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Background: In the era of immune checkpoint blockade, the role of cancer

vaccines in immune priming has provided additional potential for therapeutic

improvements. Prior studies have demonstrated delayed type hypersensitivity

and anti-tumor immunity with vaccines engineered to secrete granulocyte-

macrophage colony-stimulating factor (GM-CSF). The safety, efficacy and anti-

tumor immunity of GM-CSF secreting vaccine in patients with previously treated

stage III or IV melanoma needs further investigation.

Methods: In this phase II trial, excised lymph node metastases were processed to

single cells, transduced with an adenoviral vector encoding GM-CSF, irradiated,

and cryopreserved. Individual vaccines were composed of 1x106, 4x106, or 1x107

tumor cells, and were injected intradermally and subcutaneously at weekly and

biweekly intervals. The primary endpoints were feasibility of producing vaccine in

stage III patients and determining the proportion of patients alive at two years in

stage IV patients.
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Results: GM-CSF vaccine was successfully developed and administered in all 61

patients. Toxicities were restricted to grade 1-2 local skin reactions. The median

OS for stage III patients (n = 20) was 71.1 (95% CI, 43.7 to NR) months and 14.9

(95%CI, 12.1 to 39.7) months for stage IV patients. The median PFS in stage III

patients was 50.7 (95%CI, 36.3 to NR) months and 4.1 (95% CI, 3.0-6.3) months in

stage IV patients. In the overall population, the disease control rate was 39.3%

(95%CI, 27.1 to 52.7%). In stage III patients, higher pre-treatment plasma cytokine

levels of MMP-1, TRAIL, CXCL-11, CXCL-13 were associated with improved PFS

(p<0.05 for all). An increase in post-vaccination levels of IL-15 and TRAIL for stage

III patients was associated with improved PFS (p=0.03 for both). Similarly, an

increase in post-vaccination IL-16 level for stage IV patients was associated with

improved PFS (p=0.02) and clinical benefit.

Conclusions: Vaccination with autologous melanoma cells secreting GM-CSF

augments antitumor immunity in stage III and IV patients with melanoma, is safe,

and demonstrates disease control. Luminex data suggests that changes in

inflammatory cytokines and immune cell infiltration promote tumor antigen

presentation and subsequent tumor cell destruction. Additional investigation to

administer this vaccine in combinationwith immune checkpoint inhibitors is needed.
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Introduction

Current standard of care immunotherapies for melanoma in the

adjuvant and metastatic settings include immune checkpoint inhibitors

directed at programmed death 1 (PD-1), namely nivolumab and

pembrolizumab, and at cytotoxic T-lymphocyte antigen 4 (CTLA-4),

ipilimumab, given as monotherapy or in combination. Recently, the

Food and Drug Administration approved a third immune checkpoint

inhibitor, relatlimab (anti-LAG-3 antibody) in combination with

nivolumab for the treatment of patients with metastatic melanoma in

the first and later line settings. With the advent of immunological

checkpoint inhibitors, the treatment landscape for melanoma has been

revolutionized. However, research is ongoing to develop new therapies

to further improve outcomes while limiting toxicities.

A recent press release for a phase IIb clinical trial with an mRNA

vaccine for melanoma in combination with pembrolizumab in 157

patients with resected stage III or IV melanoma identified a 44%

reduction in the risk of recurrence or death when compared to standard

of care therapy with pembrolizumab alone (1). This is an exciting

development in which the mRNA cancer vaccine can prime patients’

immune system to generate a response to melanoma. However,

developing vaccines for melanoma has been ongoing for decades, and

the potential for whole cell vaccination strategies requiring further

study. Initial vaccine studies included allogeneic and autologous

granulocyte-macrophage colony stimulating factor (GM-CSF)-

secreting tumor vaccines for pancreas cancer and melanoma (2, 3).

Phase I studies demonstrated that GM-CSF secreting vaccines induced
02
delayed-type hypersensitivity responses to autologous tumor cells and

that vaccination sites showed brisk infiltrates of dendritic cells,

macrophages, eosinophils, and lymphocytes contributing to enhanced

tumor antigen presentation and ultimately promoting anti-tumor

immunity (3–9). We previously conducted a phase I study with

irradiated, autologous melanoma cells engineered to secrete GM-CSF

by adenoviral mediated gene transfer, which demonstrated safety for

patients and augmentation in anti-tumor immunity (6). Here, we

present data from a phase II trial of irradiated, autologous melanoma

cells engineered to secrete GM-CSF by adenoviral mediated gene

transfer in patients with stage III and IV melanoma.
Methods

Patients

Patients were eligible if they were 18 years of age or older and

had previously treated or untreated, histologically confirmed, stage

III or IV melanoma with ECOG performance status 0 or 1. Patients

with stage III melanoma were eligible if gross lymphadenopathy of

at least 2cm was present by physical exam or on CT in a region

draining a known primary melanoma; and have refused, failed or

not been appropriate candidates for adjuvant high-dose interferon.

