not applicable in

the present study due to the single center approach.

When elaborating on the radiological variables used in this

study, it is important to note that Transpara was not intended to be

used as a tool for SLN status prediction, although this study

indicates its potential predictive value. Additional development of

Transpara features in this direction may improve its predictive

ability for pN0. However, the potential clinical use and definitions

of medicolegal regulations regarding this type of diagnostic tools are

debated and yet to be determined before clinical implementation

(27, 42). Other forms of AI such as feature extraction from other

imaging modalities, such as ultrasound, magnetic resonance

imaging, and computed tomography, as well as machine learning

methods have been evaluated for prediction of ALN status in several

studies receiving high AUCs (16, 18–20). However, to our

knowledge, none are yet available for implementation in clinical

practice. Implementation of image analysis software in clinical

practice could have other applications apart from screening and

should therefore be evaluated for other possibilities (43). The
FIGURE 3

A nomogram illustrating the point estimates of the included variables’ coefficients for the clinical preoperative prediction model for prediction of
negative sentinel lymph node status.
TABLE 3 SLNB reduction rate using the clinical preoperative prediction
model to assign sentinel lymph node status.

FNR 10%

TP TN FP FN

No. 189 105 276 20

SLNB
reduction rate

(TN + FN)/(TP + TN + FP + FN) = 21%

FNR 20%

TP TN FP FN

No. 168 157 224 41

SLNB
reduction rate

(TN + FN)/(TP + TN + FP + FN) = 34%
Sentinel lymph node biopsy (SLNB), false negative rate (FNR), true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).
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implementation of a prediction model in clinical practice would

entail additional costs, whereas omission of SLNB would likely

reduce costs associated with surgery as previously described for the

ANN model proposed by Dihge et al. (10, 44). Striving for de-

escalation in cancer care, omission of SLNB could also improve the

quality of life and reduce postoperative morbidity, as reported in

the INSEMA trial (3). The ASCO guidelines on management of the

axilla in early-stage breast cancer stated that patients should be

evaluated on a case-by-case basis to ensure oncological safety (2).

Therefore, a truly preoperative prediction model for pN0 based on

routine information on the individual patients would be of high

clinical relevance and act as a foundation for patient-centered

decision making. The presented nomogram could be an easy-to-

use decision tool to support the preoperative multidisciplinary

decision-making to omit SLNB for one in five patients with

predicted pN0 status, consequently reducing the succeeding

complications. Considering the preoperative nature of the

proposed model, it could be considered an improvement

compared to the previously published prediction model,

regardless of the inferior discriminative capacity. However, the

proposed model was developed and validated in retrospective

cohorts, thus requiring additional research to ultimately benefit

patients. In order to enable implementation of the clinical

preoperative prediction model, the model should be validated in

prospective studies.

A limitation of previous clinical prediction models is that key

variables can only be obtained postoperatively (6, 7, 10). In other

studies, this problem was circumvented by including radiological

variables from different imaging modalities exclusively or in

addition to clinicopathological variables. Liu et al. proposed an

exclusively radiological ANN model using contrast-enhanced

computed tomography (16). However, this approach is only

feasible for clinical implementation for patients with breast cancer

who undergo contrast-enhanced computed tomography during the

initial routine work-up, an argument which also applies to models

that include magnetic resonance imaging (18, 19). Given the wide

implementation of mammography as a cornerstone in the clinical

work-up for suspicious breast cancer including screening programs,

mammographic images are available for all patients and can be used

for preoperative diagnostics. Cen et al. proposed a model that

included postoperative clinicopathological variables and

microcalcification density on mammographic images, resulting in

a model with an AUC of 0.70 (12). In the study, microcalcification

density >20 cm2 was associated with a positive ALN status. This was

not observed in the present study, which might be a result of

differing measuring techniques. Yang et al. (14) created a prediction

model for ALN status (n=147) using a radiomic signature on

mammography with an AUC of 0.88 in the validation cohort, but

no independent validation has hitherto been performed. Studies

have shown a positive association between breast density and

malignant axillary lymph nodes when measured by radiologists

and automated methods (36, 38), but when evaluated in a

prediction model for pN0 including multifocality, pathological

tumor size, histological type, Ki67 and histological grade, Hack

et al. (13) found no additional predictive value, which is in line
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with the present study. In this study, images from the ipsilateral

