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Introduction: Approximately 10% of breast cancer (BC) cases result from

hereditary causes. Genetic testing has been widely implemented in BC care to

determine hereditary cancer syndromes and personalized medicine. Thus,

identification of individuals carrying germline pathogenic variants could be

useful to provide appropriate prophylactic or screening measures for each BC

subtype, however, there are few formal recommendations for genetic testing in

this sense so far. In this study, we assessed rare germline variants in a specific

group of genes in order to determine the association with human epidermal

growth factor 2 enriched (HER2+) BC phenotype through a systematic review

andmeta-analysis comparing subtypes overexpressing HER2 with other clinically

recognized subtypes of BC. This review was registered with PROSPERO

(ID: CRD42023447571).

Methods: We conducted an online literature search in PubMed (MEDLINE),

Scopus, and EMBASE databases. We included original studies that investigated

germline variants in HER2+ BC patients and selected the studies that reported

only rare and/or pathogenic germline variants. We assessed the risk of bias and

quality of the studies using the Joanna Briggs Institute Critical Appraisal checklists

and the Modified Newcastle-Ottawa Scale for Genetic Studies, respectively.

Considering hormone receptor and HER2 expression status, we compared

gene-based risks initially in HR-HER2-, HR+HER2-, HR+HER2+, and HR-HER2+

groups, conducting separate meta-analyses using the random effects model for

each comparison, and within them for each gene.

Results: Of the total 36 studies describing germline variants, 11 studies provided

information on the prevalence of variants in the different clinically relevant BC

subtypes and allowed comparisons. Germline variants within eight genes showed

significant differences when meta-analyzed between the BC groups: BRCA1,

BRCA2, TP53, ATM, CHEK2, PALB2, RAD51C, and BARD1. Notably, TP53, ATM,

and CHEK2 germline variants were identified as predisposing factors for HER2+

subtypes, whereas BRCA1, BRCA2, PALB2, RAD51C, and BARD1 germline variants
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were associated with a predisposition to low HER2 expression. Main concerns

about bias and quality assessment were the lack of confounding factors control;

and comparability or outcome assessment, respectively.

Discussion: Our findings underscore the connection between germline variants

and differential expression of the HER2 protein and BC subtypes.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO,

identifier CRD42023447571.
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1 Introduction

Breast cancer (BC) was the most frequent tumor and the leading

cause of cancer-related deaths among women, with more than 2,3

million cases worldwide in 2022 (1). BC is highly heterogeneous at

morphologic and molecular levels, which directly impacts the

disease prognosis and treatment (2). Four main intrinsic BC

subtypes have been well-characterized and comprise the vast

majority of the biological diversity in BC: Luminal A, Luminal B,

human epidermal growth factor 2 (HER2) enriched (HER2+), and

Basal-like (3). These subtypes differ regarding the proliferation/cell

cycle-related and luminal/hormone-regulated pathways, gene

expression regulation mechanisms, such as methylation, and

mutational burden (4).

HER2, also known as Neu or ErbB2, belongs to the ERBB

receptor family, which is expressed in many epithelial,

mesenchymal, and neuronal cells, and has different roles in

cellular development, proliferation, and differentiation (5). The

HER2 protein composes a heterodimer with other ERBB and

epidermal growth factor receptors (EGFRs). These complexes

recognize ligand hormones and trigger subsequent signal

transduction, activating downstream signaling pathways such as

PI3K-AKT and MEK-ERK (6). HER2 overexpression is a negative

prognostic factor and accounts for about 15–20% of all BC cases.

One of the main mechanisms of HER2 activation is the

amplification of the encoding gene ERBB2, leading to HER2

overexpression (7). This overexpression can be identified through

the immunohistochemistry status (IHC3+), or in situ hybridization

(ISH) measurement of an ERBB2 gene copy number of six or more,

or through the ERBB2/CEP17 (centromeric region of chromosome

17) ratio of 2.0 or greater (8).

Most BC cases (approximately 80%) are not metastatic at the

time of diagnosis. For these patients, the treatment strategy is based

on tumor eradication and recurrence prevention (9). Hence, choosing

effective drugs is essential for treatment success. Specific therapeutic

strategies (both neoadjuvant and adjuvant therapies) were established
02
based on BC molecular subtypes. For example, monoclonal

antibodies (trastuzumab and pertuzumab) associated with

conventional chemotherapeutic drugs are effective in the treatment

of HER2+ BC patients (10). Although cancer therapeutic schemes are

based on cancer staging and molecular subtypes, there is a broad

spectrum of treatment responses, which may be influenced by other

factors, such as genetic and epigenetic alterations.

