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images based on multi-
consistency learning
Jinghui Fang*

College of Information Science and Engineering, Hohai University, Nanjing, China
Pathological images are considered the gold standard for clinical diagnosis and

cancer grading. Automatic segmentation of pathological images is a fundamental

and crucial step in constructing powerful computer-aided diagnostic systems.

Medical microscopic hyperspectral pathological images can provide additional

spectral information, further distinguishing different chemical components of

biological tissues, offering new insights for accurate segmentation of

pathological images. However, hyperspectral pathological images have higher

resolution and larger area, and their annotation requires more time and clinical

experience. The lack of precise annotations limits the progress of research in

pathological image segmentation. In this paper, we propose a novel semi-

supervised segmentation method for microscopic hyperspectral pathological

images based on multi-consistency learning (MCL-Net), which combines

consistency regularization methods with pseudo-labeling techniques. The

MCL-Net architecture employs a shared encoder and multiple independent

decoders. We introduce a Soft-Hard pseudo-label generation strategy in MCL-

Net to generate pseudo-labels that are closer to real labels for pathological

images. Furthermore, we propose a multi-consistency learning strategy, treating

pseudo-labels generated by the Soft-Hard process as real labels, by promoting

consistency between predictions of different decoders, enabling the model to

learn more sample features. Extensive experiments in this paper demonstrate the

effectiveness of the proposed method, providing new insights for the

segmentation of microscopic hyperspectral tissue pathology images.
KEYWORDS

microscopic hyperspectral images, semi-supervised learning, medical image
segmentation, mutual consistency, pseudo-labels
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1 Introduction

Pathological images are considered the gold standard for

clinical diagnosis and cancer grading (1). Automatic segmentation

of pathological images is a fundamental and crucial step in

constructing powerful computer-aided diagnostic systems.

Quantitative analysis of the morphological properties of organs

and tissues based on segmentation results provides valuable

evidence for clinical diagnosis. Existing pathological image

segmentation methods (2–4) typically utilize RGB datasets.

However, common RGB images can only provide spatial

information for cancer diagnosis. The similarity in biological

tissue morphology affects the accuracy of diagnostic results.

With the advancement of imaging systems, medical microscopic

hyperspectral images have been employed in various tumor

recognition applications (5–7). The DMCA method proposed in

(5) integrates the classifier for prediction into the extraction of deep

features from MedHSIs. This integration ensures compatibility

between the extracted features and the classifier, facilitating tumor

diagnosis. In (6), Ravì et al. introduced a novel manifold embedding

framework called FR-t-SNE. Using this framework, the outputs

generated from hyperspectral imaging can be utilized as inputs for

semantic segmentation classifiers of brain tissue in vivo. The

proposed method aims to delineate tumor boundaries, preserve

healthy brain tissue, and facilitate complete removal of malignant

cells. Muniz et al. proposed, in (7), a method utilizing hyperspectral

imaging and micro-FTIR spectroscopy to represent biological tissues

based on their spectral characteristics. Subsequently, a deep learning-

based classification approach was established to aid experts in

distinguishing tissues affected by cancer or inflammation from

healthy tissues. Microscopic hyperspectral imaging applied in

medical image analysis relies on the following two fundamental

principles: i) tissues with similar biochemical compositions

are likely to exhibit similar spectra; and ii) variations in spectra

can be quantified to delineate different tissues (8). Compared to

conventional imaging modalities, medical microscopic hyperspectral

pathological images offer additional spectral information, enabling

further differentiation of various chemical constituents within

biological tissues. Nevertheless, hyperspectral pathological images

have higher resolution and larger area, and their annotation

requires more time and clinical experience. Therefore, the lack of

precise annotations limits the progress of research in pathological

image segmentation.

Semi-supervised learning is a method used to address the issue

of limited labeled data. This approach typically involves joint

training with a small amount of labeled data and a large amount

of unlabeled data. The core of this method lies in effectively

extracting useful information from both labeled and unlabeled

data to achieve relatively stable segmentation results. To achieve

this goal, many semi-supervised algorithms have been applied in

this field. Common existing semi-supervised segmentation methods

can be categorized into pseudo-labeling and consistency

regularization methods (9). Firstly, pseudo-labeling is an intuitive

approach where a model trained on labeled data is used to predict
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pseudo-labels for unlabeled data. These new pseudo-labeled data

are then combined with the original labeled set to further refine the

model. However, the effectiveness of this method is constrained by

the varying quality of the predicted pseudo-labels (9). Consistency

regularization methods are based on the smoothness assumption

(10). They explore an unsupervised way to leverage unlabeled data.