Patients who received prior systemic chemotherapy, radiotherapy,

immunotherapy or glucocorticoid therapy were eligible if the last

dose was received at least 4 weeks prior to trial enrollment. Patients
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with prior bone marrow or peripheral blood stem cell transplant

were eligible if they were greater than 6 months from transplant at

time of trial enrollment. Key exclusion criteria were uveal

melanoma, uncontrolled active infection, pregnant or nursing

mothers, and infection with HIV. Full inclusion and exclusion

criteria are listed in the study protocol. The study protocol was

reviewed and approved by the Dana-Farber/Harvard Cancer Center

institutional review board. All patients provided written informed

consent. An independent data monitoring committee provided

oversight to assess efficacy and safety of lethally irradiated,

autologous melanoma cells engineered by adenoviral mediated

gene transfer to secrete GM-CSF (NCT #00809588).
Trial design, vaccine preparation
and administration

In this phase 2 trial, patients received individual vaccine doses of

lethally irradiated, autologousmelanoma cells engineered by adenoviral

mediated gene transfer to secrete GM-CSF. Methods of vaccine

production have been previously described (5). Briefly, excised

melanoma metastases were processed to single cells, transduced with

a replication defective adenoviral vector encoding human GM-CSF,

irradiated with 10,000 cGy, and cryopreserved in liquid nitrogen. GM-

CSF secretion was determined by ELISA. A portion of tumor cells was

not transduced and used in delayed-type hypersensitivity analysis.

Individual vaccines were composed of 1x106, 4x106, 1x107 tumor

cells, or one-sixth of total depending upon overall yield, and were

injected intradermally (0.5ml) and subcutaneously (0.5ml) into limbs

or abdomen on a rotating basis on days 0, 7, 14 and every two weeks

thereafter until the supply of vaccine was exhausted or the patient was

removed from study. Administration of non-transduced, irradiated

cells (1x106) were given on day 0 and with the fifth vaccination

intradermally (0.5ml) for evaluation of baseline and vaccine induced

delayed-type hypersensitivity. Patients could participate in a second

round of tumor procurement, vaccine production, and vaccination as

long as the patient continued to meet eligibility criteria. Treatment

continued until the occurrence of disease progression, unacceptable

adverse effects, or withdrawal of consent. Patients underwent scans at

week 10 and then at four-month intervals and peripheral blood was

collected for immunologic analysis monthly. Biopsies were performed

for vaccination reaction (after first vaccine dose) and delayed-type

hypersensitivity reaction 2-3 days after administration and again after

fifth vaccine dose for vaccination reaction, and if available, for a second

delayed-type hypersensitivity reaction. Please see Supplementary

Figure 1 for clinical trial schema.
End points and assessments

This study consisted of two parallel cohorts: patients with stage

III melanoma and patients with stage IV melanoma. The primary

endpoint in the first cohort was feasibility of preparing lethally

irradiated, autologous melanoma cells engineered by adenoviral

mediated gene transfer to secrete GM-CSF in patients with stage III

melanoma. The primary endpoint in the second cohort was to
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determine the proportion of patients alive at two years. Secondary

endpoints for both cohorts included progression free survival,

overall survival, and rate of adverse events. Progression-free

survival was assessed according to RECIST, version 1.1, by

blinded independent review. Adverse events were assessed

continuously throughout the trial and for at least 30 days after

treatment was discontinued and were graded according to the

National Cancer Institute Common Terminology Criteria for

Adverse Events, version 2.0. Exploratory endpoints included

analysis of cytokines by Luminex platform to analyze correlation

of certain biomarkers with clinical outcomes.

