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Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute,
Wake Forest School of Medicine, Charlotte, NC, United States
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-

Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for

lymphomatous malignancies. Despite the success, treatment failure due to

CD19 antigen loss, mutation, or down-regulation remains the main obstacle to

cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as

prolonged B-cell aplasia, limiting the application of therapy in indolent diseases

such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-

specific CAR are potential solutions to improving cellular therapy outcomes in B-

NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens

have been studied as CAR targets, some of which already showed promising

results in clinical trials. Some antigens are expressed by different lymphomas and

could be used for designing tumor-agnostic CAR. Here, we reviewed the

antigens that have been studied for novel CAR-based therapies, as well as

CARs designed to target two or more antigens in the treatment of lymphoma.
KEYWORDS

chimeric antigen receptor, B-cell lymphoma, Hodgkin lymphoma, T-cell lymphoma,
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Introduction

CARs are synthetic molecules that are encoded by an antigen-binding domain –

typically a monoclonal antibody-based single-chain fragment variable (scFv), an

extracellular hinge to improve immune synapses formation, a transmembrane anchor, a

costimulatory and intracellular domain for signal transduction (1). Once expressed by the

transduced cells, most commonly T-cells, sometimes NK-cells, CARs improve the homing

of T or NK cells to tumor to facilitate and enhance tumor-specific killing. Not all tumor

antigens can become CAR targets, only the surface antigens with high densities can be

recognized by CAR and fully activate modified immune cells (2, 3).
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B-cell non-Hodgkin lymphoma

A rapidly growing list of indications underscores the success of

CD19-targeted CAR T-cell therapy in B-cell non-Hodgkin

lymphoma (NHL). Durable complete remission has been

consistently reported in clinical trials utilizing CD19-CAR T in

relapsed/refractory (R/R) B-NHL, indicating the curative potential

of CD19-CAR T (4). However, for the more than 50% of patients

who are refractory to or relapse after CD19-CAR T, there is an

urgent need for alternative therapeutic options (1). The causes of

resistance can be loosely divided into three categories: patient

factors, CAR design factors, and target antigen modulation.

Examples of patient factors include high disease burden,

microbiome, and baseline cytokine milieu (5). CAR design

factors, including transmembrane domain architecture,

costimulatory domain, immune synapse spacing, affinity to

antigen, are vital to the efficacy and safety of CAR T (1). For

instance, high affinity of the CAR to CD19 antigen may not improve

efficacy but promote T-cell exhaustion instead. Michelozzi, et al.,

recently demonstrated that low-affinity CD19-CAR T had enhanced

in vivo expansion, prolonged persistence, and better tolerability,

than traditional high-affinity CD19-CAR T (6). CAR integration

using non-retroviral methods, such as using adeno-associated virus

or non-viral gene editing to transfer a CD19-CAR into the T-cell

receptor alpha constant (TRAC) region, has demonstrated

improved functionality compared to traditional retroviral

transduction (7). A novel TRAC-integrated CD19-targeted CAR

T product is currently undergoing a phase 1 clinical trial in patients

with R/R large B-cell lymphoma (NCT05757700). Target antigen

modulation is one of the most common mechanisms of resistance.

In different studies, CD19 antigen loss or down-regulation was seen

in 25% to 33% of the relapsed cases (8–10). CAR-based therapies

targeting other B-cell antigens hold the promise to improve the

outcome of patients with R/R B-NHL. Active clinical trials of novel

CAR-based therapy in B-NHL are listed in Table 1.
CD20

Anti-CD20 monoclonal antibody revolutionized the treatment

of B-cell NHL and greatly improved patient outcomes. CD20

theoretically can elicit a more robust T-cell activation than CD19

because of slower endocytosis and stronger immunological synapses

formation (11). However, the concern of developing resistance after

recurrent rituximab exposure may have played a role in the delay in

clinical development of CD20-CAR therapy (12). Reassuringly,

CD20 antigen loss or mutation is uncommon in relapsed B- NHL

and is not a significant cause of treatment failure (13, 14). The

success of bispecific CD20 and CD3 T-cell engagers further confirm

the utility of CD20-targeting in R/R B-NHL (15). In vitro studies

demonstrated preserved cytotoxicity of CD20-CAR T in CD20-

downregulated cancers (3).

Till, et al., treated seven patients with R/R follicular lymphoma

(FL) or mantle cell lymphoma (MCL) with first generation CD20-

CAR T (16). All patients had previous rituximab exposure.

Responses included two complete remissions (CR) and three
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partial responses (PR). None had adverse events related to T-cell

infusions. Later, Till, et al., treated three patients with a third

generation CD20-CAR T with both CD28 and 4-1BB

costimulatory domains, two achieved durable CR (17). Another

third generation CD20-CAR T, MB-106, showed efficacy and

tolerability in a single center clinical trial (NCT03277729) (18,

19). In 16 patients (12 FL, 2 MCL, 1 CLL, 1 diffuse large B-cell

lymphoma), overall response rate (ORR) was 94%, CR 62%, and

90% of the CR was durable (duration of response, 3-18 months); no

grade ≥ 3 cytokine release syndrome (CRS) or immune effector cell-

associated neurotoxicity syndrome (ICANS) was observed. MB-106

is currently being tested in a multicenter phase 1/2 trial

(NCT05360238) (20). Several other CD20-CAR Ts have also

entered clinical trials for R/R B-NHL. C-CAR066 was previously

tested in a phase 1 clinical trial in China. Fourteen patients were

treated, including 11 with diffuse large B-cell lymphoma (DLBCL)

and three with transformed FL; 12 previously received CD19-CAR

T, one received bispecific CD19/20-CAR T and one received

bispecific CD19/79b-CAR T. ORR was 92.9% and CR was

achieved in 57.1%. Four remained in CR after 24 months. Grade

≥3 CRS only occurred in one patient and none experienced ICANS

(21). C-CAR066 recently entered multicenter phase 1 studies in the

US (NCT05784441). MB-CART20.1 is another CD20-CAR T

which was tested in a Germany multicenter phase 1 trial (22).

Durable CR was seen in 3 of the 10 treated patients. No dose-

limiting toxicity (DLT) occurred in the trial, but the trial was

stopped early due to COVID-19.
CD22

CD22 is a B-cell-specific transmembrane glycoprotein involved

in B-cell survival, proliferation and function (23). Anti-CD22

antibody-drug conjugates (ADC) inotuzumab ozogamicin and

moxetumomab pasudotox, were approved for B-cell acute

lymphoblastic leukemia (ALL) and hairy cell leukemia,

respectively (24, 25). Despite strong CD22 expression on mature

B-cells, naked anti-CD22 antibody and ADC all failed to

demonstrate significant benefit over standard of care

chemoimmunotherapy in patients with CD22+ R/R B-NHL (26,

27). The challenges of CD22-targeted therapy in B-NHL include the

higher variability of CD22 expression on lymphoma cells than

CD19 and CD20, down regulation of CD22 and low antigen

density (28, 29). CD22 has a bulky extracellular structure, making

it difficult to target (30).

With the success of anti-CD22 ADC, CD22-CAR T was first

developed for B-ALL. Haso, et al., found that CAR targeting the

proximal domain of CD22 yielded superior antileukemic activity in

preclinical models (31). Proximal-targeting CD22-CAR T was then

tested in a phase 1 study in 21 children and adults with R/R B-ALL

(32). Potent efficacy was seen even in patients with CD19dim or

CD19-negative disease. Currently, various CD22-CAR T have

entered phase 1 and/or 2 clinical trials, but no phase 3. In a

meta-analysis with a data cutoff in March 2022, a total of seven

CD22-CAR T clinical trials with 149 patients had primary efficacy

data, but only two enrolled patients with lymphoma (33). A single
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TABLE 1 Active clinical trials of novel CAR therapy for B-cell non-Hodgkin Lymphoma.

