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Calculation of alpha particle
single-event spectra using a
neural network
Layth Alkhani1, Jason P. Luce2, Pablo Mı́nguez Gabiña3

and John C. Roeske2*

1Department of Bioengineering, Stanford University, Stanford, CA, United States, 2Department of
Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United
States, 3Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University
Hospital, Biocruces Health Research Institute, Barakaldo, Spain
Introduction: A neural network was trained to accurately predict the entire single-

event specific energy spectra for use in alpha-particle microdosimetry calculations.

Methods: The network consisted of 4 inputs and 21 outputs and was trained on

data calculated using Monte Carlo simulation where input parameters originated

both from previously published data as well as randomly generated parameters

that fell within a target range. The 4 inputs consisted of the source-target

configuration (consisting of both cells in suspension and in tissue-like

geometries), alpha particle energy (3.97–8.78 MeV), nuclei radius (2–10 mm),

and cell radius (2.5–20 mm). The 21 output values consisted of the maximum

specific energy (zmax), and 20 values of the single-event spectra, which were

expressed as fractional values of zmax. The neural network consisted of two

hidden layers with 10 and 26 nodes, respectively, with the loss function

characterized as the mean square error (MSE) between the actual and

predicted values for zmax and the spectral outputs.

Results: For the final network, the root mean square error (RMSE) values of zmax

for training, validation and testing were 1.57 x10-2, 1.51 x 10-2 and 1.35 x 10-2,

respectively. Similarly, the RMSE values of the spectral outputs were 0.201, 0.175

and 0.199, respectively. The correlation coefficient, R2, was > 0.98 between

actual and predicted values from the neural network.

Discussion: In summary, the network was able to accurately reproduce alpha-

particle single-event spectra for a wide range of source-target geometries.
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1 Introduction

Targeted radionuclide therapy (TRT) first saw its application

over 80 years ago and since then it has grown to become an area of

great interest as advances in cancer biology, bioengineering, and

radiochemistry have dramatically increased the potential of this

modality (1). In contrast to other therapeutic techniques, TRT is

based on the use of high-affinity molecules as carriers of

radionuclides to tumor cells (2–5). The nature of this technology

thus creates an approach for tumor therapy that is personalized to

each individual patient, making strides towards a future that

mitigates risks for normal tissue damage by delivering a highly

conformal absorbed dose to the tumor (1). There are three classes of

radionuclides that have been considered for TRT: alpha emitters,

beta emitters, and Auger electron emitters (1, 6–8). Of these, alpha

emitters have inherent properties that make them favorable in

comparison to the others, pushing some to regard them as a

potential “magic bullet” (5). The advantages of alpha emitters

include: 1) high energy (3–9 MeV); 2) a densely ionizing track; 3)

short path length (40–90 μm, corresponding to 2–10 cell diameters),

4) high linear energy transfer (LET) and 5) independence of dose

rate and oxygen effects (6, 8). The practical implications of these

characteristics allow for alpha particles to sterilize individual tumor

cells solely from self-irradiation which is not possible with the more

widely used beta-particle emitters (6, 8). Moreover, alpha-particle

emitters have shown promising clinical results, for example in the

treatment of metastatic castration-resistant prostate cancer

(mCRPC) (9, 10).

Despite their efficacy, the stochastic nature of alpha emitters

which deposit energy in small, subcellular targets causes alpha

particle dosimetry to be particularly challenging (6, 8). Dosimetry –

i.e. the measurement of the amount of energy deposited per unit mass

- has been in regular use in conventional radiotherapy (11). However,

the minute scale at which radionuclides operate introduces significant

challenges (variability in energy deposition) (11). At the cellular level,

the amount of energy deposited in the critical target (i.e., cell nucleus)

depends on the combination of both the cell geometry and the alpha

particle’s path through that target (6, 8). Additionally, some cell

nuclei may receive multiple alpha particle hits while others receive

few or none. Consequently, the stochastic nature of alpha particles

hits combined with the non-uniform energy deposition may result in

a local deviations exceeding 20% in the energy deposited within cell

nuclei (6, 8, 12). This variation was established through Monte Carlo

simulations and analytical calculations which showed that such

variations are common due to the random nature of alpha particle

interactions at the microscopic level necessitating the use of

microdosimetry to accurately measure the energy deposited within

cellular targets (6, 8, 12).