The distributions of OS and PFS are presented using the

method of Kaplan-Meier with 95% confidence intervals estimated

using log[-log(endpoint)] methodology and log-rank testing. All

statistical testing is two-sided with nominal significance levels of

0.05. There are no corrections for multiple comparisons. Analyses

were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
Immunologic analysis

Cytokines and chemokines were quantified in serum samples

using the FLEXMAP3D Luminex platform, and the xPONENT

software for standard curve extrapolation. The following analytes

were analyzed: MMP-1, TRAIL, TSLP, MIF, LIF, MDC, APRIL,

TWEAK, CCL-2, CCL-3, CCL-4, CCL-8, CCL-11, CCL-24, CXCL-

5, CXCL-10, CXCL-11, CXCL-13, CD30, CD40L, CTLA-8, IL-2, IL-

15, IL-16, IL-18, IL-20, SCF, G-CSF, HGF, SDF-1a, TNF-RII, and

VEGF-A. Concentrations of analytes below LLOQ were not

considered in the analysis. Serum samples were diluted by two

and processed for analyses as recommended by manufacturer

protocol (Bio-Techne, Minneapolis MN) (10–12).

The endpoint of interest for the Luminex analysis in the Stage III

cohort was PFS; for the Stage IV cohort the endpoints were clinical

benefit rate (best response of CR, PR, or SD per RECIST 1.1) and PFS.

Pretreatment measurements are summarized descriptively; each

pretreatment biomarker is divided at its respective median and

subsequent PFS summarized stratified by pretreatment high/low

using the method of Kaplan-Meier. Changes at four to eight weeks

relative to pretreatment are expressed as fold-changes (post/pre) and

are summarized descriptively and compared with one using Wilcoxon

signed-rank tests. Fold-changes are also divided into high/low

according to the respective median of the fold-change. The

distributions of subsequent PFS are described using the method of

Kaplan-Meier and compared using log-rank tests. Comparisons of

clinical benefit rates according to high/low pre-treatment biomarker

levels used Fisher’s exact tests. The STROBE cohort reporting

guidelines were used (13).
Results

Patients

From November 2003 through June 2009, a total of 84 patients

were enrolled in this trial to receive a vaccine with lethally irradiated,
frontiersin.org
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autologous melanoma cells engineered to secrete GM-CSF. Four

patients cancelled registration and nineteen patients did not receive

any treatment; the final cohort was comprised of 61 patients, of which

20 had stage III disease and 41 had stage IV disease. The median

follow up was 74 months (95%CI, 53 to 116). Overall, the median age

was 56.6 years (range 14.4-80.2) with equal distribution of female (28

patients, 45.9%) to male, and predominantly Caucasian (100%)

(Table 1). Across both stages, a total of 22 patients (36.1%)

received prior adjuvant interferon, 12 patients (19.7%) received

prior chemotherapy, and 16 patients (26.2%) received prior

immunotherapy. The most frequent site of metastases was lymph

nodes (36 patients, 59.0%), followed by lung (29 patients, 47.5%) and

skin (18 patients, 29.5%) or other sites (19 patients, 31.1%).
Frontiers in Oncology 04
Efficacy

Among all patients, the median number of vaccinations was 7

(range 1-27). Among patients with stage IV disease, 1 patient (2.4%)

had a partial response, 11 patients had stable disease (26.8%), and

29 patients (70.7%) had progressive disease (Table 2). Of patients

with stage III disease, 14 (70%) had no evidence of disease and 3

(15%) had progressive disease. In the total cohort, the disease

control rate (CR+PR+SD) was 39.3% (95%CI, 27.1 to 52.7%).

With a median follow up of 74 months, the median

progression-free survival was 7.9 (95%CI, 4.4 to 32.4) months in

patients who received lethally irradiated, autologous melanoma cells

engineered by adenoviral mediated gene transfer to secrete GM-

CSF (Figure 1A). The median progression-free survival for patients

with stage III disease was 50.7 (95%CI, 36.2 to NR) months and 4.1

(95%CI, 3.0 to 6.3) months for patients with stage IV disease

(p<0.001) (Figure 1B).

The median overall survival was 32.4 (95%CI, 16.0 to 71.1)

months (Figure 2A). Additionally, the median overall survival for

patients with stage III disease was 71.1 (95%CI, 43.7 to NR) months

and 14.9 (95%CI, 12.1 to 39.7) months for patients with stage IV

disease (p = 0.018) (Figure 2B).
Safety

The most frequent treatment-related adverse events are shown

in Table 3. Of 61 patients, a total of 58 patients (95.1%) had any

treatment-related adverse event, mostly grades 1-2. The most
TABLE 1 Patient demographics and disease characteristics at baseline.