This method (11–13) typically applies slight perturbations to the

input data or the model, and learns from unlabeled data by ensuring

consistency in model output under different perturbations. Many

methods employ a single image to enforce consistency in their

perturbations (14), which may lead to inaccurate segmentation

results due to a lack of context information across volumes, thus

limiting the effectiveness of consistency regularization.

Given the aforementioned issues with consistency regularization

and pseudo-labeling methods, this paper introduces a semi-

supervised segmentation method for microscopic hyperspectral

pathological images based on multi-consistency learning (MCL-Net),

which combines both methods. The architecture of the model is

illustrated in Figure 1. The model employs a shared encoder and

multiple decoders, where the output of the encoder undergoes

different perturbations before being fed into distinct decoders.

Subsequently, we employ a novel pseudo-label generation method

called Soft-Hard to transform the outputs of different decoders into

pseudo-labels. Using these generated pseudo-labels as a basis, we

devise a novel multi-consistency training approach, wherein soft

pseudo-labels obtained from each decoder are treated as genuine

labels for the other decoders and subjected to consistency constraints.

Through this approach, we minimize discrepancies in output across

multiple decoders during model training, thereby obtaining a more

comprehensive feature representation. In summary, this paper makes

the following four contributions:
1) A semi-supervised segmentation method for microscopic

hyperspectral pathology images based on multi-consistency

learning is proposed in this study. This method combines

pseudo-labeling and consistency regularization techniques.

2) A multi-consistency learning approach that effectively

integrates features extracted by different models is

introduced in this research.

3) A novel pseudo-label generation method, Soft-Hard, which

generates pseudo-labels that are closer to real labels, has

been devised.

4) Extensive experiments demonstrate that our method

outperforms five other state-of-the-art methods, providing

new insights for the segmentation of microscopic

hyperspectral pathology images.
Remaining sections of the paper are organized as follows:

Section 2 provides a review of pathological image segmentation

and semi-supervised segmentation methods for medical images.

Section 3 introduces the MCL-Net method proposed in this paper.

Section 4 outlines the experimental setup. Section 5 is dedicated to

result analysis. Finally, Section 6 concludes and summarizes

the paper.
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2 Related work

2.1 Pathological image segmentation

Pathological images serve as the gold standard for cancer

detection, with various segmentation methods being employed in

different types of cancer detection. Musulin et al. (15) proposed a

two-stage image segmentation method utilizing DeepLabv3+ as the

backbone model for predicting oral squamous cell carcinoma in

head and neck cancer. Zidan et al. (16) designed a Transformer-

based approach constructing a Swin Transformer encoder block to

mimic the global context of tumor-related regions in colorectal

cancer. Additionally, a cascaded upsampler was devised to utilize

supervised multiscale features from the encoder to assist in

detecting tumor boundary regions. Jayachandran et al. (17)

introduced a novel deep learning framework based on an

encoder-decoder structure effectively incorporating attention

mechanisms for segmenting osteosarcoma from histological

images. Huang et al. (18) proposed an end-to-end ViT-AMCNet,

possessing interpretable throat tumor grading capabilities and good

interpretability. This model not only ensured good feature

representation capabilities of ViT and AMC blocks but also

enhanced the redundancy removal ability of the model fusion

algorithm. In (19), Rashmi et al. proposed an unsupervised

method for segmenting cell nuclei from breast tissue pathology

images. A method for selecting template images for color

normalization was introduced. An experiment determining a new

color channel combination was conducted, which could distinguish

cell nuclei from background regions. Furthermore, this work

introduced an improved C-V model capable of effectively

segmenting nuclei using multi-channel color information. To

fully exploit the spectral characteristics of three-dimensional

hyperspectral data, Wang et al. (8) applied deep convolutional

networks for melanoma segmentation on hyperspectral
Frontiers in Oncology 03
pathological images. They introduced a 3D fully convolutional

network named Hyper-net for segmenting melanoma from

hyperspectral pathological images. Zhang et al. (20) proposed a

two-stage segmentation method for OSCC tumors with lymph node

metastasis. In the learning stage, this method is employed for coarse

segmentation of cancer cell nuclei. In the decision stage, the

pathologist’s prior knowledge is utilized to make lesion decisions

based on the coarse segmentation mask of cancer nuclei, resulting in

refined segmentation results. Gao et al. (21) proposed a semi-

supervised segmentation method for microscopic hyperspectral

pathological images based on shape priors and contrastive

learning. They utilized shape priors and image-level contrastive

learning to learn features from unlabeled data, enhancing semi-

supervised segmentation performance and mitigating limitations

posed by limited annotated data. Despite significant progress in

tissue pathology image segmentation for cancer prediction, research

on hyperspectral pathological images remains limited.
2.2 Consistency regularization