Microdosimetry considers the stochastic nature of the energy

deposited per unit mass. Specific energy (z) is the microdosimetric

analog of absorbed dose (D) and is given by:

z =  
e
m

(1)

where e is the energy deposited within the cellular target and m is the

mass of that target. Similar to absorbed dose, specific energy has units
Frontiers in Oncology 02
of Gy. A fundamental quantity in microdosimetry is the single-event

specific-energy spectrum (f1(z1)) which is the frequency distribution of

specific energy deposited within the target for exactly one alpha particle

hit (13). The multi-hit spectrum for n alpha particle hits can be

determined by performing multiple convolutions of the single-event

spectrum (14). Of significance, single-event spectra can be used to

estimate cell survival using:

S(D) =   e− 〈 n 〉½1−T1(zo)� (2)

where S(D) is the fraction of cells that survive after receiving an

average dose D, <n> is the average number of hits to the cellular

target, T1(zo) is the Laplace transform of the single-event spectrum,

f1(z1), and zo is the specific energy deposited in a cell to reduce

survival to 1/e (15, 16).

Alternatively, the first and second moments of the single-event

spectrum can also be used to estimate cell survival (15, 17–19). The

first moment of the single-event spectrum given by:

〈 z1 〉   =   ∫
∞

z=0
z1   f1(z1)dz1 (3)

while the second moment is defined as:

〈 z21 〉   =   ∫
∞

z=0
z21   f1(z1)dz1   : (4)

Using these moments, T1(zo) from Equation 2 can

approximated by (20):

T1(zo) ≈ exp  −
〈 z1 〉
zo

−  
〈 z21 〉  −   〈 z1 〉

2

2z2o

� �
(5)

Relating to classical microdosimetry, <z1> is the frequency

mean (zF) while <z1
2>/<z1> is the dose mean (zD) specific energy

per event described by Kellerer (12) and Roesch (21). Moreover,

these quantities have been related to cellular damage from alpha

particle emitters (20, 22).

In order to calculate microdosimetric spectra, an analytical or

Monte Carlo (MC) approach can be used (6, 8). The complexity that

arises from many alpha-particle emissions combined with the

greater flexibility which is provided by the MC simulation makes

this approach favorable (8, 23). A recent study conducted by our

group determined that a neural network (NN) could be trained to

accurately calculate <z1> and <z1
2> for alpha-particle microdosimetry

calculations (24). The goal of our study is to take the next step forward

and create a NN that can accurately and efficiently calculate the entire

single-event specific-energy spectra. In this paper we present a novel

approach where machine learning methods are utilized to “teach” a

network to produce microdosimetric spectra from a set of input

parameters (nucleus/cell size, initial alpha particle energy, and

source/target geometry). This approach, the first of its kind,

would allow for the network, once trained, to quickly and easily

produce microdosimetric spectra for configurations that the

network was not trained on, particularly, novel radionuclides

(different initial alpha particle energies) and different combinations

of cell/nuclear dimensions.
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2 Methods

2.1 Data set

In order to train the NN, the first step was to create an

adequate training data set. This study collected data for the

training/validation/testing from two data sets. The initial data

set was produced using input values from a previously published

paper (20). This paper was originally produced to provide the

first and second moments of the single-event specific-energy

spectrum of common alpha particle emitters to provide basic

microdosimetry information. For the purposes of our study Tables

I-IV were used to generate the first data set (20). These tables were

included because the tabulated data cover the range of cell and

nuclear radii as well as energies that are most likely to be

encountered in TRT. Specifically, the nuclear radii ranged from

2-10 mm - including 2, 3, 4, 5, 6, 8, and 10 mm - and cell radii from

3-15 mm (25). Cells and nuclei were considered spherical and

concentric. The source/target geometries considered in this study

included: activity confined to the cell nucleus, activity in the

cytoplasm, activity on the cell surface, and a uniform activity

outside the cell (Figures 1A–D). The alpha particle energies from

these tables corresponded to those of radionuclides considered to

be suitable for therapeutic applications: terbium-149 (3.97 MeV),

polonium-210 (5.3 MeV), astatine-211 (5.867 MeV), bismuth-212

(6.05 MeV), polonium-211 (6.73 and 7.45 MeV), polonium-213

(8.37 MeV), and polonium-212 (8.78 MeV) (26). Other

radionuclides considered for alpha particle therapy, such as

thorium-227, actinium-225, radium-223 and bismuth-213, have

energies within this range (26). The strength of this data set is the

range of values which cover most clinical applications and the

grid-like structure of the inputs. One drawback, however, is that a
Frontiers in Oncology 03
grid-like structure’s accuracy can be severely reduced when