In the last decades, several studies reported the landscape of

germline variants in cancer predisposition genes as well as their

impact on cancer risk. As an example, Li-Fraumeni syndrome

(LFS), an autosomal dominantly inherited condition, is a rare

hereditary cancer syndrome characterized by a high and early-

onset cancer risk caused by pathogenic variants (PVs) in the tumor

suppressor gene TP53 (11). Other well-known genetic alterations

include PVs or likely pathogenic variants (LPVs) in the BRCA1 and

BRCA2 genes, linked to hereditary breast and ovarian cancer

syndrome (12). Moreover, these germline variants may be

associated with a poorer BC prognosis (13, 14).

Even though genomic studies have characterized the germline

architecture of BC patients (15, 16), little is known regarding the

impact of these variants on the predisposition and prognosis of

specific BC subtypes. Thus, this study aimed to perform a

comprehensive assessment of rare germline variants associated

with HER2+ BC. To this end, we conducted a systematic review

and meta-analysis of genomic, exomic, and panel sequencing

studies that assessed germline variants associated with the

prediction of HER2+ BC, in comparison to other BC subtypes.
2 Methods

2.1 Search approach

This systematic review and meta-analysis was registered with

the International Prospective Register of Systematic Reviews

(PROSPERO; registration ID: CRD42023447571). We adhered to
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the PRISMA (Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) checklist to ensure transparency and consistency in

the presentation of data (Supplementary Tables 1, 2). Online

literature search was performed in the PubMed (MEDLINE),

Scopus, and EMBASE databases in order to collect eligible studies

until July 07, 2023. The search was conducted based on three

concepts (1): breast cancer (2); HER2; and (3) genetic variation.

The search terms are detailed in the Supplementary Material. In

addition, reference lists, including systematic reviews, meta-

analyses, and original articles, were examined to identify relevant

studies. All retrieved results were exported to the Rayyan tool (17),

where duplications were removed and the remaining studies

were evaluated.
2.2 Selection of studies

On initial selection, we included studies that satisfied the

following criteria (1): original studies that enrolled patients with

histologically confirmed HER2+ BC (2); studies evaluating germline

variants associated with HER2+ BC prediction and prognosis (3);

English language. We excluded (1): reviews and meta-analysis (2);

in vitro studies (3); animal models (4); insufficient data; and (5) gray

literature. Two reviewers independently evaluated the retrieved

studies that meet the predetermined criteria, and a third reviewer

was consulted in case of controversy.

In a second step, we selected the studies that reported only rare

and/or pathogenic variants. The criteria applied by each study to

classify the variants’ pathogenicity are described in Supplementary

Table 3. We chose this focus because these types of germline

variants have a greater impact on BC. Rare loss-of-function and

pathogenic variants are known to be responsible for hereditary

cancer. Moreover, the studies reporting common variants are

heterogeneous and pose a challenge for data standardization in

the analysis.
2.3 Data extraction

The following information was independently extracted from

all the included reports: first author, study type, year of publication,

nation, sample size, population, identified pathogenic variants,

outcomes in the studied groups, and genomic assay. Any

discrepancies during the process were resolved by discussion with

the third reviewer. In cases where the data were incompletely

described in an article, we contacted the corresponding author to

request the data.
2.4 Risk of bias and quality assessment

We assessed the risk of bias in all the included studies

concerning their design, conduct, and analysis, using the Joanna

Briggs Institute Critical Appraisal checklists tailored to cross-

sectional, case-control, or cohort studies (18). Each item of the

instrument was categorized as yes/no/unclear for each potential
Frontiers in Oncology 03
bias. For the overall assessment, each study was assessed for

inclusion, exclusion, or need for further information.

We used the Modified Newcastle-Ottawa Scale for Genetic

Studies (19) to assess the quality of the studies. The studies were

rated with 0–8 stars based on the scale items: studies with at least 6

stars were considered to be of high quality, studies with 3–5 stars

were considered to be of fair quality, and studies with less than 2

stars were considered to be of inferior quality.
2.5 Statistical methods

Ameta-analysis was performed using the random effects model.

