
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Harrison Kim,
University of Alabama at Birmingham,
United States

REVIEWED BY

Radu Hristu,
National University of Science
and Technology POLITEHNICA
Bucharest, Romania
Taihao Jin,
City of Hope National Medical Center,
United States

*CORRESPONDENCE

Youyou Xia

xia.youyou@njmu.edu.cn

Chong Zhou

zhouchongsuda@gmail.com

†These authors have contributed equally to
this work

RECEIVED 03 March 2024
ACCEPTED 23 July 2024

PUBLISHED 13 August 2024

CITATION

Sun Y, Liang F, Yang J, Liu Y, Shen Z, Zhou C
and Xia Y (2024) Pilot study: radiomic
analysis for predicting treatment
response to whole-brain radiotherapy
combined temozolomide in lung
cancer brain metastases.
Front. Oncol. 14:1395313.
doi: 10.3389/fonc.2024.1395313

COPYRIGHT

© 2024 Sun, Liang, Yang, Liu, Shen, Zhou and
Xia. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 13 August 2024

DOI 10.3389/fonc.2024.1395313
Pilot study: radiomic analysis for
predicting treatment response to
whole-brain radiotherapy
combined temozolomide in lung
cancer brain metastases
Yichu Sun1†, Fei Liang1†, Jing Yang2†, Yong Liu2, Ziqiang Shen1,
Chong Zhou3* and Youyou Xia1,2*

1Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical
College of Nanjing Medical University, Lianyungang, Jiangsu, China, 2Department of Radiation
Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's
Hospital of Lianyungang, Lianyungang, Jiangsu, China, 3Department of Radiation Oncology, Xuzhou
Central Hospital, Xuzhou, Jiangsu, China
Objective: The objective of this study is to assess the viability of utilizing

radiomics for predicting the treatment response of lung cancer brain

metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with

temozolomide (TMZ).

Methods: Fifty-three patients diagnosed with LCBM and undergoing WBRT

combined with TMZ were enrolled. Patients were divided into responsive and

non-responsive groups based on the RANO-BM criteria. Radiomic features were

extracted from contrast-enhanced the whole brain tissue CT images. Feature

selection was performed using t-tests, Pearson correlation coefficients, and

Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression

was employed to construct the radiomics model, which was then integrated with

clinical data to develop the nomogram model. Model performance was

evaluated using receiver operating characteristic (ROC) curves, and clinical

utility was assessed using decision curve analysis (DCA).

Results: A total of 1834 radiomic features were extracted from each patient's

images, and 3 features with predictive value were selected. Both the radiomics

and nomogram models exhibited satisfactory predictive performance and

clinical utility, with the nomogram model demonstrating superior predictive

value. The ROC analysis revealed that the AUC of the radiomics model in the

training and testing sets were 0.776 and 0.767, respectively, while the AUC of the

nomogrammodel were 0.799 and 0.833, respectively. DCA curves demonstrated

that both models provided benefits to patients across various thresholds.

Conclusion: Radiomic-defined image biomarkers can effectively predict the

treatment response of WBRT combined with TMZ in patients with LCBM,

offering potential to optimize treatment decisions for this condition.
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Introduction

Lung cancer (LC) ranks among the most prevalent malignant

tumors globally, accounting for 11.4% of all cancer incidences and

contributing to an 18% mortality rate (1). Brain metastasis (BM), a

common form of metastasis in LC, poses a formidable challenge in

the treatment and disease management due to its significant threat to

patients' functional independence and survival, with amedian survival

period ranging from 4 to 10 months post-treatment (2). The unique

anatomical and physiological characteristics of the brain present

challenges in finding effective treatment strategies for BM. Locally,

whole-brain radiotherapy (WBRT) remains a pivotal local therapeutic

modality for BM, primarily targeting patients with multiple brain

metastases who are unsuitable for stereotactic radiosurgery (SRS) or

surgical intervention. However, the central nervous system's limited

tolerance to radiation restricts the dose of WBRT, making tumor

reduction challenging. Systemically, targeted tyrosine kinase inhibitors

are applicable only to a minority of patients with specific driver gene

mutations. Platinum-based chemotherapy regimens and immune

checkpoint inhibitors constitute the mainstay of systemic therapy for

advanced LC; however, their efficacy against BM is limited due to the

blood-brain barrier (3).