dealing with edge cases or an input which is distant from all

trained values. Use of these data resulted in 160 combinations of

alpha particle emission energies, source/target geometries, cellular

and nuclear radii. To account for the limitations of the previous

data set another 160 values were calculated which utilized energy,

nucleus radii, and cell radii that fell within the previously outlined

values (energy 3.97-8.78 MeV; nuclear radii 2-10 mm; cell radii 3-

15 mm) and were generated using a random number generator.

The Monte Carlo (MC) algorithm used to produce these spectra is

described in the Appendix (27).

In order to account for more realistic/complex geometries such

as clusters of cells (Figures 1E–H) microdosimetric spectra were

produced using a code described previously (See Appendix) (19).

These geometries simulated layers of tissue wherein for each case

there is a central spherical nucleus target. The central target is

surrounded by a packed grid of cells forming a plane that are

stacked on top of one another to form layers simulating tissue. The

sources consisted of a uniform distribution of activity, activity

everywhere except the cell nuclei, activity located in a spherical

shell between the cell membrane and 1.25 times the cell nucleus

radius, and activity only in the cytoplasm. The energies used match

the energies from the previous data ranging from 3.97 - 8.78 MeV

with exceptions being the addition of 6.4 and 7.l1 MeV as well as

substitutions of 5.8 and 8.4 for 5.867 and 8.37 MeV respectively.

Nucleus radii ranged from 2-10 mm and cell radii ranged from 2.5-

20 mm with cell-to-nucleus ratios of 1.25, 1.5, 1.75, and 2. The

additional data set broadens the network by including more

energies, cell and nucleus sizes, as well as the more realistic

tissue configurations.

Together, the data sets combined from both methods consisted

of 2264 unique combinations of the source-target configuration,
FIGURE 1

Schematic diagram of the source/target distributions considered in this study: (A) source within the cell nucleus; (B) source on the cell surface;
(C) source in the cell cytoplasm; (D) source outside of the cell; (E) uniform everywhere; (F) uniform everywhere except the nuclei; (G) in a spherical
shell between the cell membrane and 1.25 times the cell nucleus radius; (H) only in the cytoplasm. Adapted from Wagstaff et al. (24).
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energy, cell and nuclear radii. These input values were run through

MC simulations that are described in the Appendix. The result of

each simulation was a single-event specific-energy spectrum with 20

output values (representing the bins of the energy spectrum

histogram). Each spectrum was normalized such that the area

under the curve was unity. These spectra were used to train the

network as described in the next section. An additional value, zmax,

which is defined as the maximum specific energy for each spectrum

was also recorded. This value allows one to determine the scale for

the x-axis of the spectrum. That is, for the kth value of the spectrum,

the corresponding z value is given by kzmax/20.
2.2 Neural network structure and training

The development of the NN used for this study was done using

the MATLAB® Deep Learning Toolbox™ (The Mathworks Inc.,

Natick, MA, USA). The process consisted of creating, testing, and

adjusting a NN until it converged to produce the best results. For

the purposes of this study, the number of hidden layers and

number of nodes within each layer were varied to produce the

optimal NN.

The Levenberg-Marquardt algorithm was used for training

which combines both the gradient descent method and the

Gauss-Newton method to solve nonlinear least squares curve-

fitting problems (28). This algorithm was used as it is the most

efficient in comparison to other techniques for networks of our size

(29). The associated error function for this algorithm is the mean

squared error (MSE) where a value close to zero is favorable. This is

optimal for our case as using measurements which automatically re-

scale and normalize error contributions are favorable for cases

where multiple outputs have different scales (30).