Consistency regularization refers to the similarity of predictions

generated by a model under the same input data or model with

added random noise. It is a crucial component of temporal

ensemble techniques (22). Mean Teacher (23) is a classical

temporal ensemble technique where both the student and teacher

models adopt the same network structure. Through exponential

moving average (EMA), the student network’s output across

different training iterations becomes similar to that of the teacher

network. Various models based on temporal ensemble techniques

have been developed based on Mean Teacher. In (24), Shu et al.

proposed a novel cross-pollination learning and feature migration

mechanism allowing the teacher model to provide higher

confidence outputs for student model learning. This method
FIGURE 1

The MCL-Net model proposed in this paper.
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cross-pollinates unlabeled samples to enhance the segmentation

network’s generalization ability. It also introduces new cross-

gradient monitors to reduce consistency failures caused by

semantic gaps between teacher and student models. The average

teacher model is enhanced into a novel Fuzzy Consistency Average

Teacher (AC-MT) model, where Xu et al. (25) added a series of

comprehensive plug-and-play strategies for fuzzy (informative)

target selection based on Mean Teacher. This model stabilizes

disturbances in regions, enabling more useful representations to

be learned from unlabeled data. In (26), Zhang et al. proposed a

novel uncertainty-guided mutual consistency learning framework

for semi-supervised medical image segmentation. The model

employs a dual-task backbone network with two output branches

to simultaneously generate segmentation probability maps and

signed distance maps. It performs intra-task consistency learning

within self-ensemble tasks and utilizes task-level regularization for

cross-task consistency learning to leverage geometric shape

information. By estimating model segmentation uncertainty

guidance, the framework effectively utilizes more reliable

information from unlabeled data by selecting relatively determinis.
2.3 Pseudo-labeling

Pseudo-labeling involves generating targets for unlabeled data

to obtain amplified, approximately fully labeled datasets (27).

Common pseudo-labeling methods focus on effective pseudo-label

generation strategies and how to generate high-quality

segmentation results under the supervision of pseudo-labels. Wu

et al. (28) proposed a novel Mutual Consistency Network (MC-Net)

for semi-supervised left atrium segmentation in 3D MR images.

MC-Net consists of an encoder and two slightly different decoders.

It converts the prediction differences between the two decoders into

unsupervised loss through a cyclic pseudo-labeling scheme to

encourage mutual consistency. Building upon (28), Wu et al. (29)

further introduced a model comprising a shared encoder and

multiple slightly different decoders. This model represents the

model’s uncertainty by computing the statistical differences

among the outputs of multiple decoders, indicating uncertain

regions in unlabeled data. The model obtains soft pseudo-labels

using a sharpening function and applies a novel mutual consistency

constraint between the probability output of one decoder and the

soft pseudo-labels of other decoders. Chaitanya et al. (30) proposed

a joint training framework defining per-pixel contrastive loss on

pseudo-labels of unlabeled and sparsely labeled images, while

applying traditional segmentation loss only on the labeled set.

This method performs pseudo-label-based self-training and trains

the network by jointly optimizing the contrastive loss proposed on

labeled and unlabeled sets and the segmentation loss on the sparsely

labeled set. Chen et al. (31) proposed a semi-supervised tissue

segmentation framework called FDCT. This framework introduces

the SBOM boundary refinement strategy, utilizing the

characteristics of distance maps to optimize the pseudo-labels

generated by the model, making them closer to the ground

truth labels.
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3 Proposed method based on multi-
consistency learning

3.1 Overall structure

The task of semi-supervised segmentation of microscopic

hyperspectral pathology images aims to learn more sample

information by utilizing a small set of labeled samples and a large

set of unlabeled samples. In this paper, we work with a dataset,

denoted as D, which contains M labeled samples and N unlabeled

samples, where M ≪ N We define the labeled dataset as DL =

Xi,Yi
� �M

i−1 and the unlabeled dataset as DU = Xi
� �M+N

i=M+1. Each

sample Xi ∈ RH�W�C in D is a microscopic hyperspectral image

with a size ofH �W and C channels. Correspondingly, Yi ∈ RH�W

is the segmentation label map associated with Xi. The objective of

semi-supervised segmentation is to learn a segmentation model fs(qs)
parameterized by D = DL + DU from qs, such that each pixel in the

input image is mapped to its correct class.