Odds ratios (OR) were estimated along with their respective 95%

confidence intervals (CI). Given the clinical significance of hormone

receptor (HR) and HER2 expression status, the comparison was

performed based on gene variants between the following groups:

HR-HER2- (triple-negative BC, TNBC), HR+HER2-, HR+HER2+,

and HR-HER2+. We carried out a different meta-analysis for each

comparison (HR+HER2+ versus HR-HER2+; HR+HER2+ versus

HR+HER2-; HR+HER2+ versus TNBC; HR-HER2+ versus HR

+HER2-; HR-HER2+ versus TNBC and HR+HER2- versus

TNBC) and within them for each gene (ATM, BARD1, BRCA1,

BRCA2, CHEK2, PALB2, RAD51C, and TP53, when possible). Only

genes that were reported in two distinct studies, with a minimum of

one documented genetic variant, were considered for inclusion in

the analysis. In addition, prediction intervals were presented.

Heterogeneity between studies was evaluated using Cochran’s Q

test and the inconsistency index (I²). All analyses were performed

using R software version 4.1.3 (20) with the meta package version

7.0-0 (21).
3 Results

3.1 Characteristics of the included studies

The search strategy across three different databases retrieved

6,623 records, from which 56 studies were selected by inclusion

criteria (Figure 1). The included studies performed methodologies

for genomic analyses that included whole-genome sequencing,

whole-exome sequencing, and gene panel testing using next-

generation sequencing technology. First, in order to group

comparable data, studies were classified into rare or common

variants depending on the types of genetic variants reported. A

total of 36 studies reported rare single-nucleotide variants (SNVs),

insertion-deletion variants, or copy number alterations. Of these, 32

were eligible for data extraction. Most studies were from Western

European and East Asian groups, followed by North American,

Latin American, South Asian, and Middle Eastern. The lower

representation of specific global regions is also reflected in the

populations encountered in the study. No study included African

populations, and only two were conducted with the Latin American

population. The information about the studied population, design,

genomic assessment method, genes, and variants classification

considered for analysis were described in Supplementary Table 4.
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The genes mainly reported were BRCA1 and BRCA2, followed

by TP53, PALB2, and ATM (Supplementary Figure 1). Only six

studies were case-control studies conducted with a health control

cohort (individuals without BC). The heterogeneity in the

classification of study groups and insufficient data posed

challenges for comparisons when considering BC subtypes and

receptor expression. A total of 13 studies reported only the

information of total BC cases and did not stratify regarding HR

or HER2 status, and were not included in the statistical analyses

(Supplementary Table 4). The risk based on genes carrying a

germline variant was initially compared in the groups (TNBC,

HR+HER2-, HR+HER2+, and HR-HER2+). Altogether, 11

studies provided information on the prevalence of germline

variants among these groups and allowed comparisons.
3.2 Risk of bias and quality assessment

The risk of bias was assessed for the 11 publications included in

the meta-analysis using the Joanna Briggs Institute (JBI) Critical

Appraisal Tools. According to the JBI tools, all studies were

considered suitable for inclusion in this review. The most

common concerns regarding risk of bias were due to failure to
Frontiers in Oncology 04
identify and control for confounding factors (Supplementary

Figures 2–4).

All studies included in the meta-analysis were considered of high

or fair quality (3 or more stars) on the modified Newcastle-Ottawa

scale for Genetic Studies. The most common concerns were on

comparability and outcome assessment (Supplementary Table 5).
3.3 Meta-analysis of germline variants
among BC subtypes

A meta-analysis comparing the predisposition between BC

subtypes was performed pair-by-pair. A total of nine studies (22–

30) presented frequencies of germline variants that allowed the

following comparisons: HR-HER2+ versus TNBC (Supplementary

Figure 5), HR-HER2+ versusHR+HER2- (Supplementary Figure 6),

HR+HER2+ versus TNBC (Supplementary Figure 7), HR+HER2+

versus HR+HER2- (Supplementary Figure 8), and HR+HER2+

versus HR-HER2+ (Supplementary Figure 9). Moreover, eleven

studies (22–32) allowed the comparison of HR+HER2- versus

TNBC (Supplementary Figure 10). For each comparison, genes

were included when a variant was reported in at least two studies.