To improve network accuracy, the data set had to undergo

several transformations prior to training:
Fron
1. The highly skewed nature of the specific energy spectra

warranted the use of the natural logarithm (Ln)

transformation which was performed on the entire

dataset (31). Additionally, a value of unity was added to

all values prior to the Ln transformation to account for

several target outputs with a value of 0. This transformation

created an approximately normal distribution in the data,

significantly improving NN performance.

2. A scaling factor of 4, determined by the ratio of zmax:

spectral values, was separately applied to the zmax value of

the data set. Of the 21 network outputs, 20 corresponded to

y-values of the spectrum while one output, zmax,

represented the maximum value for the x-axis. In general,

the magnitudes of zmax values were significantly smaller

than the other outputs, warranting a scaling factor being

applied to ensure the network weights were appropriately

updated from errors in zmax predictions.
To determine the optimal number of hidden layers/node

combinations, an initial empirical approach was employed
tiers in Oncology 04
where, through iterative testing and performance evaluation, it

was determined that single-digit-sized layers were suboptimal and

resulted in poorer performance. From there, a loop was created to

iterate over all possible combinations of nodes in networks

containing two hidden layers (double-digit layer sizes). The

number of nodes in the first hidden layer ranged from 10-20 to

while the number of nodes in the second hidden layer ranged from

10-40. The network was trained for each combination of nodes in

the first and second hidden layers, and the root mean squared

error (RMSE) was recorded. After this was completed, a minimum

was found based on the calculated values. The optimal NN size

was determined to be two layers with 10 nodes in the first layer

and 26 in the second layer as shown schematically in Figure 2. The

final network consisted of a total of 876 adjustable weights and

biases. The spectral data were partitioned with 70% of the data

used for training, 15% used for validation and 15% used for

testing (32).
3 Results

Figure 3 shows the regression plots corresponding to the

training, validation, and test data for the zmax value while

Figure 4 shows the resultant graphs for the 20 spectral outputs.

For each plot, the x-axis corresponds to the ground truth values

which were calculated using MC simulations and the y-axis

corresponds to the NN output. The best-fit line is shown along

with the R2 value for each plot. In general, the slope of the best-fit

line is close to unity with only small y-offset values. Combined with

R2 > 0.98 for all plots indicates good agreement between actual and

predicted values. The RMSE values for zmax were 1.57 x10-2, 1.51 x

10-2 and 1.35 x 10-2 for training, validation and testing data,

respectively. Similarly, the RMSE values for the spectral output

were 0.201, 0.175 and 0.199, respectively. Of note, the zmax values

(Figure 3) show good agreement across the entire range which is

important since this value is used to provide accurate scaling of the

x-axis for the resultant spectra. Figure 4 shows some deviations for

smaller spectral values (< 0.1). However, differences on this scale do

not significantly alter the spectra nor impact the area-under-the-

curve of these spectra. As shown in Figure 5, these spectra typically

have values ranging from 1-10 cGy-1. Hence small deviations on the

order of 0.1 or less do not have a large impact on the spectrum, nor

in calculating the area-under-the-curve.

The single-event specific-energy spectra generated by the

network are compared with MC data for a random sample of test

data in Figure 5. All graphs have an area under the curve of unity.

The solid blue line represents the MC data while the orange dots

superimposed on the line represent the NN outputs. In general,

good agreement between the NN and MC data is noted for all

source-target geometries.

Table 1 shows the error distribution for tabulated <z1> and

<z1
2> using Equations 3, 4 based on the spectra generated using the

NN vs. those generated from MC spectra. The mean for all three

partitions (training, validation, and test) was centered near 0 with

the <z1
2> mean % error being slightly larger than the <z1> mean %
frontiersin.org
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error. The mean percent error for the training set was 0.14% for

<z1> and 0.20% for <z1
2>. For testing, the average <z1> error was

0.08% and <z1
2> was 0.09%. The standard deviation (SD) and range

of values also followed similar trends with <z1
2> values being higher

in all cases. The center of the values allowed for an approximately

normal distribution and as a result a 95% confidence interval

was calculated.
Frontiers in Oncology 05
4 Discussion

In this study we developed a NN capable of producing single-

event specific energy spectra (f1(z1)) for single cells in suspension

from 8 different source-target geometries. Overall, the resultant

spectra showed good agreement with the MC generated values.