Temozolomide (TMZ), a novel imidazotetrazine alkylating

agent, readily crosses the blood-brain barrier to exert intracranial

anti-tumor effects, thereby enhancing the local efficacy or survival

benefits of radiotherapy for brain metastases (4, 5). A Chinese

treatment guideline for lung cancer brain metastases (LCBM)

recommends TMZ as a radiosensitizer in combination with

WBRT, suggesting it as a promising alternative (6). In a

moderately sized real-world study, the addition of TMZ to WBRT

increased intracranial objective response rates from 20.2% to 34.9%,

disease control rates from 92.7% to 98.4%, progression-free survival

from 4.9 to 5.9 months, and overall survival from 5.9 to 8.5 months

(7). Nevertheless, a recent meta-analysis incorporating 25

prospective studies indicated that the addition of TMZ to WBRT

significantly increased objective response rates while also elevating

the risk of hematological and gastrointestinal toxicities (8). This

combination therapy is not suitable for every individual. Therefore,

developing tools to predict treatment response can facilitate

individualized medical decisions, avoid ineffective treatments, and

prevent treatment toxicity. However, there is currently a lack of

reported predictive model studies for this patient population.

Radiomics, an emerging field that integrates artificial

intelligence image recognition with medical imaging technology,

extracts high-throughput omics data with biological significance

from medical images through a series of standardized quantitative

calculation methods. After appropriate feature selection and

machine learning methods, these imaging biomarkers can reflect

the potential differences and complexities of diseases (9, 10). In

recent years, some studies have successfully applied radiomics to

predict the microscopic heterogeneity of lung cancer brain

metastases, such as pathological subtypes (11), PD-L1 expression

(12), and EGFR mutation status (13). Thus, radiomics holds

significant potential in distinguishing individual differences in

LCBM, perhaps providing a potential pathway for predicting the

efficacy of WBRT combined with TMZ.
Frontiers in Oncology 02
Therefore, this study aimed to explore the feasibility and

application value of radiomics technology in predicting the

efficacy of WBRT combined with TMZ for LCBM, expected to

optimize personalized treatment decisions.
Materials and methods

Patients recruiting

The medical center's ethics committee approved this

retrospective study (Permit No. LW-20240119001-01) with waived

written informed consent from patients. Clinicopathological data

were retrieved by two radiation oncologists through review ofmedical

records and telephone follow-ups, and then evaluated by a senior

radiation oncology expert. Between January 2018 and June 2023, a

total of 78 patients with LCBM who underwent WBRT combined

with TMZ at our radiotherapy center were identified. After screening

based on inclusion and exclusion criteria, 53 patients were included in

this study and randomly divided into training and testing sets at an

8:2 ratio. Inclusion criteria were as follows: (1) Definite diagnosis of

LCBM through histopathology or typical CT or MRI findings; (2)

Available contrast-enhanced whole-brain CT and Eclipse treatment

planning system images; (3) Completed WBRT synchronized with

temozolomide treatment as planned and evaluated for efficacy.