CAR Target NCT
number

Phase Location Notes

CD20 NCT03277729 1 and 2 US - Fred Hutch CNS involvement eligible

NCT05360238 1 and 2 US - multicenter Cell name: MB-106

NCT05784441 1 US - multicenter Cell name: JNJ-90009530

CD22 NCT05972720 2 US - multicenter Prior successful phase 1 NCT04088890 yielded the RP2D of 1 million cells/kg

NCT04571138 1 and 2 US - multicenter In both B-ALL and B-NHL

kLC NCT04223765 1 US - UNC B-NHL and CLL/SLL

NCT00881920 1 US - Baylor B-NHL, CLL, myeloma

CD79b NCT05773040 1 US - MDACC Cell-name: JV213

NCT05312476 2 China Inducible caspace-9 gene system

CD70 NCT05948033 1 and 2 China Requires ≥ 10% CD70 antigen expression

ROR1 NCT05694364 1 US - Moffitt PD-1 switchable

NCT05588440 1 and 2 US - multicenter Highly specific anti-ROR1 scFv with no preclinical evidence of on-target off-
tumor toxicity

BAFF NCT05312801 1 US - Cleveland

CD19/CD20 NCT05149391 1 China Cell name: C-CAR039

NCT04007029 1 US - UCLA

NCT04186520 1 and 2 US - MCW flexible manufacturing schema

NCT04697940 1 and 2 China decitabine-primed

NCT05797233 1 US - NCI

NCT04989803 1 US - multicenter Cell name: KITE-363 or KITE-753

NCT06014762 1 US - multicenter Allo-CAR with Rimiducid to reduce neurotoxicity

NCT05826535 1 and 2 US - multicenter Cell name: IMPT-314

NCT05421663 1 US - multicenter

NCT04792489 2 US - multicenter Cell name: MB-CART2019.1

CD19/CD22 NCT05091541 1 and 2 China

NCT05651100 1 and 2 China Sequential CD19 and CD22 CAR T instead of bispecific CAR T

NCT06005649 1 and 2 China

NCT03241940 1 US - Stanford

NCT03233854 1 US - Stanford CAR T in combination with chemotherapy NKTR-255, CNS involvement eligible

NCT05098613 1 US - University
of Colorado

NCT03448393 1 US - NCI All B-cell cancer in children and young adults

CD19/BCMA NCT06097455 1 Spain Cell name: ARI0003

CD19/CD70 NCT05436496 1 and 2 China Sequential CD19 and CD70 CAR T instead of bispecific CAR T

CD20/CD22 NCT05607420 1 and 2 US - multicenter Cell name: UCART20x22; Allo-CAR

CD20/CD79a NCT05169489 1 and 2 US - multicenter Cell name: bbT369

CD19/
CD20/ CD22

NCT05418088 1 US - OSU
F
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US, United States; Fred Hutch, Fred Hutchinson Cancer Center; CNS, central nervous system; RP2D, recommended phase 2 dose; ALL, acute lymphoblastic leukemia; NHL, non-Hodgkin
Lymphoma; UNC, University of North Carolina; MDACC, MD Anderson Cancer Center; UCLA, University of California, Los Angeles; MCW, Medical College of Wisconsin; NCI, National
Cancer Institute; OSU, Ohio State University.
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center phase 1/1b study at Stanford University (NCT04088890) is

one of the first trials using autologous CD22-CAR T to treat R/R

LBCL (34, 35). Among 41 enrolled patients, 40 underwent

leukapheresis and 38 (95%) had successful manufacturing of cells.

Twenty-nine patients were treated at dose level (DL)1 (1 x 106/kg)

and 9 at DL2 (3 x 106/kg); all but 1 progressed after prior CART19.

ORR was 68%. Twenty (53%) entered CR. Response was similar

between DL1 and DL2. At a median follow up of 18.4 months

(range, 1.5-38.6), nineteen patients remained in CR. Median

progression-free survival (PFS) was 2.9 months (range, 1.7-NR)

and overall survival (OS) 22.5 months (range, 8.3-NR). CD22-CAR

T was well tolerated especially at DL1, and proceeded to a phase 2

clinical trial (NCT05972720) with DL1 as the recommended phase

2 dose (RP2D) (35). Another CD22-CAR T, SCRI-CAR22v2, is

being tested in a phase 1/2 multicenter clinical trial, PLAT-07, in

pediatric and young adult patients with R/R CD22+ leukemia or

lymphoma (NCT04571138). SCRI-CAR22v2 is an improved

version of its predecessor SCRI-CAR22v1, with a shorter linker

and transmembrane region, and better activity and survival than the

latter (36). Allogeneic CD22-CAR T (alloCART22) has been

developed. In preclinical models, alloCART22 demonstrated

pharmacologic activity against CD22+ tumor and successful

evasion of host innate and adaptive immune rejection (37). The

safety and efficacy of alloCART22 are yet to be evaluated by

clinical trials.

Hemophagocytic lymphohistiocytosis (HLH), a subtype of

severe cytokine release syndrome, is associated with higher

disease burden, pre-infusion NK-cell lymphopenia and persistent

elevation of HLH-related cytokines including IFNg, IL-1b and IL-

18. HLHmore common in patients receiving CD22-CAR T (35.6%)

than CD19-CAR T (14.8%) (38, 39). On the other hand, ICANS is

less common and less severe with CD22-CAR T, likely due to

different cytokine milieu, and absence of CD22 expression on the

blood brain barrier and oligodendrocyte precursor cells (40).

High peak CD22-CAR T expansion and high expression of the

activator protein-1 Fos/Jun are associated with response and

toxicity to CD22-CAR T (41). Fos/Jun heterodimer are important

transcription factors in activated T-cells and enhances the

transcription of inflammatory cytokines such as IL-2 (42). CD22-

CAR T from patients who progressed do not have high Fos/Jun,

instead, have higher proportion of terminal effector memory cells

and higher expression levels of immunomodulatory killer cell

immunoglobulin like receptors (41). Another main cause of

relapse remains CD22 antigen loss (35, 43). Unlike CD19 antigen

loss which is usually mediated by mutation and alternative splicing,

down-regulation of CD22 on cell surface makes cells resistant to

CD22 targeting (32). Upregulation of CD22 expression by

bryostatin-1 pretreatment could potentially re-sensitize

lymphoma cells to CD22-CAR T (44). Another major

development to overcome antigen loss is bispecific or multi-

specific CARs, which will be discussed in detail in later sections.

The natural ligand of CD22 is a cell surface trisaccharide (45).

Transferr ing natural l igand-mimicking CD22-specific

polysaccharide onto cell surface is a novel way of designing

adoptive cell therapy. Wang, et al., designed CD22-targeting NK-

cells by glycoengineering, making NK-cells present a modified
Frontiers in Oncology 04
polysaccharide ligand on their surface. Not strictly a CAR-NK,

the engineered NK-cells could effectively bind to CD22-positive

lymphoma cells and exert cytotoxicity in preclinical models (46).

Traditional CAR-NKs expressing CD22-scFv have also been studied

preclinically (47, 48).
CD19/CD20

Bispecific CAR T targeting two B-cell antigens can be activated

upon binding with either antigens or both, thereby enhancing

inflammatory cytokine production, and reducing resistance from

single antigenic loss (49). Tandem CD19/20-CAR T targets both

CD19 and CD20 antigens with a single CAR vector; the CD20 and

CD19 binding domains are hinged with a flexible linker. Preclinical

data of tandem CD19/20-CAR T revealed several important

findings (50). First, CD19-scFv should be placed proximally and

CD20-scFv distally to T-cell membrane, to allow optimal

conformation of binding. Second, most of the cytokine release

after CD19/20-CAR T is likely driven by CD20 recognition.

Thirdly, tandem CD19/20-CAR T was more effective than a

combination of CD19- and CD20-CAR T.

Based on supportive preclinical data, Shah, et al., conducted a

first-in-human trial of bispecific CD19/20-CAR T, LV20.19 (MB

CART2019.1, or zamtocabtagene autoleucel, zamto-cel) in patents

with R/R B-NHL (51). In the first 22 patients treated, 18 (82%)

responded at day 28, including 14 (64%) CR. Rates of grade 3-4 CRS

and ICANS were 5% and 14%, respectively. For the patients who

received a target dose of 2.5 million cells/kg (n=16), two-year PFS

and OS were 44% and 69% at a median follow up of 31 months

(range, 2-40) (52).

R/R MCL remains a challenging clinical entity, especially those

cases with post-BTKi relapse and/or TP53 aberration. Tandem

CD19/20-CAR T showed encouraging results in this hard-to-treat

population. In a phase 1/2 clinical, 17 patients with R/R MCL

received LV20.19, including 13 BTKi-refractory and seven TP53-

mutated patients. The phase 2 portion utilized an adaptive

manufacturing process to enhance the percentage of memory T-

cells in the product. All patients responded at day 90, including 92%

CR. Infection-related death occurred in two patients. Grade 3-4

CRS and ICANS occurred in zero and two patients, respectively.

One-year PFS and OS rates were 77% and 84% (53).