Most notably, the generated single-event spectra qualitatively and
FIGURE 3

Regression plots demonstrating the degree of agreement between predicted values and known values for zmax for (A) training; (B) validation and (C)
testing data. Each point represents actual value (x-axis) and the value predicted by the network (y-axis).
FIGURE 2

Schematic diagram of the resultant neural network displaying the 4 input parameters, hidden layers, and resultant output. For the output layer, zmax

indicates the maximum specific energy of the single-event spectrum and provides a scaling factor for the x-axis, while S1…S20 indicate the 20
spectral values.
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FIGURE 4

Regression plots demonstrating the degree of agreement between predicted values and known values for the single-event spectra values for (A)
training; (B) validation and (C) testing data. Each point represents actual value (x-axis) and the value predicted by the network (y-axis).
FIGURE 5

Sample network output graphs illustrating agreement between predicted values and known values for (A) source within the cell nucleus; (B) source on the
cell surface; (C) source in the cell cytoplasm; (D) source outside of the cell; (E) uniform everywhere; (F) uniform everywhere except the nuclei; (G) in a
spherical shell between the cell membrane and 1.25 times the cell nucleus radius; (H) only in the cytoplasm. Graph (A) energy: 3.97 MeV, nucleus size: 5 mm,
cell size: 10 mm; (B) energy: 4.34 MeV, nucleus size: 7.02 mm, cell size: 11.06 mm; (C) energy: 5.867 MeV, nucleus size: 6 mm, cell size: 12 mm; d) energy: 6.05
MeV, nucleus size: 8 mm, cell size: 15 mm; (E) energy: 8.4 MeV, nucleus size: 6 mm, cell size: 7.5 mm; (F) energy: 6.9 MeV, nucleus size: 5.5 mm, cell size: 11
mm; (G) energy: 8.6 MeV, nucleus size: 6.5 mm, cell size: 13 mm; (H) energy: 3.97 MeV, nucleus size: 6 mm, cell size: 9 mm.
Frontiers in Oncology frontiersin.org06

https://doi.org/10.3389/fonc.2024.1394671
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Alkhani et al. 10.3389/fonc.2024.1394671
quantitatively demonstrate the strength of this approach. In

particular, comparing the results across the various source-target

spectra indicate the network was able to learn from the training set

and predict the output spectra. Figure 5 shows that the network is

equally capable of learning to produce simplistic spectra (i.e.,

sources located in the nucleus, cytoplasm, and cell surface) as well

are more complex spectra (i.e., source located outside the cell). The

consistency in accuracy going from simple to more complex spectra

serves as a proof of principle for the success of the NN.

In addition to calculating the single-event spectra, we also

calculated <z1> and <z1
2> values. The use of these moments can

simplify calculations, such as predicting cell survival given an inherent

cell sensitivity, zo (20). The ranges of errors in the <z1> and <z1
2>

values proved consistent with previously published values for

deviations between MC and analytically tabulated values (27). In the

prior study, these differences ranged from roughly −2% to 3% for <z1>

and −4% to 6% for <z1
2> (27). The errors associated with these values

are consistent with those produced using a NN trained specifically on

<z1> and <z1
2> where the standard deviation in errors for <z1> ranged

from 1.5-2.1%, while the standard deviation in errors for <z1
2> ranged

from 2.6-4.0% (24). Our previous study showed that errors of this

magnitude result in an uncertainty in cell survival estimation on the
Frontiers in Oncology 07
order of +/-3% over a broad range of zo values (24). These errors are

well within the uncertainties of cell survival assays.

The data used to train the network was generated primarily

through MC data. In theory, the NN is not limited to using MC
TABLE 1 Statistics summarizing the percent difference between <z1> and <z1
2> calculated from single-event spectra predicted by the network vs.

published Monte Carlo simulation values. SD = standard deviation.