Exclusion criteria were: (1) Presence of intracranial organic diseases

or history of intracranial radiotherapy; (2) Occurrence of acute

cerebrovascular events during treatment; (3) Incomplete data

retrieval despite review of medical records and telephone follow-

ups. WBRT was delivered using one of the two American Varian

linear accelerators at our radiotherapy center, with a planned target

volume (PTV) expansion of 0.3cm beyond the whole brain. The

radiotherapy doses were delivered at 30 Gy in 10 fractions, 37.5 Gy in

15 fractions, or 40 Gy in 20 fractions, in accordance with the NCCN

guidelines (14). Radiation therapy was administered five times per

week, along with concurrent oral or intravenous administration of

temozolomide at a dosage of 75-100 mg/m²/day. Treatment response

assessment was conducted at 1.5 to 2 months post-treatment,

following the Response Assessment in Neuro-Oncology Brain

Metastases (RANO-BM) criteria (15). Patients with complete

response (CR) or partial response (PR) were divided into

responsive group, while those with stable disease (SD) or disease

progression (PD) were divided into non-responsive group.
Image acquisition

All contrast-enhanced CT scans were performed using a

Siemens SOMATOM Definition AS+ 64-slice CT simulator at our

radiotherapy center, covering from the cranial vertex to the lower

boundary of the neck, with a slice thickness of 3 mm. The final

WBRT treatment plan was devised and confirmed by the radiation

oncology expert team at our institution. DICOM-format whole-

brain CT image files and RT-structure files were exported via the

Eclipse system and ARIA network workstation. Subsequently, we

utilized the OnekeyAI platform (www.medai.icu/) to parse and
frontiersin.org
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convert the DICOM files and RT-structure files into NIFTI-format

localization CT images and corresponding radiotherapy target

volume. The definition of regions of interest (ROIs) in radiomics

primarily relied on lesion-based or anatomy-based criteria (16, 17).

Given the scope of local radiotherapy across the entire brain in this

study, ROIs were defined in 3D based on the anatomical structures

of the whole brain tissue. The final ROIs were manually adjusted by

one radiation oncologist using 3dslicer [5.1.0] software (18) and

verified by a senior radiation oncology expert.
Radiomics features extraction

Image preprocessing and feature extraction were conducted

using the PyRadiomics [3.0.1] Python package. Comprehensive

image preprocessing included standardizing the image to a range

of 0-1000 Hounsfield Units (HU) and spatially resampling the

image to a consistent voxel size of 3mm x 3mm x 3mm. Various

filters were applied to enhance the images, including Gaussian

Laplacian (LoG) filter, wavelet transformation, Local Binary

Patterns in 3D (LBP3D), as well as mathematical transformations

such as exponential, square, square root, and logarithmic

transformations to highlight different features and textures in the

images. Subsequently, shape features, first-order statistical features,

and texture features were extracted from the preprocessed images

and the transformed images obtained from the aforementioned

filters. The texture features included Gray Level Co-occurrence

Matrix (GLCM), Gray Level Dependence Matrix (GLDM), Gray

Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix

(GLSZM), and Neighboring Gray Tone Difference Matrix

(NGTDM). Further descriptions of the feature extraction process

and the YAML configuration file used with pyradiomics were

provided in Supplementary File 1. All feature definitions and

calculation methods adhered to the standards of the Imaging

Biomarker Standardization Initiative (IBSI) (10).
Feature selection

All radiomic features were transformed using the formula Z =

(X�m)=s , and then the feature selection process commenced in

the training dataset. Initially, the most significantly distinguishing

features between the responsive and non-responsive groups were

identified through statistical analysis using the t-test, with only

features with p < 0.01 retained. Subsequently, redundant features

were removed using Pearson correlation coefficients and greedy

recursive feature elimination. When any two features had a

correlation coefficient exceeding 0.9, one of them was

systematically eliminated. In each iteration, the 10 most

redundant features with the highest correlation coefficients were

discarded. Finally, the Absolute Shrinkage and Selection (LASSO)

model was developed, and the lambda parameter was determined

through 10-fold cross-validation, aiming to minimize the mean

squared error (MSE). The non-zero coefficient features were

identified at that lambda.
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Radiomics signature

Thefinal features selectedby theLassomodelwere used to construct

the radiomicspredictionmodel.Logistic regression (LR), oneof themost

commonly used machine learning algorithms in medical data, was

chosen for this purpose. The output results of the prediction model

were used to construct the radiomic signature. Subsequently, confusion

matrices and receiver operating characteristic (ROC) curves were

employed for both the training and testing sets to demonstrate

predictive performance. Additionally, decision curve analysis (DCA)

was conducted to assess clinical utility across different thresholds.