Characteristics All (N=61)
Stage

III (N=20) IV (N=41)

Median (min-max)

Age (years) 56.6 (14.4-80.2) 58.5 (26.8-80.2) 54.6 (14.4-77.6)

BMI 27.0 (18.7-46.9) 27.9 (19.2-46.9) 26.7 (18.7-34.5)

N (%)

Gender

Female 28 (45.9%) 6 (30.0%) 22 (53.7%)

Race

Caucasian 61 (100.0%) 20 (100.0%) 41 (100.0%)

Ethnicity

Hispanic or Latino 5 (8.2%) 1 (5.0%) 4 (9.8%)

Non-Hispanic 56 (91.8%) 19 (95.0%) 37 (90.2%)

ECOG performance status

0 50 (82.0%) 17 (85.0%) 33 (80.5%)

1 9 (14.8%) 2 (10.0%) 7 (17.1%)

Not applicable 2 (3.3%) 1 (5.0%) 1 (2.4%)

Prior chemotherapy

No 49 (80.3%) 18 (90.0%) 31 (75.6%)

Yes 12 (19.7%) 2 (10.0%) 10 (24.4%)

Prior adjuvant interferon

No 39 (63.9%) 13 (65.0%) 26 (63.4%)

Yes 22 (36.1%) 7 (35.0%) 15 (36.6%)

Prior other immunotherapy

No 45 (73.8%) 18 (90.0%) 27 (65.9%)

Yes 16 (26.2%) 2 (10.0%) 14 (34.1%)

Prior radiation therapy

No 37 (60.7%) 14 (70.0%) 23 (56.1%)

(Continued)
TABLE 1 Continued

Characteristics All (N=61)
Stage

III (N=20) IV (N=41)

Prior radiation therapy

Yes 23 (37.7%) 5 (25.0%) 18 (43.9%)

Unknown 1 (1.6%) 1 (5.0%) 0 (0.0%)

Location of metastases*

Skin 18 (29.5%) 5 (25.0%) 13 (31.7%)

Liver 9 (14.8%) 0 (0.0%) 9 (22.0%)

Brain 4 (6.6%) 0 (0.0%) 4 (9.8%)

Lung 29 (47.5%) 0 (0.0%) 29 (70.7%)

Lymph nodes 36 (59.0%) 16 (80.0%) 20 (48.8%)

Other 19 (31.1%) 1 (5.0%) 18 (43.9%)

Site of procurement

Lung 13 (21.3%) 1 (5.0%) 12 (29.3%)

Lymph nodes 21 (34.4%) 14 (70.0%) 7 (17.1%)

Skin 10 (16.4%) 4 (20.0%) 6 (14.6%)

Other 17 (27.9%) 1 (5.0%) 16 (39.0%)
*Some patients may have more than one site of metastatic disease.
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common grade 1 or 2 treatment-related adverse events included

erythema in 46 patients (75.4%), injection site reactions in 30

patients (49.2%), and pruritis in 18 patients (29.5%). One patient

had a grade 3 treatment-related adverse event of wound infection.

No autoimmune reactions or adenoviral infections were observed.

All other grade 3 or 4 adverse events were not related to treatment.

For a full list of treatment-related adverse events and any adverse

event, please see Supplementary Tables 1 and 2. Three grade 4

adverse events occurred, unlikely related to treatment. These

included abdominal pain, pericarditis, and constitutional.
Delayed-type hypersensitivity reactions

Irradiated, autologous nontransduced melanoma cells were

available for delayed-type hypersensitivity testing in 60 patients
Frontiers in Oncology 05
(insufficient cells precluded these studies in one patient). Sixty

patients received at least one injection; 88% of patients received at

least two injections, for a total of 124 injections in the entire cohort.

Most patients received injection at a dose of 1x106 (range: 1x106 to

4x106). About one third of injections provoked a clinical reaction at

the injection site. The most common injection site reactions

included erythema (33% of injections), induration (35%), redness

(20%) and pruritis (9%). Supplementary Table 5 details delayed-

type hypersensitivity (DTH) reactions. No association between a

positive DTH reaction and PFS was observed.
Luminex

Stage III patients
A total of 32 biomarkers were analyzed by Luminex. For stage

III patients, 19 had pre-treatment biomarker data and 18 also had

biomarker data 4-8 weeks after the first dose of vaccine. In stage III

patients, higher pre-treatment levels of MMP-1, TRAIL, CXCL-11,

and CXCL-13 were statistically significantly related to improved

PFS (p<0.05 for all), (Figure 3). Higher pre-treatment levels of

CD40L, CTLA-8, and IL-20 trended toward improved PFS, but

were not statist ically significant (p=0.09, p=0.07 and

p=0.08, respectively).