Training Validation Testing

<z1> <z1
2> <z1> <z1

2> <z1> <z1
2>

Mean % Error 0.14% 0.20% -0.05% -0.06% 0.08% 0.09%

% Error SD 2.77% 4.17% 2.82% 4.25% 2.46% 3.69%

95%
Confidence Interval

[-4.29%, 5.99%] [-6.48%, 8.82%] [-5.02%, 4.83%] [-7.24%, 7.49%] [-4.71%, 5.15%] [-6.67%, 7.93%]
FIGURE 6

A schematic diagram showing a two-dimensional representation of the cell geometry used for Monte Carlo calculations. The cell nucleus has a
radius rn and the maximum angle that an alpha particle at point x,y subtends with the cell nucleus is given by qmax. The distance from the point of
emission to the center of the nucleus is given by dt.
FIGURE 7

Comparison on ICRU 90 range-energy relationship for alpha
particles with the curve fit based on interpolating polynomials in
Equations A.2 and A.3 (R2 = 0.999).
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data, as it can potentially use data from any source, including

measured spectral data (33, 34). In this case, the smoothing feature

associated with the network may be advantageous as it may reduce

some of the inherent experimental error. Moreover, using

experimental data allows one to compare the network output to

direct measurement, as opposed to comparing against MC-based

spectra which may be limited by the assumptions used in the

simulation. However, experimental microdosimetric data are

often limited, and hence the validation of this proposition is

beyond the scope of this study.

An important consideration is that the network is only able to

generate single-event spectra for a single geometry at a time. If one

were interested in a more complex spectrum, such as those due to a

source in the nucleus and cytoplasm, or frommultiple alpha particle

energies, the network would not be able to produce this directly.

Rather, the individual spectra for each source/target configuration

and/or energy would need to be generated independently. The

composite single-event spectrum would be determined by

integrating the individual spectra weighted by the number of

alpha particles emitted over the sub-volume (13). Alternatively, if

only the individual moments would be required (such as to estimate

mean dose and variance in specific energy, or cell survival), these

can be calculated from the individual spectra and combined based

on the average number of hits from each component (20).

A notable limitation of the current neural network is its restriction

to generating single-event specific energy spectra only for the

geometries it was explicitly trained on. This limitation arises as the

network’s ability to predict spectra is inherently dependent on the

configurations it was trained on. As a result, if we were to task the

network with generating spectra for an entirely new geometry which it

has not encountered before, the network would likely fail to produce

accurate results. This is because it lacks the necessary learned patterns

to process and generate outputs for untrained geometries. This

limitation, however, highlights an opportunity for future

development. By expanding the training dataset to encompass a

broader array of geometries, the network could be made more

adaptable, allowing it to handle a wider variety of configurations.
Frontiers in Oncology 08
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37. Mıńguez P, Roeske JC, Mıńguez R, De Iturriaga AG, Rodeño E. Comparison of
microdosimetry-based absorbed doses to control tumours and clinically obtained
tumour absorbed doses in treatments with 223Ra. Phys Med Biol. (2018) 63:145005.
doi: 10.1088/1361-6560/aacdcc

38. Seltzer S, Fernandez-Varea J, Andreo P, Bergstrom P, Burns D, Krajcar Bronic I,
et al. ICRU report 90. J ICRU. (2014) 14:1–110. doi: 10.1093/jicru/ndw043
frontiersin.org

https://doi.org/10.1118/1.596770
https://doi.org/10.1118/1.596770
https://doi.org/10.2307/3578981
https://doi.org/10.1080/095530096146057
https://doi.org/10.1088/0031-9155/51/9/N02
https://doi.org/10.1667/0033-7587(2000)153[0016:TCPMFA]2.0.CO;2
https://doi.org/10.1667/0033-7587(2000)153[0016:TCPMFA]2.0.CO;2
https://doi.org/10.1088/1361-6560/abbc81
https://doi.org/10.2307/3579744
https://doi.org/10.2307/3576714
https://doi.org/10.1088/1361-6560/ac15a5
https://doi.org/10.1088/2057-1976/abf29f
https://doi.org/10.1088/1361-6560/ac499c
https://doi.org/10.3390/pharmaceutics13060906
https://doi.org/10.1088/0031-9155/52/7/010
http://people.duke.edu/~hpgavin/ce281/lm.pdf
http://people.duke.edu/~hpgavin/ce281/lm.pdf
https://doi.org/10.1109/72.329697
https://doi.org/10.1002/widm.1157
https://doi.org/10.1016/j.asoc.2013.06.006
https://doi.org/10.1016/j.asoc.2013.06.006
https://doi.org/10.1016/j.neucom.2005.02.002
https://doi.org/10.1186/s13014-018-1034-x
https://doi.org/10.1016/j.radphyschem.2020.108729
https://doi.org/10.1088/1361-6560/aacdcc
https://doi.org/10.1093/jicru/ndw043
https://doi.org/10.3389/fonc.2024.1394671
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Alkhani et al. 10.3389/fonc.2024.1394671
Appendix