The DALY I trial was a phase 1 clinical trial of zamto-cel in

patients with R/R B-NHL (54). Twelve patients were enrolled and

six received the recommended dose of 2.5 million cells/kg. ORR was

75% in the entire cohort and 5 patients achieved CR. Promisingly,

all CRs were durable at 2-year follow up. No grade ≥ 3 CRS or

ICANS were observed. Zamto-cel is currently undergoing phase 2

clinical trials, one as a 2nd line therapy for patients with R/R B-NHL

who are transplant-ineligible (DALY 2-EU), and the other for

patients with R/R DLBCL after ≥ 2 prior lines of systemic therapy

(DALY II USA) (55, 56). The interim analysis for DALY II USA

demonstrated good efficacy and tolerability of zamto-cel (56). In 22

evaluable patients, CR rate was 46% and PR 36%, 6-month PFS was

64%. The treatment was well-tolerated, only two had transient and

reversible grade 3 ICANS and none had grade ≥ 3 CRS.
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Other tandem CD19/20-CAR Ts have been developed and

undergone early phase clinical trials. Tong, et al., designed several

CD19/20-CAR T. They found that one of the constructs, TanCAR7,

had the strongest immunological synapse formation and the most

potent antitumor activity (57). TanCAR7 was subsequently studied

in a phase 1/2a clinical trial for heavily pretreated R/R B-NHL

(NCT03097770). Among 99 enrolled patients, 92 underwent

leukapheresis, and 87 received TanCAR7 (58). Twelve (14%) had

previous autologous stem cell transplant (SCT) and 9 (10%) had

previous exposure to CD19-CAR T. Best ORR was 78% and 70%

had CR. Median PFS was 27.6 months (95%CI, 11 months to not

reached), and 76% of the responses were durable beyond 12-

months. Majority of subjects (70%) developed CRS, including 8

(9%) with grade 3 and 1 (1%) with grade 4, ICANS grade ≥ 3

occurred in 2 (2%) patients. Three patients had treatment-related

mortality due to pneumonia or CRS-induced lung injury. CAR

expansion was associated with response, but CAR persistence did

not significantly impact duration of response (DoR). C-CAR039 is

another CD19/20-CAR T that underwent phase 1 study at multiple

sites in China (59). Forty-eight patients received C-CAR039,

including 44 with LBCL, 3 with FL and 1 with MCL. While the

percentage of patients who had prior CD19-CAR T was unknown,

while 8 (16.7%) had prior autologous SCT. Response to C-CAR039

was exceptionally high, with ORR 91.5% and CR 85.1%. Estimated

2-year PFS was 66% (95%CI, 53.2 – 81.9%) and OS 77.9% (95%CI,

66.6-91.1%). Although treatment was well tolerated with low rates

of grade 3 CRS and no grade 3 ICANS, three patients developed

secondary malignancy, including 2 AML and 1 T-cell lymphoma

(CAR transgene negative) (60). C-CAR039 is undergoing a

multicenter phase 1 study in the US (NCT05421663).

Naïve and memory T-cells-enrichment may improve in vivo

CAR T function by reducing cell exhaustion and improving

persistence (61–63). Regulatory T-cells (Treg, marked by CD25)

and mye l o i d c e l l s (ma r k ed by CD14 ) may c au s e

immunosuppression and reduce CAR T function (64, 65). Larson,

et al., conducted a phase 1 trial using autologous naïve and memory

T (TN/MEM)-selected, Treg and myeloid cell depleted, tandem

CD19/20-CAR T to treat R/R B-NHL (63). Among 17 patients

screened, 10 received infusion, yielding a CR rate of 70%. At 17-

month follow up, median PFS and OS were not reached. The

therapy was safe, no neurotoxicity or grade > 1 CRS were seen.

Relapse could be re-treated with CART19/20.

The antigen recognition process of tandem CAR is theoretically

unpredictable, therefore bicistronic CAR-T, placing CD20 and

CD19 CAR separately on the T-cell, is another approach.

Bicistronic CD19/20-CAR T has been successfully manufactured

and showed preclinical efficacy in CD19-negative or CD20-negative

B-cell lymphoma (66). A phase 1 clinical trial testing this product in

R/R B-NHL is under way (NCT05797233).

Although less effective than tandem CD19/20-CAR T in

preclinical studies, sequential CD19-CAR T and CD20-CAR T

may be easier to manufacture. Sequential infusion strategy was

tested in a pilot trial in China (67). In this study, 21 patients with R/

R DLBCL who received CD19-CAR T but had undetectable

circulating cell levels received CD20-CAR T to prevent relapse.

Median interval between cell infusions was 3.72 months (range,
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2.56-9). Subsequent CD20-CAR T was well tolerated, with low risk

and severity of CRS and ICANS, echoing the observation in other

CD20-CAR T studies. Durable CR was seen in 15 (71.4%) patients

at a median follow up of 24.7 months (range, 11.64-45.86). CD20-

CAR T consolidation post-CD19-CAR T may be a valuable strategy

for patients with high-risk DLBCL.
CD19/CD22

Dual CD19/CD22 targeting CAR T-cell therapy is a feasible

method to bypass resistant mechanisms including antigen loss/

mutation or down-regulation in B-cell malignancies. In B-ALL,

CD19/22-CAR T showed good efficacy and DoR, but whether

CD19/22-CAR T is better than CD19-CAR T alone remains

debatable (68–70). Various strategies aiming to target both CD19

and CD22 have been developed, including CAR T cocktail,

bicistronic or tandem CAR, some have entered clinical trials.

Bispecific CD19/22-CAR-NK has proof-of-concept preclinical

results (71).

CAR-T cocktail is a method of delivering multi-antigen

targeting CAR-T cells based on the tumor’s antigen expression.

CAR-T cocktail could be made by transducing autologous T-cells

with two lentiviral vectors at the same time (dual transduction) or

separately, or give single antigen-specific CAR T sequentially.

Gardner, et al., at the Seattle Children’s Research Institute used

lentiviral vectors to transduce either CD19 or CD22 CAR into

autologous T-cells, resulting in pooled CD19-CAR T, CD22-CAR

T, and cells with both CARs (72). However, early phase clinical

trials using this pooled product in pediatric B-ALL demonstrated

imbalanced CD19- and CD22-CAR T persistence, leading to

antigen-negative relapse (73, 74). The Geno-Immune Medical

Institute in China designed an autologous CAR-T platform,

4SCAR2.0, using an apoptosis-inducible intracellular domain

CD28/CD27/CD3z-iCasp9 and variable extracellular domain

(anti-CD19, CD11, CD30, CD70, etc) based on tumor antigen.

4SCAR2.0 is currently undergoing a multicenter clinical trial in

China (NCT03125577). Each patient can receive multiple

4SCAR2.0 infusions that contains a single-targeting or dual-

targeting CAR T. Preliminary results were available from 5

patients with refractory B-NHL, including 1 with PMBCL, 2 with

DLBCL and 3 with FL. All received at least one infusion of 4SCAR-

19 + 22, demonstrated durable remission, no ICANS and CRS as

high as grade 1 (75, 76). It is plausible that repeated dosing

improved the response rate and DoR, and low cell dose and the

apoptosis-inducible domain reduced toxicity.

Sequential administration of CD19- and CD22-CAR T to treat

R/R B-cell malignancies has been tested in China. In pilot study,

Wang, et al., enrolled 89 patients, including 38 with R/R B-NHL and

the rest with ALL. For the B-NHL cohort, each patient received

around 5 x 106 cells/kg of CD19- and CD22-CAR T on successive

days. ORR was 72.2% and CR rate 50%, median DoR was 15

months (range, 12-17). At a median follow up of 14.4 months, the

median PFS was 9.9 months (95%CI, 3.3-NR) and median OS 18.0

months (95%CI 6.1-NR) (77). The group subsequently conducted

another clinical trial, sequentially administering high-dose
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chemotherapy followed by autologous SCT, CD22- and CD19-CAR

T to patients with R/R B-NHL (78). In 49 consented patients, 42

completed sequential cellular therapy, including 23 with progressive

disease and 9 with stable disease prior to SCT. Engraftment was not

significantly impacted by post-SCT CAR-T. CRS was common

(90%) but only 2 (5%) had grade ≥ 3 CRS. ICANS occurred in 9

(21%) and grade ≥ 3 in 2 (5%). High durable remission rates were

reported, with 12-month PFS 95.7% (95%CI, 70.9-93.3%), 12-

month OS 90.5% (95%CI. 76.6-96.3%), but those failed to

respond by 3-month (n=4) had a dismal prognosis. Although

response rate and survival appeared better than the previous

study without SCT, the benefit of SCT should be carefully

evaluated due to the financial toxicity of combination cellular

therapy, and inherited risks of transplant such as hematologic

toxicity, organ toxicity, secondary malignancies.

AUTO3 is a bicistronic CD19/22-CAR T previously tested in a

phase 1 study in patients with R/R LBCL (ALEXANDER,

NCT3289455) (79). The CD19 CAR has a OX40 costimulatory

domain, and CD22 has a 4-1BB costimulatory domain (80).

Pembrolizumab was used in combination, because PD-L1

upregulation was a possible resistance mechanism demonstrated

by previous research. In the study, 52 patients received AUTO3

infusion and 48/52 received pembrolizumab (92.3%); treatment was

administered as outpatient in 20 (38.5%) patients. None had

previous exposure to CD19- or CD22-targeted therapies. In 47

evaluable patients, ORR was 66.0% and CR 48.9%. However, long-

term outcome was not improved by neither AUTO3 nor

pembrolizumab due to high rates of relapse, leading to a median

PFS was 3.32 months. Response was not associated with AUTO3

expansion. Low serum cytokine levels were observed across the

study cohort, correlating with low burden of CRS and ICANS.