IL-16 and IL-20 had statistically significant increases in

expression during the first 4-8 weeks after first vaccine when

compared to pre-treatment levels (median increase of 76% and

58%, respectively; p<0.05 for both). For a complete list of

biomarkers comparing fold-change from pre-treatment to 4-8

weeks post first vaccine, please see Supplementary Table 3.

In an exploratory analysis of 18 stage III patients, the fold-

change of IL-15 and TRAIL levels when comparing pre-treatment

to 8 weeks after first vaccine were significantly associated with PFS.

A 5% or more decrease in IL-15 was associated with worse PFS

compared to patients who had an increase in IL-15 (p=0.03)

(Figure 4A). Similarly, an increase in fold-change of TRAIL was

significantly associated with improved PFS (p=0.03) (Figure 4B). A

decrease in fold-change in CXCL-11 demonstrated improved PFS

but did not reach statistical significance (p=0.054).

Stage IV patients
For stage IV disease, 37 patients had pre-treatment biomarker

data and 36 patients had biomarker data 4-8 weeks after the first

vaccine dose. No statistically significant associations were

demonstrated between pre-treatment biomarker levels and PFS.

Lower pre-treatment levels of MDC and VEGF-A demonstrated

better PFS, although not statistically significant (p=0.12 and

p=0.14, respectively).

In comparing fold-change of cytokine expression from pre-

treatment levels to 4-8 weeks after first vaccine, CTLA-8 and CXCL-

5 demonstrated a statistically significant decrease (p=0.02 and

p=0.01, respectively) (Supplementary Table 4). MMP-1 and IL-18

demonstrated decrease in fold-change, although not statistically

significant (p=0.09 and p=0.07, respectively).

Increase in fold-change of IL-16 after treatment was

significantly associated with improved PFS when compared to
TABLE 2 Response rates stratified by stage.

Characteristics
All

(N=61)

Stage

III
(N=20)

IV
(N=41)

Median (min-max)

Total # vaccinations
7.0

(1.0-27.0)
8.5

(3.0-27.0)
6.0

(1.0-27.0)

N (%)

Best objective response

Partial response 1 (1.6%) 0 (0.0%) 1 (2.4%)

Stable disease 23 (37.7%) 0 (0.0%) 11 (26.8%)

Progressive disease 32 (52.5%) 3 (15.0%) 29 (70.7%)

No evidence of disease 2 (3.3%) 14 (70.0%) 0 (0.0%)

Missing 3 (4.9%) 3 (15.0%) 0 (0.0%)

Progression on treatment

No 27 (44.3%) 16 (80.0%) 11 (26.8%)

Yes 34 (55.7%) 4 (20.0%) 30 (73.2%)

Cause of death

Progressive disease 37 (60.7%) 9 (45.0%) 28 (68.3%)

Unknown 2 (3.3%) 0 (0.0%) 2 (4.9%)

Alive/Loss to follow-up 22 (36.1%) 11 (55.0%) 11 (26.8%)

Survival status

Alive 20 (32.8%) 11 (55.0%) 9 (22.0%)

Dead 39 (63.9%) 9 (45.0%) 30 (73.2%)

Loss to follow-up 2 (3.3%) 0 (0.0%) 2 (4.9%)

Reason off-study

Patient completed
protocol treatment

32 (52.5%) 17 (85.0%) 15 (36.6%)

Progressive disease 27 (44.3%) 3 (15.0%) 24 (58.5%)

Other 2 (3.3%) 0 (0.0%) 2 (4.9%)
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pre-treatment levels (p=0.02) (Figure 4C). Increases in CCL-4 and

CXCL-11 during the first 4-8 weeks were associated with improved

PFS, although not statistically significant (p=0.08 for both). A

greater than 30% decrease in CCL-24 levels was associated with

worse PFS, although not statistically significant (p=0.07). A fold-

change in IL-16 was also related to clinical benefit. The clinical

benefit rate (CR, PR, or SD) in patients with more than 2% increase

in IL-16 was 47% (8 of 17 patients), compared to 12% in patients

with a decrease or small increase in IL-16.