The genes included in each analysis are reported in Table 1.
FIGURE 1

PRISMA diagram of study selection strategy from literature search results.
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First, when the predisposition to HR-HER2+ was evaluated

comparing to TNBC, germline variants on TP53 gene showed the

highest pooled Odds Ratio (pOR) of developing HR-HER2+ BC

among the meta-analyzed genes (pOR: 5.81; 95% CI: 2.70–12.50;

n=10,431). Moreover, the pOR for ATM was 4.57 (95% CI 2.29–

9.11; n=8,164), and for CHEK2 was 2.79 (95% CI: 1.55–5.01;

n=8,400). Germline variants present in BRCA1 (pOR: 0.20; 95%

CI 0.11–0.37; n=12,917) and BRCA2 (pOR: 0.46; 95% CI 0.33–0.63;

n=12,917) were found to predispose TNBC compared to HR-HER2

+ (Figure 2). Interestingly, when HR-HER2+ was compared to HR

+HER2-, TP53 germline variants were also found to predispose HR-

HER2+ (pOR: 5.16; 95% CI: 2.84–9.32; n=23,114) while BRCA2

germline variants carriers were found to predispose HR+HER2-

subtype (pOR: 0.43; 95% CI: 0.27; 0.70; n=29,355) (Figure 3).

In addition, the HR+HER2+ subtype compared to TNBC

showed TP53 (pOR: 3.21; 95% CI 1.55–6.67; n=13,051); ATM
Frontiers in Oncology 05
(pOR: 7.44; 95% CI: 4.28–12.90, n=10,223); and CHEK2 (pOR:

6.09; 95% CI 3.93–9.43, n=10,379) predisposing to HR+HER2+.

BRCA1 (pOR: 0.10; 95% CI 0.07–0.13; n=12,917), PALB2 (pOR:

0.54; 95% CI 0.34–0.87; n=11,217), and RAD51C (pOR: 0.23; 95%

CI 0.07–0.70; n=9,139) (Figure 4). Germline variant frequencies for

HR+HER2+ compared to HR+HER2- subtypes showed only the

TP53 germline variants differed significantly between HR+HER2+

and HR+HER2- BC patients, with a pOR of 2.82 (95% CI 1.53–5.18,

n=25,734), predisposing to HR+HER2+ (Figure 5).

To filter out genes not directly associated with HER2

expression, we conducted a comparison exclusively within the

groups exhibiting HER2 overexpression. The meta-analysis

between HR+HER2+ and HR-HER2+ BC subtypes only showed

significant differences in the CHEK2 germline variant carriers

predisposing to HR+HER2+ (pOR: 2.09; 95% CI 1.27–3.44,

n=5,471) (Figure 6). Moreover, we identified germline variants

that show consistent differences between HER2- groups to

discover the less likely variants directly affecting HER2 and could

be considered independent of HER2 expression when comparing

HR+HER2- and TNBC groups. Six genes with germline variants

were identified that differ in odds between both groups (Figure 7).

BRCA1 (pOR: 0.13; 95% CI: 0.12–0.15; n=36,163), PALB2 (pOR:

0.65; 95% CI: 0.51–0.84; 25,149), RAD51C (pOR: 0.36; 95% CI:

0.21–0.61; n=21,093), and BARD1 (pOR: 0.17; 95% CI: 0.11–0.28;

n=20,802) were found predisposing to TNBC, while ATM (pOR:

2.76; 95% CI: 1.06–7.17; n=23,346) and CHEK2 (pOR: 3.03; 95% CI:

1.36–6.75; n=23,598), predispose to HR+HER2.
3.3.1 Shared characteristics across
different comparisons

In order to identify germline variants that could differently

predispose BC subtypes, we compared the shared genes carrying

germline variants between the comparisons. Germline variants of

TP53 proved to be exclusive when comparing HER2+ and HER2-

subtypes (Figure 8). Also, germline variants within the BRCA2 gene

were found to predispose TNBC only when compared to HER2+
FIGURE 2

Forest plots showing the predisposing of HR-HER2+ (cases) breast cancer subtype compared to TNBC (controls) for variant carriers on genes
BRCA1, BRCA2, TP53, ATM, and CHEK2.
TABLE 1 Genes included in comparative meta-analysis of breast
cancer subtypes.