Furthermore, the model output results were utilized to generate

radiomics signature, serving as biomarkers for subsequent analysis.
Nomogram model

Wealso explored the potential enhancement of the radiomicsmodel's

predictive performance by incorporating clinical variables. Baseline

features including age, gender, Karnofsky Performance Status (KPS),

serum carcinoembryonic antigen (CEA) levels, and serum neuron-

specific enolase (NSE) were used to generate clinical signature through

the same LR results, ensuring its comparability to radiomics signature.

Subsequently, the nomogrammodelwas developed by integrating clinical

signature and radiomics signature. ROC curves were generated for both

the training and testing sets to evaluate and compare their performance.

DCA curves were employed to evaluate and compare their clinical utility

across different thresholds. The comprehensiveworkflowof the radiomics

analysis is depicted in Figure 1.
Statistics and analysis

Normality was assessed using the Shapiro-Wilk test. Continuous

variables with normal distribution were presented as mean and

standard deviation and analyzed using the t-test. Continuous

variables with severe skewed distribution were presented as median

and interquartile range and analyzed using the Wilcoxon test.

Categorical variables were presented as frequency and percentage

and analyzed using the chi-square test or chi-square test with Yates'

correction. The significance level for hypothesis testing was set at 0.05.

Statistical analysis of baseline data was performed using the stats

[4.2.11] R package, nomogram analysis using the rms [6.4.0] R

package, ROC analysis using the pROC [1.18.0] R package, DCA

analysis using the rmda [1.6] R package, and results were visualized

using the ggplot2 [3.3.6] R package. Model building was conducted

using the scikit-learn [1.0.2] Python package.
Results

Patient’s characteristics

The clinical baseline characteristics presented in Table 1

encompassed a total of 53 patients with LCBM, with 33 cases

(62.3%) of non-small cell lung cancer and 20 cases (37.7%) of small
frontiersin.org
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cell lung cancer. Among these individuals, there were 17 females

(32.1%) and 36 males (67.9%), with ages ranging from 36 to 83 years

and amean age of 60.4 years. According to the evaluation results, there

were 24 cases in the responsive group and 29 cases in the non-

responsive group. Statistical analysis revealed no significant

differences in all clinical variables between the training and testing

sets, indicating the effectiveness of the random dataset partition.
Radiomics features

Eachpatient'sCT images produced1834 radiomic features.Detailed

results can be found in Supplementary File 1. Initially, 53 features with p

< 0.01 were identified through t-test analysis, as depicted in Figure 2A.

Subsequently, 8 features were selected by the last iteration of greedy

recursive elimination. Their correlation coefficients were presented in

Figure 2B. Finally, during the 10-fold cross-validation process of the

LASSO model, the weight coefficients of the 8 radiomic features varied

with lambda, as shown in Figure 2C, while the change in MSE with

lambda was illustrated in Figure 2D. The lambda parameter associated

with the minimumMSE was found to be 0.0391, corresponding to the

retention of 3 non-zero coefficient features in the model:

"lbp_3D_m2_glszm_SmallAreaEmphasis", "log_sigma_1_0_mm_

3D_glcm_JointEntropy", and "wavelet_HHH_glszm_High

GrayLevelZoneEmphasis".
Predictive performance

The confusion matrices for the radiomics model in the training

and testing sets were displayed in Figures 3A, B, respectively, with
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prediction accuracies of 71.4% and 72.7%. The ROC curves of the

radiomics signature, clinical signature, and nomogram models on

the training set were illustrated in Figure 4A, while those on the

testing set were presented in Figure 4B. The AUC values on the

training and testing sets were as follows: clinical signature: 0.670,

0.667; radiomics signature: 0.776, 0.767; nomogram: 0.799, 0.833.

There were no indications of overfitting detected in any of the

models. Both radiomics signature and nomogram showed AUC

values surpassing 0.75, suggesting robust predictive performance. In

contrast, clinical signature displayed AUC values below 0.7. The

DCA curves on the training set were depicted in Figure 5A, while

those on the testing set were shown in Figure 5B. Across various risk

thresholds, radiomics signature and nomogram yielded net benefits

to patients in most scenarios, outperforming clinical signature.