For stage IV patients, 11 patients experienced a DTH reaction

and had pre-treatment Luminex data available and 23 did not have

a DTH reaction but had Luminex data available. Pretreatment

CXCL-11 levels were higher in patients who experienced a DTH

reaction compared to patients who did not have a DTH reaction,

although not statistically significant (p=0.10). CXCL-5 levels were

lower in patients who had a DTH reaction compared to those that

did not have a DTH reaction but was not statistically significant (p =

0.08). At a median of four weeks after first vaccine, 32 patients with

stage IV disease had available Luminex data for analysis, of which

10 patients had a DTH reaction. CTLA-8 levels were lower in

patients who had a reaction, although not statistically significant
Frontiers in Oncology 06
(p=0.08). Supplementary Table 6 details Luminex data for patients

with and without DTH reaction.
Discussion

This phase II trial of autologous GM-CSF-secreting melanoma

cell vaccines in stage III and IV patients demonstrates modest

efficacy with evidence for the enhancement of anti-tumor

immunity. The disease control rate in the overall cohort was

39.3% in patients who received GM-CSF secreting vaccines. Four

of twenty (20%) patients with stage III disease progressed while

receiving treatment, with a median PFS of 4.2 years and median OS

of 5.9 years (5-year OS rate of 62%). Historically, the median

recurrence free survival was about 2.2 to 2.5 years for resected

high-risk stage III-IV patients receiving adjuvant interferon and

median 5-year OS rate was 60% (14–17). This is comparable or

inferior to our findings with adjuvant GM-CSF vaccine, which pre-

dates the era of immune checkpoint inhibitor therapy. Vaccination

is also associated with less toxicities compared to interferon-alpha

(14–17).
BA

FIGURE 2

Overall survival. (A) OS for all patients who received vaccine therapy. (B) OS stratified by stage III or IV melanoma who received vaccine therapy. Tick
marks indicate censored data.
BA

FIGURE 1

Progression free survival. (A) PFS for all patients who received vaccine therapy. (B) PFS stratified by stage III or IV melanoma who received vaccine
therapy. Tick marks indicate censored data.
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Thirty of forty-one (72.2%) patients with stage IV disease

progressed while receiving treatment, with a median PFS of 4.1

months and median OS of 14.9 months. These findings are

comparable to historic data for ipilimumab in patients with

metastatic disease, with median OS of 11.4 months in patients

receiving ipilimumab for metastatic melanoma (18). Together, our

data suggest that the GM-CSF secreting vaccine may be more

efficacious in patients with locoregional disease compared to

metastatic disease. Prior studies have demonstrated that

functional tumor-specific T cells are more frequently found in

melanoma patients with regional metastasis (71%), in comparison

to patients with distant metastasis (23%) (19). Additionally, the

greater efficacy of GM-CSF vaccination in the adjuvant setting may

result in eradication of residual micro-metastasis if present, and

higher frequencies of functional tumor-specific T cells may be due

to lower tumor burden and ultimately less tumor-mediated

immune suppression compared to metastatic disease (20).

In addition, the results of Luminex analysis demonstrated

stronger correlation to changes in anti-tumor immunity for stage

III patients. Higher pre-treatment levels of MMP-1, TRAIL, CXCL-

11, and CXCL-13 were associated with improved PFS. Matrix

metalloproteinase-1 (MMP-1) serves as an extracellular matrix

degrading enzyme that facilitates tumor migration and invasion,
Frontiers in Oncology 07
promoting melanoma growth and metastasis (21). Higher levels of

MMP-1 prior to vaccination might, however, modify immune cell

trafficking or modulate dendritic cell function to facilitate an anti-

tumor immune response. Similarly, TNFa-related apoptosis-

inducing ligand (TRAIL) may promote extrinsic proapoptotic

pathways through death receptor mediated signaling, potentially

stimulating tumor cell killing in the presence of immune activation

(22–25). Additionally, the presence of inflammatory (CXCL-11)

and lymphoid (CXCL-13) chemokines has been associated with the

recruitment of tumor infiltrating lymphocytes, namely CD4+ T

cells, CD8+ T cells and mature dendritic cells, to promote

melanoma cell destruction (26–28). CXCL-13 is also linked to the

formation of tertiary lymphoid structures, and prior work showed

that GM-CSF based vaccines stimulate coordinated T cell and

antibody responses (4, 6). Together, these data raise the

possibility that vaccine efficacy might be influenced, at least in

part, by particular mixtures of chemokines and soluble tumor-

associated factors that are present at the time of initiating therapy.

Luminex results for stage III patients also demonstrated

increased expression of IL-16 and IL-20 after vaccine therapy,

which suggests the initiation and/or amplification of an

inflammatory response via activation of CD4+ T cells that might

secrete additional pro-inflammatory cytokines including IL-1b, IL-
TABLE 3 Summary of adverse events.