side were included in the LIBRA analysis. This was decided as

mammographic images on the contralateral side were not available

for all patients. The variation in tumor size (0.5 – 90 mm) can be

assumed to have affected the results of the breast density variable in

descriptive and univariable logistic regression as well as the

performance of the variable in the MLR to some extent. However,

the results are in accordance with previous results (13). LIBRA,

which is a fully automated assessment tool that analyzes processed

images, has been validated for breast density measurements on

mammographic images by Gastounioti et al. (34) and Keller et al.

(17), among others. The discrepancy between previous reports on

the association between breast density and ALN status (13, 36, 38)

could be due to differences between methods as revealed by Keller

et al. (35).

A strength of this study is the relatively large cohort of 770

patients and that the inclusion criteria were not restricted by age,

tumor size or type of surgery. All eligible cases during a four-year

period were consecutively included, and the cohort should therefore

be representative of the breast cancer population at Skåne

University Hospital in Lund during the time period. Another

strength is the assessment of Transpara’s accuracy through cross-

checking for the correct tumor location. Regardless of the cross-

checking, all cases were included to resemble a clinical setting. The

pN0 nomogram presents a graphical easy-to-interpret visualization

of the included predictors and the relative importance of each

independent variable is visible at a glance. There are several

limitations to this study, such as the low prevalence of pN0

compared to recent cohorts. This could be due to the fact that

breast cancers are discovered at an earlier stage now than in past

decades. Another limitation is the exclusion of 30 cases due to

technical issues in the Transpara sub-cohort, a cause of which could

not be identified despite repeated contact with the technical support

at the hospital and PACS provider. The authors believe that the

reason may be a technical issue with the PACS provider during the

archiving process. However, the missing images represent less

than 4% of the cohort and the authors have found no reason to

believe that the missingness is systematic. The impact of the

technical issues on the model development should therefore be

minimal. Additionally, Transpara failed to analyze the images

of three patients (<0.4%), with unspecified errors. Furthermore,

radiological tumor size was missing in 23% of cases, likely due to the

fact that the radiological tumor size measurement was not always

provided at the time of inclusion of patients in the present study.

Thus, the performance of the radiological variables could be biased

owing to the missing data. The inclusion of sonographic tumor size

in cases where mammographic size was not available has likely

decreased the correlation between pathological and radiological

tumor size as ultrasound underestimates the size. The correlation

can be expected to be higher in a cohort using only mammographic

tumor size, increasing the performance of the model. Considering

the high correlation presented in this study and the performance of

the radiological tumor size in all analyses, the inclusion of

sonographic data should not have affected the results. Another

limitation is the inclusion of only ipsilateral images in the LIRBA
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analysis, however, the effect on the overall conclusions can be

presumed to be limited. Additionally, the prediction model on

which this study is based is an ANN model that has the potential to

capture non-linear associations and interactions, whereas the MLR

model used in this study captures only linear effects on the log odds

scale. This is a limitation and a strength, as the risk of overfitting is

lower with less complex models such as MLR than with complex

models. Moreover, to minimize the number of variables compared

with the number of pN0 patients in the cohort, no interaction

variables were included.
4.1 Conclusion

Radiological tumor size was strongly predictive of SLN status,

thus supporting the hypothesis that radiological tumor size could

replace pathological tumor size as a predictor of pN0. Additionally,

although they did not improve the clinical preoperative prediction

model, mammographic features might have nodal predictive

capabilities. The presented clinical preoperative prediction model

is visualized by a nomogram that could support the preoperative

multidisciplinary decision-making to omit SLNB on a case-by-case

basis for one in five patients with clinically node negative primary

breast cancer with predicted pN0 status.
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