The algorithm used for generating single-event specific-energy

spectra is based on prior studies (19, 27). The input for the

simulation consists of the alpha particle energy, cell (rc) and

nuclear (rn) radii and source-target geometry. Eight source-target

geometries are considered with activity confined to the cell nucleus,

cytoplasm, cell surface or outside the cell for cells in suspension as

well as activity that is uniform everywhere, activity that is uniform

everywhere except in the cell nucleus, activity located on the cell

surfaces and activity only in the cell cytoplasm for cells packed in

planes (Figure 1). In each case, the nucleus and cell are assumed to

be spherical and concentric.

Based on a random number generation, the radial position of

the alpha particle decay is generated depending on the chosen

source-target geometry for each particle simulated. Only the radial

position is required (which increases calculation efficiency) due to

the spherical symmetry. Additionally, since the alpha particle has a

finite range, only those emissions within a distance of the alpha

particle range plus the nuclear radius need to be considered. Each

alpha particle emission is assumed to travel in a straight line

consistent with previous studies (6, 27, 35). Additionally, delta

rays are neglected as their range is much smaller than the nuclei

sizes considered in this study (6). For each alpha particle that is

simulated, a random angle is generated. If the source is located in

the cell nucleus, then the distance to the cell nucleus surface is

calculated. If the emission occurs outside the nucleus (in cytoplasm,

cell surface or outside the cell), the maximum angle that the point of

emission subtends with the nucleus is calculated as follows:

cos(qmax) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2t − r2n

p
dt

(A:1)

where dt is the distance from the point of emission to the center of

the cell nucleus (24, 27) (Figure 6). To determine if the alpha

particle emission will hit the nucleus, the product of the unitary

vectors defining the alpha particle emission is determined. If this

value is < cos(qmax), then the alpha particle will hit the nucleus. For

cases where the alpha particle will hit the nucleus, two intercepts are

calculated corresponding to where the alpha particle enters and
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exits the nucleus, respectively. The difference between the range of

the alpha particle and the distance it travels to where it intercepts

the nucleus is defined as the residual range (Rres). For cases where

the range of the alpha particle is not long enough to exit the nucleus,

only the distance until the alpha particle stops in the nucleus

is considered.

The energy deposited in the nucleus is based on the range/

energy relationship for alpha particles in water from ICRU 49 (36)

with the curve fit (19, 37) for this relationship given by:

Eres(MeV) = 1:34� 10−1 + 1:89� 10−1 � Rres − 2:15

� 10−3 � R 2
res + 1:72� 10−5 � R 3

res  −   5:47

� 10−8 � R 4
res              Rres > 10   μm (A:2)

Eres(MeV) = 3:51� 10−2 � Rres + 3:42� 10−2 � R 2
res − 2:00

�10−3 � R 3
res                Rres ≤ 10   μm

(A:3)

In these equations, Rres represents the residual range of the alpha

particle which is the range minus the distance traversed by the particle.

Eres represents the amount of energy of an alpha particle with range

Rres. Specific energy (z) is determined by dividing the energy deposited

by the mass of the cell nucleus. This curve fit was also compared with

data from the more recent ICRU 90 report (38). As shown in Figure 7,

the curve fit agrees well with these data (R2 = 0.999).

Simulations for geometries a-d (Figure 1) were performed using

an Excel spreadsheet (Microsoft, Redmond, WA, USA) (27). Each

simulation used 500,000 particles having a standard error of < 0.2%

and was computed in < 3 sec on a standard desktop computer with

Intel® Core™ iS-10500 CPU @ 3.10 GHz, 3096 MHz, 6 cores and

12 logical processors. For geometries e-h (Figure 1), the same

computer was used with code that simulated emissions for the

geometry described (19, 37). For these cases, the computational

times ranged from 60-90 seconds for a simulation with 100,000,000

particles. Of note, the MC spreadsheet simulated significantly fewer

particles since all of them intersected the cell nucleus, while the code

used for geometries e-h used more particles since the majority of

them did not intersect the cell nucleus.
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