Comparison Genes

HR-HER2+
versus TNBC

BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2, RAD51C,
BARD1, BRIP1, MSH6, and NBN.

HR-HER2+
versus
HR+HER2-

BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2, BRIP1,
MSH6, RAD51D, and MUTYH.

HR+HER2+
versus TNBC

BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2, RAD51C,
BRIP1, and NBN.

HR+HER2+
versus
HR+HER2-

BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2, BRIP1,
RAD51D, NBN, and FANCM.

HR+HER2+
versus HR-
HER2+

BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2, BRIP1,
MSH6, MUTYH, and NBN.

HR+HER2-
versus TNBC

BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2, RAD51C,
BRIP1, BARD1, PMS2, MSH6, RAD51D, NBN,
FANCM, FANCD2.
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subtypes. Genes whose comparisons were not significant in the

meta-analysis are described in Supplementary Table 6.
4 Discussion

It is known that approximately 10% of BC cases result from

hereditary causes (33). Genetic testing has been widely implemented

in BC care to determine hereditary cancer syndromes and

personalized medicine (34). Here, we investigated the presence of

rare germline variants in a specific group of genes with the aim of

determining their possible association with HER2+ BC. We

conducted a thorough systematic review and meta-analysis and

compared the prevalence of these variants in subtypes characterized

by HER2 overexpression with other well-defined BC subtypes. Of the

36 studies included in our analysis, 11 provided data on the

distribution of germline variants in different clinically relevant BC

subtypes, allowing comparative assessments. Our meta-analysis

revealed significant differences in the occurrence of germline

variants between BC groups for eight genes: BRCA1, BRCA2, TP53,

ATM, CHEK2, PALB2, RAD51C, and BARD1.
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In our analysis, we identified genes with germline variants that

predispose to HER2 overexpressing subtypes: TP53, ATM, and

CHEK2. Of these genes, germline variants on TP53 gene were

found to be exclusive when comparing HER2+ and HER2-

subtypes, supporting a link between germline variants in this gene

and increased expression of the HER2 protein. In fact, the proportion

of HER2+ BC is increased in patients with LFS (35–38). Breast

tumors in TP53 germline variant carriers are usually high-grade,

HER2+, and HR+ with a dense sclerotic tumor stroma (37).

The ATM germline variants were also significantly associated

with subtypes overexpressing HER2 and/or HR, which is consistent

with previous studies describing intermediate- to high-grade, HR+

disease and potentially higher rates of HER2 positivity and lymph

node involvement associated with ATM germline variants (39, 40), as

well as reduced recurrence time in invasive HER2+ BC patients (39).

ATM truncating and missense variants are linked to an increased risk

of estrogen receptor-positive (ER+) BC rather than ER- disease (41).

The CHEK2 germline variants were found associated with both

HR+ and HER2+ status. The highest chance was found when

comparing the HR+HER2+ subtype with TNBC. A study

investigating CHEK2 germline variants identified an association
FIGURE 4

Forest plots showing the meta-analysis for the genes BRCA1, PALB2, TP53, ATM, CHEK2, and RAD51C related to the predisposition for HR+HER2+
(cases) breast cancer subtype to TNBC (controls).
FIGURE 3

Forest plots of the comparison of HR-HER2+ (cases) breast cancer subtype predisposition related to HR+HER2- (controls) for the genes BRCA2
and TP53.
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of the immunophenotypic molecular subtypes of breast cancer with

the type of the genetic variant. CHEK2-truncating variants were

found to increase 6-fold the risk of luminal B (ER+ and/or PR+,

HER2+) subtype (42). Moreover, other studies investigating the

relation between CHEK2 germline pathogenic variants and receptor

status do not show concordance. Variants in the CHEK2 gene were

found to be associated with negative or positive status of HR and

HER2 (43–45).