Previous study of AUTO3 in pediatric B-ALL also demonstrated

disappointing results, indicating the necessity for CAR-T

optimization (80). Immune checkpoint inhibitors had

disappointing results in the treatment of R/R LBCL, which was

reaffirmed by the ALEXANDER trial (81).

Tandem CD19/22-CAR T, with both anti-CD19 and anti-CD22

scFv on the extracellular domain, transduced by a single lentiviral

vector, are also developed. Among all extracellular designs, tandem

CD19/22-CAR with alternative sequence of scFv heavy and light

chains, resulting in a loop structure of the extracellular domain, was

the most potent one preclinically (82, 83). The loop CAR T

subsequently underwent a phase 1 trial, 17 patients with R/R B-

ALL and 21 with R/R LBCL received cell infusion. Rate of CRS was

76% (grade≥3, 5%), rate of ICANS was 37% (grade≥3, 10%) and two

had laboratory evidence of HLH; all CRS and ICANS resolved. ORR

in the LBCL cohort was 62%, half (29%) achieved a CR. Again, the

response was short-lived, with median PFS 3.2 months (95%CI, 1.2-

5.5). Main cause of resistance/relapse remained antigen loss, but

authors also observed that the cells had suboptimal cytokine

production against CD22, contributing to CD19-/CD22+ relapse

(83). Alternative CD22 scFv and CAR design could potentially

improve the efficacy of tandem CD19/22-CAR T (84, 85). Several

small single-center clinical trials from China using different CAR

constructs in patients with R/R aggressive B-NHL reported

seemingly better results (86, 87). Another way to augment CD19/
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22-CAR T function is through epigenetic modification. Decitabine

may enhance CAR-T function and reverse T-cell exhaustion by

demethylating silenced genes, and may reverse antigen loss by

upregulating antigen expression on lymphoma cells (88, 89). In a

retrospective study, adding decitabine to lymphodepletion

chemotherapy could improve response rate, DoR and survival in

patients receiving CD19/22-CAR T (89).
CD20/CD22

CAR-T targeting both CD20 and CD22 is attractive for CD19-

low or negative relapses. Off-the-shelf allogeneic CAR-T may avoid

major hurdles in autologous CAR-T, such as T-cell exhaustion and

length production time. Based on these premises, Aranda-Orgilles,

et al., designed UCART20x22, an allogeneic, dual CD20 and CD22-

targeting CAR-T (90). The allogenic T-cells underwent

transcription activator-like effector nuclease (TALEN) mRNA-

mediated CD52 and TRAC gene knockout. CD52-knockout was to

allow the addition of alemtuzumab into lymphodepletion, to avoid

rejection; TRAC-knockout prevents graft-versus-host disease (91).

UCART20x22 is currently being evaluated in NatHaLi-01

(NCT05607420), a phase 1/2 clinical trial for R/R B-NHL.

Preliminary results from three treated patients were reported

recently. All received DL1. No ICANS or grade ≥ 3 CRS have

been observed. At day 28, two achieved CR and one PR (92).

NatHaLi-01 has a target sample size of 80 patients and is estimated

to complete by November 2027.
Other targets

BAFF and BAFF receptor
B-cell activating factor (BAFF) is crucial for the survival of

mature B-cells (93). BAFF has three receptors – BAFFR, TACI, and

BCMA – with varying but ubiquitous expression on a variety of B-

cell NHLs (94). Due to the importance of BAFF to B-cell survival,

antigen escape to BAFF or BAFFR is less likely than CD19 (95).

CAR Ts designed against BAFF or BAFFR have both been

constructed (95, 96). BAFFR-CAR T demonstrated effective

antitumor effect in CD19-negative B-NHL and B-ALL in both in

vitro cell line and in vivo xenograft studies (95). Compared with

BAFFR-CAR T, BAFF-CAR T may minimize antigen escape more

effectively with the ability to bind to three different receptors (96).

Currently, BAFFR-CAR T is being tested in B-ALL or LBL

(NCT04690595) while BAFF-CAR T is being tested in B-

NHL (NCT05312801).

CLL-specific targets - CD23, FCµR, Siglec-6
The treatment paradigm of CLL has shifted dramatically since

the development of targeted therapies. However, patients with risk

factors such as TP53 mutation, who are refractory to BTKi or BCL2

inhibitors, or those with Richter’s transformation (RT) still have a

dismal prognosis. Two issues have hindered the development of

CAR-T in CLL. One is the low efficacy of CD19-CAR T in CLL

compared with other B-cell malignancies. Different studies reported
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a CR rate of 20-70% and 18-month PFS of 25% (97). It is suspected

that autologous CAR-T suffers from intrinsic T-cell exhaustion, but

similar poor response has also been observed in allogeneic CAR-T

(98, 99). Other factors may contribute to CLL’s resistance to CAR-T

therapy, such as high immune checkpoint protein expression,

immune suppressive tumor microenvironment (TME), and high

level of circulating inhibitory extracellular vesicles (100). The

efficacy data of CD19-CAR T in RT remain scarce and conflicting

(101). Some patients may even develop RT after CD19-CAR T,

indicating the presence of intrinsic resistance mechanisms in RT to

CD19-targeted therapy (102). The other issue with CAR-T

development is the risk of B-cell aplasia and prolonged

immunosuppression from the “on-target, off-tumor” effect of

pan-B-cell targeting. Alternative targets to CD19 have been

explored to spare the normal B-cell compartment. CD23, IgM Fc

receptor (FCµR, other names include TOSO and Fas-inhibitory

molecule 3), and Siglec-6 are proposed targets for CLL. CD23 is

typically overexpressed in CLL but not in normal B-cells (103).

Preclinical studies demonstrated the efficacy of CD23-CAR T in

CLL, which could be enhanced by lenalidomide (104). Similar to

CD23, FCµR is highly and consistently expressed by CLL cells but

only marginally expressed by normal B-cells and hematopoietic

stem cells (HSC) (105). In preclinical models, FCµR-CAR T could

eliminate CLL cells while maintaining the number of healthy B-cells

(105). Siglec-6 is a CLL surface antigen that is highly restricted in

other tissues (106). Anti-Siglec-6 antibody JML-1 has the strongest

CLL surface reactivity among detected antibodies in patients with

CLL cured by allogeneic hematopoietic stem cell transplant

(alloHSCT) (107). Kovalovsky, et al., constructed Siglec-6-CAR T

using JML-1-derived scFv, and showed selective cytotoxicity against

CLL cells in in vitro and in vivo xenograft murine models (106). The

efficacy and safety of CLL-specific CAR-T need further clarification

by clinical trials.

CD32B
CD32B is the predominant Fc receptor on B-cells and is

expressed on a variety of B-cell malignancies (108). CD32B

contributes to resistance development to targeted antibodies such

as rituximab, by accelerating internalization of the antibodies (109).

Therefore, CD32B is an attractive target for B-cell lymphoma not

only from the abundance and specificity, but also for the potential

reversal of CD20-resistance. In preclinical models, CAR-T targeting

CD32B had effective cytotoxicity against CLL (110). Unlike CD23-

CAR T, CD32B-CAR T may not avoid B-cell aplasia because

CD32B expression is not limited to CLL. Of note, a small

percentage of CD4+ or CD8+ T-cells also express CD32B, which

is a T-cell activation suppressor (111). The implication of CD32B

expression by T-cells on CD32B-CAR T is unclear.
CD70
The CD70-CD27 axis is involved in immune evasion and tumor

progression. Aberrant co-expression of CD70 and CD27 has been

observed in various B and T-NHL, and high CD70 expression but

absence of CD27 has been seen in HL (112). Normal hematopoietic

stem cells and most blood cells do not express CD70, making it a
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desirable CAR target (113). Meanwhile, CD70 contributes to T-cell

exhaustion, therefore CD70-CAR T with CD70-knockout may have

better performance than CD70-wildtype (114). CD70 is one of the

targets of the aforementioned 4SCAR2.0 platform being studied in

China (NCT05436496). Eight patients with heavily pretreated

DLBCL have been treated with dual CD19 and CD70 targeting

CAR T, with CR in 6 and ORR in 7 patients, and median PFS 10.5

months (115). One patient with R/R PCNSL enjoyed ongoing

complete remission at 17-month post-4SCART19/70 (116). CD70

is also a viable CAR-NK target but requires CD70-knockout to

prevent fratricide (117).

CD72
CD72 is a B-cell restricted, highly expressed surface antigen, and

is upregulated in B-cell ALL and NHL. Down regulation or loss of

CD19 do not impair CD72 expression (118). Different CD72-CAR Ts

are undergoing preclinical testing in B-ALL and B-NHL models,

showing promising efficacy and no off-target effect (119, 120).