Adverse Event Any Grade Grade 1 Grade 2 Grade 3 Grade 4

Any Adverse Event 60 (98.4%) 18 (29.5%) 32 (52.5%) 7 (11.5%) 3 (4.9%)

Treatment-Related 58 (95.1%) 37 (60.7%) 20 (32.8%) 1 (1.6%) –

Treatment-related with at least 10% incidence

Erythema 46 (75.4%) 40 (65.6%) 6 (9.8%) – –

Injection Site Reaction 30 (49.2%) 25 (41.0%) 5 (8.2%) – –

Pruritis 18 (29.5%) 17 (27.9%) 1 (1.6%) – –

Pain* 12 (19.7%) 7 (11.5%) 5 (8.2%) – –

Fatigue 12 (19.7%) 10 (16.4%) 2 (3.3%) – –

Lab Abnormalities† 8 (13.1%) 7 (11.5%) 1 (1.6%) – –

Arthralgia 8 (13.1%) 7 (11.5%) 1 (1.6%) – –

Myalgia 8 (13.1%) 7 (11.5%) 1 (1.6%) – –

Grade 3 or higher, any attribution

Lab abnormalities† 6 (9.8%) – – 6 (9.8%) –

Edema 1 (1.6%) – – 1 (1.6%) –

Pericarditis 1 (1.6%) – – – 1 (1.6%)

Fatigue 1 (1.6%) – – 1 (1.6%) –

Constitutional 1 (1.6%) – – – 1 (1.6%)

Wound Infection± 1 (1.6%) – – 1 (1.6%) –

Metabolic 2 (3.3%) – – 2 (3.3%) –

Pain* 4 (6.6%) – – 3 (1.6%) 1 (1.6%)
fr
*Tumor, bone, general, abdominal or joint pain.
†Changes in hemoglobin, leukocyte, platelet counts, LFTs, or electrolytes.
± Deemed related to treatment; all other Grade-3+ not related.
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A

B C

FIGURE 4

A fold-change above the median of 0.95 for IL-15 [(A), Stage III]; 1.00 for TRAIL [(B), Stage III]; and 1.02 for IL-16 [(C), Stage IV] was significantly
associated with improved PFS.
B

C D

A

FIGURE 3

Kaplan-Meier plots of biomarkers related to improved PFS. (A) Patients with pre-treatment MMP-1 expression above the median of 20.9 was
associated with significantly improved PFS (log-rang p=0.009); (B) Patients with TRAIL expression above the median of 2.86 was associated with
significantly better PFS (p = 0.01). (C) Patients with CXCL-11 expression above median of 2.44 was associated with significantly better PFS (p=0.03);
and (D) Patients with CXCL-13 expression above the median of 2.76 was associated with significantly better PFS (p = 0.05).
Frontiers in Oncology frontiersin.org08

https://doi.org/10.3389/fonc.2024.1395978
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sussman et al. 10.3389/fonc.2024.1395978
6 and TNF-a (29–31). Moreover, increases in expression of IL-15

and TRAIL after vaccine therapy were associated with improved

PFS in stage III patients. Recent studies have suggested that

interleukins, like IL-15 elicit changes in natural killer cells that

subsequently provide anti-tumor functionality and can remain

active for weeks after first cytokine stimulation (32, 33). This

further suggests that inflammatory cytokines induced by

vaccination potentially contribute to tumor cell destruction and

anti-tumor immunity.

Stage IV patients similarly demonstrated increases in IL-16 after

vaccination that were associated with improved PFS and clinical

benefit. IL-16 stimulates the production of pro-inflammatory

cytokines, which would also support anti-tumor immunity (30).

Levels of CTLA-8 (IL-17) and CXCL-5 decreased after vaccination,

potentially indicating a reduction in tumor-promoting

inflammation. Indeed, several studies have indicated that CTLA-8

(IL-17) may stimulate cancer cells to produce angiogenic factors like

VEGF, thereby enhancing tumor angiogenesis and growth via

STAT3 signaling (34–37). While CXCL-5 is a chemokine that

recruits and activates leukocytes, it also promotes angiogenesis,

tumor growth, and metastasis (38–41). High levels of CXCL-5 have

similarly been associated with clinical response in a small study of

patients treated with ipilimumab plus nivolumab, suggesting that

the role of this chemokine in immunotherapy should be

investigated in more detail (42).