Combining the results of ROC curves and DCA analysis, the

nomogram surpassed radiomics signature in performance on both

the training and testing sets. The visualization of the nomogram

model was portrayed in Figure 6, illustrating the relationships

between the nomogram and radiomics signature, as well as

clinical signature.
Discussion

This study attempted to utilize radiomic analysis to predict the

treatment response of WBRT combined with TMZ for LCBM,

demonstrating its feasibility and application value. Furthermore,

integrating clinical information into the radiomic model through a

nomogram can further improved predictive performance.
FIGURE 1

Workflow of radiomics analysis in this study.
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Radiomic technology aims to identify valuable biomarkers by

extracting quantitative features from images, holding great potential

for predicting outcomes in LC treatment (19–21). However, in

studies on BM, researchers often focus on using radiomics to

predict the efficacy of SRS (22–24), while research involving the

prediction of WBRT treatment response is scarce. WBRT, as a

crucial local treatment modality for BM, often faces challenges in

reducing tumor size due to dose limitations on brain tissue (25).

Data from a phase III clinical trial (PCI-P120-9801) suggest a

correlation between tumor shrinkage after WBRT and improved

survival and neurological function (26). Therefore, the development

of tools to predict WBRT treatment response in patients with BM is

crucial for making informed clinical decisions. Wang et al.'s study

attempted to use radiomic technology to predict the treatment
Frontiers in Oncology 05
response of BMpatients toWBRT, demonstrating excellent predictive

performance. The AUC of the radiomic model was 0.928 and 0.837 in

the training and testing sets, respectively, while the AUCof the clinical

model was 0.650 and 0.598. The nomogrammodel combining clinical

factors and radiomics achievedAUCsof 0.928 and0.851 (27). Previous

studies have also used radiomics to predict the efficacy of TMZ, but in

the context of glioblastoma. For example, Li et al.'s study analyzed

radiomic features and predicted efficacy in 53 patients withmalignant

glioblastoma receiving anlotinb and TMZ combination therapy,

achieving AUCs above 0.9 in both the training and testing sets.

However, this study did not incorporate clinical information into the

radiomic model (28). Therefore, it is necessary to investigate the

feasibility of using radiomics to predict the response of BM to

WBRT combined with TMZ.
TABLE 1 Baseline characteristics of patients in the training and validation sets.

Characteristics Overall Training Test pvalue

n 53 42 11

Age, mean ± sd 60.4 ± 9.3 60.8 ± 9.9 58.9 ± 6.3 0.552

CEA, median (IQR) 6.8 (3.0, 64.5) 7.8 (3.4, 65.1) 2.9 (2.2, 34.6) 0.139

NSE, median (IQR) 19.9(14.5, 29.6) 18.9 (14.6, 26.8) 27.0 (18.8, 31.4) 0.303

Gender, n (%) 0.999

Female 17 (32.1%) 13 (24.5%) 4 (7.5%)

Male 36 (67.9%) 29 (54.7%) 7 (13.2%)

KPS, n (%) 0.922

≥70 32 (60.4%) 26 (49.1%) 6 (11.3%)

<70 21 (39.6%) 16 (30.2%) 5 (9.4%)

Pathology, n (%) 0.649

NSCLC 33 (62.3%) 25 (47.2%) 8 (15.1%)

SCLC 20 (37.7%) 17 (32.1%) 3 (5.7%)

BM_Number, n (%) 0.999

<5 24 (45.3%) 19 (35.8%) 5 (9.4%)

≥5 29 (54.7%) 23 (43.4%) 6 (11.3%)

CNS_symptom, n (%) 0.999

No 23 (43.4%) 18 (34.0%) 5 (9.4%)

Yes 30 (56.6%) 24 (45.3%) 6 (11.3%)

PTV_dose_cGy, n (%) 0.807

3000 35 (66.0%) 27 (50.9%) 8 (15.1%)

3750 8 (15.1%) 8 (15.1%) 2 (3.8%)

4000 10 (18.9%) 7 (13.2%) 1 (1.9%)