CD79
CD79 is a B-cell restricted cell surface heterodimer (CD79a and

CD79b, also known as Iga and Igb) that participate in the B-cell

receptor signaling pathway (121). CD79-targeting is an effective

strategy in the treatment of B-NHL, exemplified by an anti-CD79b

ADC polatuzumab-vedotin. CARs targeting either CD79a or CD79b

are under development. JV213 is a CD79b-CAR T with a novel CD79

monoclonal antibody, a CD8a hinge/transmembrane domain, and

an OX40 costimulatory domain. In preclinical testing, JV213 was

superior to other CD79b-CAR Ts, and a phase 1 clinical trial using

JV213 in R/R B-cell lymphomas was initiated (NCT05773040) (122).

In a different group, Jiang, et al., introduced an inducible caspase-9

(iCas9) suicidal gene system into CD79b-CAR T to improve safety

targets the B-cell receptor component Igb to avoid antigen escape

(123). The iCas9 CD79b-CAR T is undergoing early phase clinical

trial in China (NCT05312476). bbT369 is a CD20 and CD79a dual-

targeting CAR T which is current being evaluated a multicenter phase

1/2 clinical trial for R/R B-NHL (CRC-403, NCT05169489). In

preclinical testing, bbT369 was more potent than CD19-CAR T

and induced longer remission (124). Dual-targeting CAR T against

CD19 and either CD79a or CD79b CARs are developed (125, 126).

Leung, et al., demonstrated that CD19/79a(b)-CAR T induced longer

tumor control than single-antigen targeting CAR T from preventing

antigen-loss relapse, and targeting CD79a was more potent than

C79b. However, bispecific CAR T with either tandem or bicistronic

CAR structures had reduced activity against single-antigen positive

cells due to compromised antigen binding and signaling, indicating

the need to optimize structural design (126). Low-level aberrant

CD79b expression monocytes, hematopoietic progenitor cells and T-

cells could theoretically cause untoward hematologic toxicity, which

will be elucidated by clinical trials (127).

ROR1
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a cell

surface protein overexpressed on various solid and hematological

malignancies and minimally expressed on most adult tissues,
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contributing to cancer stemness (128). To minimize toxicity on

hematopoietic stem cells, different switchable CAR-ROR1 have

been developed to allow tumor-restricted killing (129, 130). Early

phase clinical trials are ongoing to study the efficacy and safety of

ROR1-CAR T (ONCT-808) in patients with R/R BCL and/or

advanced solid tumors, including those with RT (NCT05694364,

NCT05588440) (130, 131). PRGN-3007 is a novel ROR1-CAR T

that also includes membrane-bound IL15 for in vivo expansion and

persistence, a kill switch for safety, and intrinsic PD-1 blockade to

enhance cytotoxicity (132). PRGN-3007 is currently undergoing a

phase 1/1b clinical trial for both R/R B-NHL and breast

adenocarcinomas (NCT0569434) (130).

Immunoglobulin light chain CAR
Immunoglobulin is a part of the BCR and participates in BCR

signaling upon biding to antigen. Normal B-cells have polyclonal

surface immunoglobulin but malignant B-cells are monoclonal.

Immunoglobulin light chain k or l-targeted CAR takes advantage

of the light chain restriction of mature B-cell malignancies, and

preserves humoral immunity by sparing normal B-cells with the

reciprocal light chain (133). Circulating light chain could help

improve CAR-T persistence (134). Dotti, et al, are conducting a

phase 1 trial (NCT00881920) studying the safety of k-CAR T in

patients with R/R B-NHL/CLL or MM. Preliminary results on 16

treated patients (B-NHL/CLL = 9, MM = 7) demonstrated that k-
CAR T was well-tolerated without attributable toxicity. CR was

achieved in two and PR in one in the B-NHL/CLL cohort (135). The

group also constructed l-CAR T, which in preclinical tests

demonstrated light-chain restricted cytotoxicity (136).

B-cell maturation antigen
B-cell maturation antigen (BCMA) is not only expressed on

multiple myeloma but also on a subset of B-NHL and CLL (137).

The manufacture of bispecific CD19/BCMA CAR-T and CAR-

NK are both feasible (138, 139). Early phase clinical trial

demonstrated the efficacy of CD19/BCMA-CAR-T in multiple

myeloma (138). The safety and utility of CD19/BCMA-CAR-T in

aggressive B-NHL will be studied in a phase 1 clinical

trial (NCT06097455).

Tri-specific CAR
CAR-T targeting CD19, CD20, and CD22 could potentially

prevent relapse due to antigen loss or down-regulation more

effectively. Zhou, et al., designed a tri-specific tandem CAR T that

showed stronger cytolytic activity than mono- or bispecific CAR T

in preclinical models (140). Schneider, et al., designed a tri-specific

CAR T that contained a tandem CD20-CD19 CAR and a second

CD22 CAR (141). Costimulatory domain derived from ICOS and

OX40 or CD27 was more effective than CD28 or 4-1BB in tri-

specific CAR, indicating the importance of optimizing

costimulatory domains based on different single-chain variable

fragment of the CAR. The tri-specific CAR T with OX40

costimulatory domain has been chosen for a phase 1 clinical trial

in patients with R/R B-cell malignancies including NHL and CLL

(NCT05418088) (142).
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Classical Hodgkin lymphoma

Classical Hodgkin lymphoma (cHL) is characterized by a small

percentage of malignant Hodgkin and Reed-Sternberg (HRS) cells

that are of mature B-cell origin, embedded within a highly

immunosuppressive, HRS-induced TME (143). Despite recent

advances, patients with R/R cHL, especially those with prior

exposure to CD30-ADC brentuximab vedotin and checkpoint

inhibitors, still have a dismal prognosis. CAR-based therapy is a

potential therapeutic option for these patients. The development of

CAR in HL has been focused on targeting surface antigens of HRS

cells and/or reversal of immune evasion (144). Active clinical trials

of novel CAR-based therapy in cHL are listed in Table 2.
CD30

CD30 is one of the most extensively studied targets on cHL due

to its strong and restricted expression on HRS. CD30 expression is

upregulated on activated B- and T-cells (145). CD30 plays an anti-

apoptotic and immunosuppressive role in lymphoma and TME,

and may trigger chromosome instability and mutations in

lymphoma cells (146). The study of CD30-CAR T in cHL began

in the late 1990s, but the clinical application has been plagued by

suboptimal response rate and duration of response, albeit generally

good tolerance Based on pre-clinical data of a CD30-CAR T

construct using a mouse-derived anti-CD30 monoclonal antibody

as scFv, Ramos, et al., conducted a phase 1 clinical trial enrolling

nine patients with heavily pretreated Epstein-Barr virus (EBV)-,

CD30+ lymphoma, including seven with cHL (NCT01316146)

(147, 148). Lymphodepletion chemotherapy (LDC) was not given.

CD30-CAR T was well tolerated. Two patients with cHL had

durable CR, the rest had transient SD. Subsequently, two parallel

phase 1/2 studies of CD30-CAR T in patients with R/R CD30+

lymphoma were conducted, enrolling 41 adult patients with heavily

pretreated cHL (NCT02690545, NCT02917083) (149). LDC

regimens included bendamustine ± fludarabine, and fludarabine/

cyclophosphamide. Among evaluable patients, ORR was 72% and

CR 59%, 1-year PFS was 41%. Cutaneous and hematological

toxicities were notable after CD30-CAR T infusion. No ICANS

was seen and all CRS cases were low grade. Bendamustine/

fludarabine LDC conferred the lowest rate of CRS and best

response, and was selected for an ongoing multicenter phase 2

CHARIOT study evaluating CD30-CAR T in R/R cHL who failed at

least 3 prior lines of therapy including chemotherapy, brentuximab-

vedotin and PD-1 inhibitor (NCT02259556) (150).

Wang, et al., conducted a phase 1 clinical trial in China using a

CD30-CAR T with different anti-CD30 scFv (NCT02259556) for

patients with R/R CD30+ lymphoma (151). Eighteen patients were

enrolled, including 17 with cHL and 1 with primary cutaneous

anaplastic large-cell lymphoma (ALCL). Therapy was well tolerated

however none of the patients achieved CR. PR rate was 39% and

median PFS was 6 months (range, 3-14 months). Extranodal disease

had poor response to CD30-CAR T. Another phase 1 study in

China utilized a CD30-CAR T with dual CD28 and 4-1BB
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costimulatory domains and post-CAR anti-PD-1 consolidation

(152). Among 6 patients with R/R cHL, 1 died due from early

post-CAR-T pleural hemorrhage, 5 achieved CR, but only 1 enjoyed

ongoing remission beyond 3 years, the rest relapsed within 10 weeks

to 28 months. Although the sample size was small, it appeared that

dual costimulatory domain improved CD30-CAR T persistence but

did not lead to increased toxicity.