The use of GM-CSF in cancer vaccines is based on the ability of

the cytokine to increase antigen-specific immune responses and to

function as an immune adjuvant for dendritic cells (43). Indeed,

autologous dendritic cell vaccines can generate potent anti-tumor

immune responses via enhanced tumor antigen presentation (44).

The median OS demonstrated in our study of 14.9 months for stage

IV patients is similar to prior dendritic cell vaccine trials using

allogeneic and autologous tumor cells, with OS ranging from 12 to

14 months (45, 46). Moreover, Dillman et al. conducted a

randomized phase II trial that compared autologous tumor cell

vaccine (TC) with autologous tumor cells loaded onto dendritic

cells (DCV) admixed with GM-CSF protein in 42 patients with

metastatic melanoma (47–49). This trial demonstrated that the

DCV arm achieved a superior 2-year survival rate of 72% versus

31% in the TC arm (p=0.007) (48). At 5-years, patients who

received DCV survived longer with a median OS of 43.4 months

versus 20.5 months, and showed a 70% reduction in the risk of

death (HR 0.30, p=0.005) (49). Similarly, two clinical trials that

administered ipilimumab to patients with metastatic melanoma or

ovarian carcinoma that were previously vaccinated with autologous

GM-CSF-secreting melanoma or ovarian cancer vaccines

demonstrated extensive tumor necrosis or the reduction of cancer

antigen-125 (CA-125) levels (50, 51). These findings suggest that

the addition of CTLA-4 inhibition might intensify tumor immunity

in patients who have been previously vaccinated. In this context,

GM-CSF secreting melanoma vaccines may serve to prime a

patient’s immune system, whereas the addition of checkpoint

blockade or other immune activating mechanisms may augment

the anti-tumor response and potentiate clinical efficacy.

Additional promising investigations in vaccine therapy include

neoantigen vaccines in melanoma. Several studies with neoantigen
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vaccines using mRNA or peptides admixed with poly-ICLC

(NeoVax) were recently published (52–54). Ott et al.

demonstrated in six high-risk resected stage III-IV melanoma

patients that personalized vaccines formulated with up to 20

predicted MHC class I restricted neoantigens induced specific

CD4+ and, to a lesser extent, CD8+ T cells (54). At 25 months

after vaccination, four patients showed no recurrence and the two

patients who did recur subsequently achieved complete responses

after anti-PD-1 therapy. mRNA vaccines similarly demonstrated

the generation of antigen specific CD4+ and CD8+ T cells and a

phenomenon of epitope-spreading (52–54). Neoantigen vaccines

are now being broadly studied in conjunction with anti-PD-1

therapies in several disease settings.

The current study demonstrates the feasibility of an autologous

whole cell vaccination strategy in stage III and stage IV metastatic

melanoma patients. Limitations of this study include the small

cohort size and the single-arm design. Since there was no

comparator cohort, we cannot definitively demonstrate an

improvement in PFS or OS that can be attributed to GM-CSF

secreting melanoma vaccines. Follow up data on subsequent

therapies that patients received after vaccination were not

collected, so the potential impact of immune checkpoint inhibitor

therapy on PFS or OS is unknown at this time. The Luminex

findings are also exploratory and must be verified in a larger cohort

of patients. Additionally, biopsies of metastatic sites may have

provided further information on immune cell infiltration,

especially in comparison to local vaccine site biopsies. Prior

studies have demonstrated infiltrates composed of dendritic cells,

macrophages, T and B lymphocytes, and eosinophils in vaccination

sites and distant metastases (4, 6). Lastly, the efficacy of such a

vaccination strategy may be of greater benefit in patients with

limited disease in the adjuvant setting and with the use of

immune checkpoint blockade.

In conclusion, this study demonstrates that vaccination with

irradiated, autologous melanoma cells engineered to secrete GM-

CSF may elicit antitumor immunity in patients with stage III and IV

melanoma. The overall disease control rate of 39%, with a median

follow up of 74 months, is intriguing and raises the possibility that

GM-CSF vaccination might be effectively combined with immune

checkpoint inhibitor therapy. The median PFS of 50.7 months and

median OS of 71.1 months in high-risk resected stage III patients is

comparable to or potentially superior in efficacy to interferon in the

pre-ICI era and suggests that GM-CSF vaccination may be

particularly efficacious when combined with immune checkpoint

blockade for stage III patients. The prolonged overall survival in

stage III patients suggests that the presence of minimal/locoregional

disease might facilitate the priming of anti-tumor immunity with

GM-CSF secreting melanoma vaccines, which might be further

intensified with the addition of immune checkpoint inhibitors.
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