TMZ_route, n (%) 0.552

Intravenous 32 (60.4%) 24 (45.3%) 8 (15.1%)

Oral 21 (39.6%) 18 (34%) 3 (5.7%)
IQR, interquartile range; sd, standard deviation; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; CEA, carcinoembryonic antigen; NSE, neuron-specific enolase; CNS, central
nervous system; TMZ, temozolomide.
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In this study, we aimed to reduce the heterogeneity among BM

patients by focusing on those with primary LC. We gathered

contrast-enhanced CT scans from BM patients who underwent

WBRT in combination with TMZ at our academic medical center

over the last five years for radiomic analysis. During feature

selection, we pinpointed three predictive features using the

LASSO model with the minimum mean squared error (MSE), all

of which were related to filtered enhancement and transformed
Frontiers in Oncology 06
grayscale texture features. Notably, these features did not

encompass shape or first-order statistical features, likely due to

our ROIs definition based on anatomical structures, given the

whole-brain scope therapy of our study. This ROIs strategy is

advantageous as it incorporates not only intra-tumoral

information but also data from the tumor periphery and

surrounding normal tissue, all of which hold predictive potential

in radiomics (16, 17, 29). Subsequently, we constructed predictive
FIGURE 3

The prediction confusion matrices of the radiomics model in the training set (A) and testing set (B).
FIGURE 2

Results of feature selection. (A) Violin plot illustrating the distribution of p-values from the statistical tests of all radiomic features. (B) Heatmap
showing the correlation coefficients of the 8 selected features obtained through Pearson correlation coefficients combined with a greedy strategy.
(C) Variations in the weight coefficients of the 8 radiomic features with lambda during the 10-fold cross-validation process of the least absolute
shrinkage and selection operator (LASSO) model. (D) The change in mean squared error (MSE) with lambda during the 10-fold cross-validation
process of the LASSO model.
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models and assessed their predictive value using ROC and DCA

analysis. In ROC analysis, the AUCs of radiomic model were 0.776

and 0.767 in the training and testing sets, respectively, while those of

clinical model were 0.670 and 0.667. The nomogram, combining

clinical signature and radiomic signature, achieved AUCs of 0.799

and 0.833. These results suggest the feasibility of utilizing radiomics

to predict treatment response of WBRT combined with TMZ in BM

patients. Notably, prior research focusing on LC biomarkers has

underscored that clinical signature complement radiomic signature

by providing valuable insights (30). In our study, while clinical

signature alone failed to predict treatment response, it could offer

potential information to radiomic signature, thereby enhancing

predictive performance, which was consistent with the findings of

Wang et al.'s study (27). Moreover, our DCA analysis further

affirmed the utility of both the radiomic model and the

nomogram for clinical decision-making. In summary, these results

underscore the potential of radiomics as a supplementary clinical tool

for predicting treatment response of WBRT combined with TMZ in

LCBM, thus facilitating personalized treatment strategies.
FIGURE 4

ROC curves of the three models in the training set (A) and testing set (B). Both radiomics signature (Rad_Sig) and nomogram exhibited AUC values
exceeding 0.75, indicating good predictive performance.
FIGURE 5

DCA curves of the three models in the training set (A) and testing set (B). Radiomics signature (Rad_Sig) and nomogram demonstrated net benefits
to patients across the majority of risk thresholds.
Frontiers in Oncology 07
FIGURE 6

The visualization of the nomogram model.
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There are several limitations in our study. Firstly, the small

sample size and retrospective data collection might introduce bias.

Secondly, the clarity of enhanced CT images is not as high as MRI,

potentially impacting the accuracy of the radiomic model (31).

Thirdly, the single-center division of the testing set may not

adequately validate the model's stability. Future research will

utilize multi-modal imaging data and acquire multi-center

validation datasets to enhance the accuracy and generalizability of

predictive models.
Conclusion

Overall, this study successfully predicted the treatment response

of LCBM undergoing WBRT combined with TMZ using radiomic-

defined image biomarkers. These findings offer potential for

optimizing treatment decisions for LCBM in clinical practice and

laying the groundwork for further clinical application research.
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