Major barriers to the success of CD30-CAR T include off-target

elimination of other CD30-expressing cells such as other T-cells,

inefficient homing to tumor, intrinsic resistance of the tumor cells,

and CD30-downregulation (153, 154). Whether soluble CD30 affect

CAR function remains controversial (147, 148). A Spanish group
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developed a CD30-CAR T that targets a proximal epitope of CD30 to

avoid interaction with soluble CD30 and enriched the product in

memory T-cells. Preliminary results showed a 100% overall response

rate and 50% durable CR rate in 10 patients who received therapy

(155). To improve homing to lymphoma and persistence of CAR-T,

strategies include co-expression of CCR4 or dual costimulatory

domain of CD28/4-1BB (156, 157). CCR4-expressing CD30-CAR T

is being evaluated in a phase 1 clinical trial (NCT03602157) (158).

Preliminary data on 8 evaluable patients with cHL demonstrated

100% ORR with CR in 75%. Patient experienced no dose-limiting

toxicity and the duration of response was prolonged – at a median

follow up of 12.7 months, the median PFS was not reached and one
TABLE 2 Active clinical trials of novel CAR therapy for Hodgkin Lymphoma and T-cell lymphoma.

CAR
Target

NCT
number

Disease Phase Location Notes

CD4 NCT03829540 CD4-positive ALL and NHL 1 US - IU and Stony
Brook Cancer Center

CD5 NCT04767308 CD5-positive NHL 1 China

NCT03081910 CD5-positive T-cell leukemia
and lymphoma

1 US - Baylor Two arms: AutoCAR and AlloCAR; AlloCAR is from prior
allogeneic transplant donor

NCT05138458 CD5-positve T-cell lymphoma 1 and 2 US - multicenter

CD7 NCT04599556 CD7-positive
hematologic malignancy

1 and 2 China

NCT04840875 CD7 positive ATLL and T-ALL 1 China

NCT04823091 CD7-positive T-cell leukemia
and lymphoma

1 China AlloCAR

NCT04689659 CD7-positive T-cell leukemia
and lymphoma

2 China AlloCAR

NCT05059912 CD7-positive T-cell lymphoma 2 China

NCT05377827 CD7-positive malignancies
including T-NHL or AML

1 US - Wash U AlloCAR

NCT03690011 CD7-positive T-cell lymphoma 1 US - Baylor

CD30 NCT02259556 CD30-positive HL and NHL 1 and 2 China

NCT04653649 HL and CD30-positive ALCL
and PTCL

1 and 2 Spain Memory T-cells enriched, proximal target on CD30

CD30 NCT02917083 CD30-positive malignancy 1 US - Baylor

NCT02690545 CD30-positve HL and NHL 1 and 2 US - UNC Flu/Benda LDC

NCT06090864 CD30-positive HL 1 and 2 US - UNC Co-expressing CCR4; Flu/Benda LDC

CD30 NCT03602157 CD30-postive HL and CTCL 1 US - UNC Co-expressing CCR4; Flu/Benda LDC

NCT04288726 CD30-positive HL, PTCL, other
aggressive NHL

1 US - Baylor AlloCAR using EBV-specific T-cells

CD37 NCT04136275 CD37-positive HL and NHL 1 US - MG DLT at doses ≥ 100 million/kg, with bone marrow aplasia
requiring allogeneic stem cell rescue

CD147 NCT05013372 CD147-positive T-NHL 1 China AlloHSCT eligibility and donor availability are required

TRBC1 NCT04828174 TRBC1 positive T-
cell malignancy

1 China Suspended due to inability to enroll qualified patients

NCT03590574 TRBC1 positive T-NHL 1 and 2 Europe - multicenter
US, United States; ALL, acute lymphoblastic leukemia; NHL, non-Hodgkin Lymphoma; IU, Indiana University; AutoCAR, autologous CAR-T; AlloCAR, allogeneic CAR-T; Wash U,
Washington University in St. Louis; HL, Hodgkin lymphoma; ALCL, anaplastic large cell lymphoma; PTCL, peripheral T-cell lymphoma; UNC, University of North Carolina; MG, Massachusetts
General Hospital Cancer Center; DLT, dose-limiting toxicity; alloHSCT, allogeneic hematopoietic stem cell transplant.
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CR was ongoing beyond 2.5 years. To reverse intrinsic immune

suppression in HL, post-CD30-CAR T PD-1 blockade has been

studied in multiple studies showing improved expansion of CD30-

CAR T and duration of response (152, 159, 160). Autologous stem cell

transplant may have synergistical effects with CD30-CAR T and could

consolidate and prolong the remission post-CD30-CAR T (161).

As previously tested CD30 scFv were derived from murine

antibodies, there is a concern of human anti-mouse antibody

causing resistance to CD30-CAR T. Fully-humanized CD30-CAR

T was developed and tested in a phase 1 clinical trial at the NIH but

with disappointing results (162). Among 21 patients treated, 20 had

cHL; ORR was 43% and CR only occurred in 1 patient. Median

duration of response was 8.9 weeks. The study was stopped early

due to prolonged cutaneous and hematological toxicities. It was

speculated that high disease burden and poor penetration of CAR-T

to lymphoma due to immunosuppressive microenvironment were

the main reasons for low efficacy.
Other targets

Several cell surface markers in the cHL TME have been proposed

as CAR targets to break the immunosuppressive cycle. CD19+ B-cells

are part of the cHL TME and some CD19+ B-cells may be HRS stem

cells, making CD19 a putative target for CAR-T in cHL (163). Svoboda,

et al., conducted a pilot study using a nonviral messenger RNA-vector

transduced CD19-CAR T in patients with R/R cHL (NCT02277522

and NCT02624258) (163). Nonviral vector transduced CAR was only

expressed for a few days as opposed to the persistent expression of

viral-transduced CAR, potentially reducing the toxicity. The treatment

was well tolerated but response was limited and short-lived. Of 4

treated patients, only 1 achieved CR but relapsed within 3months. cHL

positive for both CD19 and CD30 account for about 5% of all cases,

making lentiviral-transduced sequential CD19-CAR T and CD30-CAR

T is another therapeutic strategy (164). In a case report, one patient

with CD19+CD30+ cHL had PR with CD19-CAR T and further

response after subsequent CD30-CAR T (164). CD20 expression is

more common in cHL, comprising around 20% of all cases and the

prevalence is higher in EBV+ cHL (165, 166). Anti-CD20 therapy with

rituximab is effective in CD20+ cHL (167). it is plausible that CD20 can

become a CAR target for patients with CD20+ cHL.

CD123 is the a-subunit of interleukin-3 receptor and is widely

expressed both on HRS and on the tumor-associated macrophages

in the TME (168). In a preclinical study by Ruella, et al., CD123-

CAR T may target HRS direct ly and overcome the

immunosuppressive TME, killing cHL both in vitro and in vivo,

and establish long-termmemory (169). Due to expression of CD123

on normal hematopoietic cells and endothelial cells, off-target

toxicity such as bone marrow failure is a valid concern for

clinical application.
T-cell lymphoma

Development of CAR T-cell therapy in T-cell malignancies have

been limited by fratricide, i.e., killing of sibling CAR and normal T-
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cells, leading to reduced efficacy and profound immune suppression

(170). Identification of malignancy-specific T-cell surface antigen,

such as C-C motif chemokine receptor 9, may circumvent fratricide

(171). Some antigens are shared between B and T-cell lymphomas,

such as CD37 and CD38, and no significant fratricide has been seen

with CAR-T targeting CD37 or CD38 in preclinical experiments

(172). Another hurdle in CAR T development is the risk of

contamination by malignant T-cells in autologous products (173).

Further, functional T-cells may be absent in patients with advanced

T-NHL, leading to poor autologous T-cell quality (174). AlloCAR,

on the other hand, may introduce GvHD. T-cell receptor alpha

constant (TRAC)-knockout can prevent GvHD and is often

employed in the construction of alloCAR (175). Tyrosine kinase

inhibitors dasatinib and ibrutinib may suppress fratricide, enhance

anti-tumor activity, and promote expansion (176, 177). Another

promising development is CAR-NK which are non-GvHD

inducing, off-the-shelf, and can be modified to prevent fratricide

(174, 178). Active clinical trials of novel CAR-based therapy in TCL

are listed in Table 2.
CD5

CD5 is present on at least 80% of T-cell malignancies,

thymocytes, peripheral T-cells, and a small proportion of B-cells.

Mamonkin, et al., constructed CD5-CAR T with CD28

costimulatory domain had attractive features in preclinical

experiments, namely limited and transient fratricide and

preserved immune response to viral antigens, but the cells failed

to eliminate malignant T-cells in vivo and animals developed CD5+

relapse (179). CD5-CAR T with 4-1BB costimulatory domain

exhibited better antitumor activity but with increased fratricide.