The network model proposed in this paper is illustrated in

Figure 1. During the training phase, in the preprocessing step on the

left, Principal Component Analysis (PCA) is employed to perform

dimensionality reduction on the input microscopic hyperspectral

images. PCA serves a dual purpose: firstly, it helps distance the

image from noise, thereby enhancing the data quality; secondly, it

eliminates redundant spectral bands, reducing computational

overhead and improving processing efficiency. We will use the

data obtained by PCA dimensionality reduction as model input. In

the segmentation step depicted in Figure 1, the feature vector FA is

obtained by first passing through a shared encoder. Subsequently,

various perturbations are applied to the feature vector FA, and the

perturbed feature vectors are fed into different decoders. The

outputs of multiple decoders are subjected to the proposed multi-

consistency loss in this paper. All decoders update their model

parameters during the training process. However, during testing,

only one decoder is selected as the primary decoder, while the

others are referred to as auxiliary decoders. Further details will be

elucidated in Section 3.2. The U-Net model, known for its simple

yet efficient structure, has found wide application in the field of

medical image segmentation. Therefore, in our segmentation

model, we employ an encoder-decoder structure based on U-Net,

as depicted in Figure 2.
3.2 Training with multiple consistencies

After the input data D passes through the encoder E, it yields

the feature vector FA. FA is directly fed into the primary decoder

DL = Xi,Yi
� �M

i−1. Different noise is introduced to the inputs of the

model’s auxiliary decoders, represented as FAi = featurenoise(F

A), where n≥i> denotes the number of decoders and featurenois

e() signifies the distinct noise added to FA. Specifically, we set n

to 3 to strike a balance between effectiveness and training

efficiency. Through experiments in Section 5.3, we ultimately

determine featurenoise() to be Gaussian noise. Further

experimental details will be presented in Sections 5.3 and 5.4.
frontiersin.org
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The feature vector is processed by different decoders to obtain

distinct probability maps. For the labeled dataset DL = Xi,Yi
� �M

i−1

this paper only calculates the supervised loss between the

probability map from the primary decoder and its corresponding

ground truth label. In this paper, the supervised loss is computed

using both cross-entropy loss and Dice loss, defined by Equation

(1):

Ls = LCE(y
L
seg ,Y) + Ldice(y

L
seg ,Y) (1)

For the unlabeled data, we utilize the Soft-Hard process

proposed in this paper to obtain pseudo-labels corresponding to

different decoders for the same input. Firstly, we employ a

sharpening function (32) to transform the probability maps into

soft pseudo-labels. The computation process of the sharpening

function is as Equation (2):

PS =
p(ypredjx; q)1=T

p(ypred jx; q)1=T + (1 − p(ypredjx; q))1=T
(2)

Here, T is a hyperparameter controlling the sharpening

temperature. By choosing an appropriate T , we can apply entropy

minimization constraint to regularize our model without

introducing additional noise that might interfere with model

training. The specific value of the temperature coefficient T will

be tested in Section 5.5. Afterwards, we obtain the corresponding

hard labels generated by the above process, denoted as PH =

argmax (PS). The process of obtaining hard labels can be

expressed as Equation (3):

PH = argmax
p(ypred jx; q)1=T

p(ypredjx; q)1=T + (1 − p(ypred jx; q))1=T
 !

(3)

By minimizing the consistency loss imposed on the update

direction of the aforementioned constrained model, we enable the

primary decoder to integrate sample features extracted by different

decoders, thereby maximizing the learning of latent sample
Frontiers in Oncology 05
information from unlabeled samples. Ultimately, the overall loss

function of this study is formulated as Equation (4):

Lu = o
n

i,j=1i≠j
LCE(y

i
seg , PHj) + Ldice(y

i
seg , PHj)

� �
(4)

We treat the hard labels obtained from each decoder as the

ground truth labels for the inputs of the other decoders. We then

compute the multi-consistency loss between different decoders.