Remarkably, the TP53, ATM, and CHK2 proteins work together

to control the cell cycle. When DNA damage occurs, ATM

phosphorylates CHK2, triggering its activation. This in turn

initiates a cascade of events that leads to the phosphorylation of

various downstream substrates, including p53, which arrests the cell

cycle and regulates apoptosis, and BRCA1, which modulates DNA

repair (46). Interestingly, HER2 blockade indirectly affects

downstream signaling pathways such as AKT, which could have

secondary effects on CHK2 activity. In this sense, an effective

treatment strategy targeting HER2 blockade would lead to

inhibition of the AKT signaling pathway, thereby abrogating its

inhibition on CHK2. This disruption would facilitate CHK2

function and enable p53-mediated repair of DNA damage.
Frontiers in Oncology 07
However, mutations in CHK2, p53, or ATM could impair this

response by preventing CHK2 activity directly or by inhibiting

CHK2 phosphorylation by ATM (47).

The present study confirms that BRCA1 germline variants are

consistently associated with a higher susceptibility to TNBC, with a

lifetime risk of between 50 and 85% (48–50). In addition, BRCA2

germline variants show an increased predisposition for HER2- groups

(48, 49). Furthermore, PALB2 germline variant carriers were found to

have a higher predisposition to develop TNBC. In fact, BC in PALB2

germline variant carriers has similar phenotypic characteristics to our

results: 40% are TNBC, and 93% are HER2- (51). Moreover, germline

variants on BARD1 and RAD51C genes were found to predispose to

TNBC. Interestingly, the BARD1 protein interacts with BRCA1

(BRCA1-BARD1) forming a tumor suppressor complex, which is an

E3 ubiquitin ligase necessary for DNA double-strand breaks repair by

RAD51-mediated homologous recombination (52). Identifying the

three genes predisposing to TNBC may suggest a role of this

pathway in the BC subtype development.

This study has some limitations. Smaller studies reporting lower

OR for rare germline variants in individuals with BC are

underrepresented in the scientific literature, possibly indicating a
FIGURE 6

Forest plot showing the predisposition to HR+HER2+ (cases) breast cancer subtype compared to HR-HER2+ (controls) for the CHEK2 gene.
FIGURE 5

Forest plot showing the predisposing of HR+HER2+ (cases) breast cancer subtype compared to HR+HER2- (controls) for variant carriers on
TP53 gene.
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potential bias toward publishing studies with stronger or more

significant findings. To address this bias, this work included only

studies that perform multi-genic analysis. In addition, some

publications focused only on a limited number of variants within

their cohorts. Despite our efforts to ask authors for additional data

for subgroup analyses, the meta-analyzed data were ultimately

limited compared to larger cohorts. A risk of bias assessment

revealed that confounding factors were identified in several

studies, with no methods provided to address them. However,

given the nature of the data we used for the meta-analysis, these

confounders would not directly interfere with our analyses.
Frontiers in Oncology 08
Finally, this study strengthens our understanding of the gene-

specific risks associated with HER2 overexpression and provides

crucial insights to identify genes that need to be tested in the context

of HER2+ BC. Such findings could improve the management of

hereditary BC by guiding the exploration of genes and prognosis of

the disease through the correlation of gene-subtype BC. To our

knowledge, this is the first meta-analysis to investigate genetic

variants associated with HER2+ BC, through comparisons

between BC subtypes. The meta-analysis results and literature

review findings point to the importance of a closer examination

of TP53 germline variants in relation to breast tumors with
FIGURE 8

Network presenting the comparisons performed in the meta-analysis and the respective genes found predisposing to the BC subtype. The
rectangles represent groups by subtypes of BC. Each color within the rectangle represents a subtype. Circles represent genes found in the
associations. Circled circles represent genes found in any association comparing HER2+ with HER2-. Red-circled circles represent genes found
exclusively in HER2+ with HER2- associations. The edges connect the gene and the subtype in which a higher predisposition was found.
FIGURE 7

Forest plots of the comparison of HR+HER2- (cases) breast cancer subtype predisposition related to TNBC (controls) for the genes BRCA1, PALB2,
ATM, CHEK2, RAD51C, and BARD1.
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overexpressed HER2. Also, CHEK2 and ATM germline variants

predisposed to HER2+ only when compared to TNBC and could be

involved with HER2 overexpression more intricately. Furthermore,

variants in BRCA1 may confer a higher risk for the development of

TNBC in comparison to other subtypes. This association was

already suggested in the literature and the meta-analysis was able

to confirm the evidence. Moreover, BRCA2 germline variants

exhibited a greater predisposition to HER2- when compared to

HER2 overexpressing groups, implying a possible involvement of

this gene in the HER2 expression.
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