To overcome fratricide, Mamonkin et al., designed reversible CAR

expression system that could be suppressed with small molecules

during in vitro cell culture, and restore CAR expression in vivo after

drug withdrawal (180). Based on promising pre-clinical studies, Hill

and Mamonkin, et al., conducted a phase 1 clinical trial applying

autologous CD5-CAR T with CD28 costimulatory domain to

patients with R/R T-cell malignancies (NCT0308190) (181).

Among 17 enrolled patients with heavily pretreated TCL, 2 died

before cell manufacture and 2 died prior to infusion, 2 received

alternative therapy, I failed eligibility, and 1 production failed,

rendering a total of 9 patients who received cell infusion. Therapy

was well tolerated, with toxicity profile similar to commercial

CD19-CAR T. Response was observed in 4 patients, including

two CRs that lasted 6.4 and 7.2 months in the absence of

consolidative alloHSCT (181). The study highlighted the

challenges in timely manufacture of CAR-T in this heavily pre-

treated population. Off-the-shelf alloCAR and CAR-NK may be

more readily available for patients. Donor-derived CD5-knockout

CD5-CAR T has been evaluated in a phase 1 clinical trial in patients

with R/R T-ALL (182). All patients were previously treated with

CART7 and had CD7-negative relapse. MRD-negative CR was

achieved in all patients but the follow up was limited. Most of the

side effects were hematological, but 1 patient developed lethal EBV

infection with HLH at 2.7 months post therapy. NK-92 cells
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transduced with CD5-CAR have demonstrated effective antitumor

activity in murine T-ALL/TCL xenograft models (183, 184).
CD7

Autologous and allogeneic CD7-CAR Ts (autoCD7 and

alloCD7, respectively) have both been developed. Most of the

CD7-CAR T clinical trials have focused on T-acute lymphoblastic

leukemia (ALL)/lymphoblastic lymphoma. An off-the-shelf

alloCD7 product, WU-CART-007, utilized CRISPR/Cas9 deletion

of CD7 and TRAC to minimize fratricide and GvHD (185). WU-

CART-007 is undergoing a global phase 1/2 clinical trial in T-ALL/

LBL (NCT04984356) (186). Pan, et al., conducted a phase 1 clinical

trial in China focusing on T-ALL/LBL with post-alloHSCT relapse

(187). T-cells were harvested from original donor (n = 12) or new

donor (n = 8). The lentiviral vector had a CD7 binding domain to

retain CD7 intracellularly and prevent fratricide. CRS and GvHD

were common but mostly low grade. ICANS occurred in 15%, all <

grade 3. All patients had grade 3-4 cytopenia likely related to the

nature of disease. CR was seen in 90% of patients and 83% of the CR

were durable at a median follow up of 6.3 months. New donor-

derived CD7-CAR T did not cause higher rate of GvHD due to

mixed chimerism. The authors also observed T-cell immune

reconstitution from CD7-negative T-cells.

Another phase 1 study from China compared the outcomes of

patients with T-cell malignancies, including 8 T-ALL/LBL and 2

PTCL, who received autoCD7 (n = 5) or alloCD7 (n = 5)

(NCT04823091) (188). Notable toxicities included CRS in 8

patients, grade 3 CRS in 1, and HLH in 2. No ICANS was observed.

Two patients experienced mild GvHD. Majority of patients had

significant pancytopenia and/or infection complications.

Unfortunately the two patients with PTCL did not respond.

AlloCD7 was more readily available and did not require washout

between chemotherapy and leukapheresis, benefiting patients with

rapidly progressing refractory disease. Compared with autoCD7,

alloCD7 was associated with higher response rate, less relapse, and

better CAR T persistence (188). For patients with T-ALL/LBL

Allogeneic stem cell transplantation post-alloCD7 was shown to be

safe, and patients with CD7-positive relapse post-transplant could

achieve remission again with alloCD7 re-treatment (186, 189).

Fratricide resistant CD7-CAR T may also be produced through

natural selection of minimal CD7 epitope expressing T-cells from

bulk T-cells either in vitro or in vivo (177, 190). Dasatinib and

ibrutinib can temporarily inhibit fratricide and facilitate ex vivo

expansion (177). CD7 is a viable target for CAR-NK and different

NK-92-based CD7-CAR NKs have been developed in the lab

pending clinical verification (191, 192).

Relapse after CD7-CAR T is usually from antigen escape which

may be prevented by dual CD5/CD7 targeting (187, 193). In a

preclinical study, Dai, et al., transduced CD5, CD7 or tandem CD5/

CD7 scFv to CD5/CD7 knockout T-cells. CD5 and CD7 knockout

did not change TCR structure and prevented fratricide. Tandem

CD5/CD7 CAR-T had the best in vivo antitumor activity and

prolonged the survival of mice bearing xenograft in murine

xenograft models (193).
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CD2

Costimulatory receptor CD2 is commonly expressed on T- and

NK-cell surface and is involved in T-cell development and function

(194). CD2 is expressed in about 90% adult peripheral T-cell

lymphoma and about 70% in pediatric T-acute lymphoblastic

leukemia/lymphoma (ALL/LBL) and PTCL, higher than CD7 (40-

50%) (195). The development of CAR2 is potentially limited by

fratricide, necessitating CD2-knockout in CAR-T. Recently,

Angelos et al., tested CD2-knockout autologous CD2-CAR T in

preclinical models, showing high antitumor activity even in post-

CAR5 relapsed T-ALL xenograft mice (195). Xiang et al., developed

a CD2 and TCR alpha subunit knockout allogeneic CAR T against

CD2 (UCART2) to minimize fratricide and GvHD. CD2-knockout

led to reduced CAR-T function, which could be overcome by

coadministration of IL-7. Preclinical study demonstrated that the

combination of UCART2 and IL-7 could effectively prolong the

survival of xenograft mouse model with T-cell malignancy (196).
CD147

CD147 is highly expressed in several types of solid tumor and T-

cell malignancies. Aside from promoting invasion and metastasis,

CD147 is indispensable for T-cell differentiation at the thymus level

(197). Several CD147-CAR Ts of various designs are undergoing

different stages of clinical development in hepatocellular carcinoma

and non-small cell lung cancer (198–200). CD147-CAR T exhibited

potent efficacy and absent off-target effect in cell-line and xenograft

models (201). An early phase clinical trial (NCT05013372) is being

conducted in China to evaluate the safety and efficacy of CD147-

CAR T in CD147-positive R/R T-NHL.
T-cell receptor-based therapy

T cell receptor b-chain constant domains 1 and 2 (TRBC1 and

TRBC2) expression are mutually exclusive on T-cell surface. TRBC1

is expressed by around 40% of normal T-cells, and the incidence of

TRBC1 positivity in T-cell malignancies is similar (202, 203).

TRBC-targeting can eliminate the cancer and normal T-cells that

express the specific TRBC but spare the other group of normal T-

cells, thereby limiting fratricide, and rescuing patients from

intolerable immunosuppression (204). An ongoing phase 1/2

clinical trial (NCT03590574) demonstrated that autologous

TRBC1-CAR T was well-tolerated, and at a higher dose could

induce response in patients with R/R TRBC1-positive PTCL

(203). Initially, duration of response was short, with a lack of

circulating CAR T expansion. The manufacturing process was

modified to produce a more naïve phenotype, improving the

duration of response (205). Another method that may improve

TRBC1-CAR T function is to only transduce pre-selecting TRBC1-

negative T-cells, to prevent fratricide and contamination of the

product by TRBC1-positive malignant cells (202). Updated results

from clinical trials are eagerly anticipated to further elucidate the

utility of autologous TRBC1-CAR T.
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TCR receptor variable region have also been proposed as

potential CAR targets. T-cell malignancy typically exhibit TCR

variable b-chain (Vb) clonality, therefore targeting malignancy-

specific Vb may achieve cancer-specific cytotoxicity while sparing

other normal T-cells. Vb-targeting CAR-T and CAR-NK have both

been generated, with proof-of-concept preclinical results (174, 206).

TCR mutation or down-regulation may confer resistance to TCR-

targeting therapy. Some T-NHLs do not have ab TCR but have gd
TCR, and those would not respond to therapy against TRBC or Vb.
Other targets

Pan-T antigen CD3 is a target of interest in T-cell malignancies

but antibody-based therapies have been unsuccessful (207). Gene-

edited T-cells with disrupted CD3 expression can be made into CD3

CAR-T that are resistant to fratricide. CD3 is also an appealing

target for CAR-NK as NK-cells do not express CD3. Several pre-

clinical studies have demonstrated strong antitumor activity of

CD3-targeted, CD3-knockout CAR-T or CAR-NK in preclinical

studies (208–210).

CD4 is a ubiquitous marker of mature T-cells. CD4-targeting

CAR T with an alemtuzumab safety switch is currently in clinical

trial for CD4-positive R/R T-cell NHL and ALL. Preliminary results

demonstrated the efficacy and safety of CD4-CAR T (211). CD4 is

also a potential CAR-NK target (212).

CD30 is ubiquitously expressed in systemic ALCL and variably

expressed in other PTCL (213). Although CD30-CAR T is mainly

studied in cHL, several patients with ALCL were enrolled in

different trials, with good tolerance, minimal fratricide, and some

patients enjoyed durable CR (147, 151, 152). Aside from ALCL,

Voorhees, et al., reported durable CR after CD30-CAR T in a

patient with heavily pre-treated CD30+ enteropathy-associated T-

cell lymphoma (214). Of note, the patient previously received

alloHSCT so the CD30-CAR T was of allogeneic origin.

NKG2D-ligand is highly expressed on cancer cells and rarely on

healthy tissue. The NKG2D/NKG2D-ligand interaction is

important for NK-cell mediated immune surveillance, but

contributes to NK-cell exhaustion in cancer (215). T-cells

transduced with NKG2D has become an exciting tumor-agnostic

treatment for cancer. In NKG2D-ligand deficient tumor, NKG2D-T

may also induce tumor-specific immunity by enhancing immune

surveillance and modifying TME (216). Preclinical study

demonstrated efficacy of NKG2D-T in T-NHL cell lines (216).

Currently, several clinical trials are actively testing the efficacy and

safety of NKG2D-T in solid tumors and AML/MDS (217).

CCR4 is a chemokine receptor expressed mainly in Tregs. Anti-

CCR4 monoclonal antibody mogamulizumab has proven efficacy in

T-reg-derived malignancies such as adult T-cell leukemia/

lymphoma (ATLL) and CTCL. Perera, et al., demonstrated

preclinical in vitro and in vivo efficacy of CCR4-CAR T in ATLL

and other CCR4-positive TCL (218). Contrary to other CAR T,

fratricide can improve the quality of CCR4-CAR T by eliminating

Treg and type-2 helper T-cells, while sparing cytotoxic CD8+ and

type-1 helper T-cells, enhancing antitumor efficacy (219).
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Certainmolecules are expressed in different types of lymphoma and

can become tumor-agnostic targets for lymphomas sharing the same

marker. Besides CD30, which is shared by both cHL and TCL, other

molecules of interest include CD37, CD38, and EBV-associated protein.

CD37 is highly expressed on universally all B-NHL and some

cutaneous T-cell lymphoma (CTCL) and peripheral T-cell

lymphoma (PTCL), while absent on hematopoietic stem cells,

making it a potentially feasible CAR target (172). Clinical trials

utilizing anti-CD37 monoclonal or bispecific antibodies and ADC

in R/R B-NHL have been disappointing in general, likely due to the

close association between CD20 and CD37 (220). In CD20-down

regulated B-NHL, CD37 expression is also decreased, impairing the

function of antibody-based therapy. Although CAR T typically

requires high antigen expression, CD37 down-regulation do not

seem to affect the function of CD37-CAR T (220). Preclinical study

demonstrated potent cytotoxicity of CD37-CAR T against various

CD37-expressing B- and T-NHL, without T-cell fratricide or

detectable toxicity to other immune cells such as NK-cells and

monocytes (29, 172). Structural modification, such as dual-

costimulatory domain and novel linker design, may further

improve CD37-CAR T function (221). A phase 1 clinical trial

(NCT04136275) treated four heavily pre-treated patients (2

HGBCL, 1 CTCL, 1 HL) with CD37-CAR T, and achieved

prolonged CR in three. However, two patients developed bone

marrow failure unexpectedly, likely due to high T-cell dose (222).

Bispecific CD19/37-CAR Ts were developed by several independent

groups, yet to be tested in clinical trials (172, 223, 224).

CD38 signals multiple immunoregulatory pathways and is

expressed by various hematological malignancies including MCL,

LPL, Burkitt lymphoma, CTCL and NK/T-cell lymphoma (225–228).

Lymphoma cells highly expressing CD38 respond well to CD38-CAR

T, and those dimly expressing CD38 could be re-sensitized to CD38-

targeted therapy by all-trans retinoic acid or panobinostat (228–230).

Single targeting CD38-CAR T and dual targeting tandem CD38/

latent membrane protein-1-CAR T all showed promising cytotoxicity

against NK/T-cell lymphoma in in vitro and in vivo pre-clinical

experiments (178). CD38-CAR NK has also been explored. Due to

high CD38 expression on NK-cells, CD38-CAR NK needs

simultaneous CD38-knockout to avoid fratricide (229, 231). CD38-

CAR NK is effective against various CD38-expressing hematological

malignancies in preclinical testing (229, 231).

Ebstein-Barr virus (EBV) is associated with various solid and

hematologic malignancies. It is estimated that about 8% of

lymphomas are EBV-positive, with the highest rate in

angioimmunoblastic T-cell lymphoma, close to 50%, followed by

about 30-40% in cHL; in immunocompromised hosts, lymphomas

are almost universally positive for EBV (232–234). EBV contributes

to pathogenesis and generation of immunosuppressive TME, and

can be a marker of relapse (233, 235). Latent membrane proteins

(LMP1 and LMP2A) are proteins encoded by EBV and participate

in oncogenesis (236). A series of clinical trials were conducted using

LMP1/2-specific cytotoxicity T-lymphocytes for cHL,

demonstrating an ORR around 30-60% (237). CAR-T targeting
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LMP showed preclinical efficacy in LMP-positive solid and

hematological malignancies, such as ENKL (178, 238, 239).

Gp350, an abundant EBV envelop glycoprotein, is another

potential target to treat EBV lymphoproliferative disease (240).

Other strategies of tumor-agnostic CAR design pertain to

improving cell trafficking to tumor and recognition of tumor

antigen. For example, tumoral injection of a substance followed by

administration of CAR-T specific to the substance can facilitate CAR-T

homing (241). This strategy is more applicable to limited number of

solitary lesions especially in solid tumor. Such substance could be small

molecules that can be inserted into cell membrane by liposomal vector,

or CD19 that can be transduced via oncolytic virus (241, 242). Another

strategy is to improve T-cell function, to enhance host immunity

against malignancy. Lai, et al., designed a CAR-T that secrets dendritic

cell growth factor Fms-like tyrosine kinase 3 ligand (Flt3L) that can

recruit host dendritic cells, increase T-cell activation, and induce

epitope spreading towards otherwise unexposed tumor antigens (243).

CD16-expressing T-cells replaces the directly antigen-recognizing

scFv with the extracellular portion of the Fc gamma receptor CD16,

adding NK-cell like function to T-cells. When co-administered with

tumor-specific antibody, the CD16-T recognizes the opsonized tumor

cells and exerts cytotoxicity via antibody-mediated cellular cytotoxicity

(244). When toxicity occurs, treatment can be aborted by withdrawal

of antibody (245). While the presence of tumor antigen and respective

monoclonal antibody are still required, CD16-T may overcome

resistance mechanisms such as NK-cell exhaustion or lack of NK-

cell infiltration in the TME (246). ATTCK-20-03 (NCT03189836) is a

phase 1 clinical trial evaluated the combination of CD16-T and

rituximab for R/R B-NHL (247). Among the 25 subjects treated, 14

(56%) responded, including 10 (40%) CR, with the longest duration of

CR 586 days (range, 85-586). Treatment was well tolerated, resulting

in no DLT, 1 case of grade 3 neutropenia, and 1 case of grade 2 CRS.

ATTCK-20-03 demonstrated that antibody/CD16-T coupling is a

feasible approach towards cancer treatment.
Conclusion

Identification of novel tumor antigens opens new therapeutic

avenues for B-cell NHL beyond approved CD19-CAR T, and extends

the application of CAR-based therapy to HL and TCL. Dual or multi-

targeted CAR may lower the risk of antigen escape-mediated relapse.

Tumor agnostic CAR may broaden the indication of adoptive cellular

therapy across tumors of different cellular origin. Yet, finding new

targets is not the only way to improve the feasibility and efficacy of

CAR-based therapy. Modification of the non-antigen biding domains

on a CAR may improve cell persistence and reduce toxicity (248).

Genetic modification outside of the CARmolecule, such as adding Toll-
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like receptor, IL-18 expression, adding IL-7 and CCL19 expression, or

administration of cytokines in vivo, may improve the activity of cells

and prolong persistence (249–252). Vaccination combined with viral-

specific CAR-T, immune checkpoint modification, pre-selection of

memory- and naïve T-cells and elimination of Tregs, may reduce T-

cell exhaustion and immunosuppression (63, 253–256). Advanced cell

engineering enables the incorporation of inducible CAR expression

switches to reduce toxicity (257). New manufacturing platforms reduce

the cost and vein-to-vein time, improving the accessibility of CAR-T

(258, 259). The rapidly evolving field of CAR-based therapy should

hopefully deliver products with better efficacy, tolerability and

accessibility, broader indication, and less physical and financial

toxicity to patients with lymphoma.
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