Inspired by the findings in (32), we have adopted a strategy of

weighting the supervised and unsupervised losses using

hyperparameters to achieve improved experimental results. The

formula for the multi-consistency loss is as Equation (5):

L = lLs + bLu (5)

where l represents the weight of the supervised loss, and b
represents the weight of the unsupervised loss. Due to the lack of

true labels for unlabeled data, pseudo-labels generated by the Soft-

Hard process might initially lead the model in the wrong direction

during training. Therefore, this paper adopts the method from (33)

by adding a time-varying Gaussian weighting function, denoted as

b = 0:001� exp −5� 1 − t
tmax

� �2� �
, to the unsupervised loss. This

aims to balance the supervised loss and the consistency loss. Here, t

denotes the current iteration count, and tmax represents the

maximum number of iterations.
4 Experimental setup

4.1 Dataset

In this study, we utilized the cholangiocarcinoma micro-

hyperspectral images from the multi-dimensional biliary tract

database collected in (34). This dataset comprises 880 scenes from

174 individuals, with 689 scenes containing partially cancerous

regions, 49 scenes representing complete cancerous regions, and
FIGURE 2

The U-Net structure used in this article.
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142 scenes devoid of any cancerous regions. The spatial resolution

of these images is 1024� 1280 pixels, each image encompassing 60

bands uniformly distributed from 550nm to 1000nm. While the

database provides pixel-level labels for each image, it was observed

through experimentation that these labels were somewhat coarse,

failing to meet the accuracy requirements for semantic

segmentation tasks. As illustrated in Figure 3A, shows a false-

color image synthesized using the 5th, 15th, and 25th bands of the

input data, while Figure 3B depicts the original labels provided by

the database. It can be noted that, on one hand, the labels are

disconnected at the opening of the circular structure, while in

reality, they should be continuous. On the other hand, the

boundaries between the tumor region and the normal region in

the original labels are too sharp and abrupt, failing to accurately

represent the true boundary information. Therefore, experienced

researchers re-annotated the dataset, resulting in a total of 94 re-

annotated images. The annotated results are shown in Figure 3C,

demonstrating improved continuity and accuracy compared to the

original labels.
4.2 Evaluation metrics

We employed four evaluation metrics to assess the performance

of semi-supervised segmentation on histopathological images,

including overall accuracy (OA), average accuracy (AA), Dice

coefficient, and mean intersection over Union (MIoU). Better

segmentation performance is indicated by higher values of OA,

AA, Dice, and MIoU.

OA and AA represent the proportion of pixels correctly

classified: We define the tumor region as positive samples and the

non-cancer region (i.e., normal region) as negative samples. TP,

TN, FP, and FN denote true positive pixels, true negative pixels,

false positive pixels, and false negative pixels, respectively. Then,

OA and AA can be defined as Equations (6) and (7):

OA =
TP + TN

TP + TN + FP + FN
(6)

AA =
1
2

TP
TP + FN

+
TN

FP + TN

� 	
(7)

MIoU measures the ratio of the intersection to the union

between the sets of true positive and predicted positive pixels as

Equation (8). It provides a measure of how well the predicted
Frontiers in Oncology 06
segmentation aligns with the ground truth segmentation.

MIoU =
1
2

TP
TP + FP + FN

+
TN

FP + FN + TN

� 	
(8)

The Dice coefficient is a metric that quantifies the similarity

between the predicted segmentation (P) and the ground truth labels

(Y) based on region overlap as Equation (9). It’s widely used in

image segmentation tasks to evaluate the accuracy of the

segmentation results.

Dice =
2 · P ∩ Yj j
Pj j + Yj j (9)
4.3 Implementation detail

In this study, we implemented the model in the environment of

PyTorch 1.13.1 with CUDA 11.7 and Python 3.8. Training and

testing were performed on an NVIDIA GeForce RTX 3090. The

batch size was set to 2, with batch sizes of 1 for labeled and

unlabeled data, respectively. In the data preprocessing stage, the

input data was dimensionally reduced to 6 channels using PCA. We

utilized the SGD optimizer for training the entire network for 100

epochs, with a learning rate of 0.01 and momentum set to 0.9.

Gaussian noise with mean 1 and standard deviation 1.2 was added

to one auxiliary decoder, and mean 1 and standard deviation 1.5

was added to the other auxiliary decoder.
5 Result

5.1 Comparative experiments

To demonstrate the effectiveness of our proposed semi-

supervised method, we conducted comparative experiments on the

Multidimensional Cholangiocarcinoma Dataset. We compared our

method with six other approaches, including:(1). 2D U-Net (35); (2)

Mean Teacher (MT) (23); (3) Uncertainty Aware Mean Teacher

(UA-MT) (33); (4) Cross Consistency Training (CCT) (36); (5) Cross

Pseudo Supervision (CPS) (14); (6). Uncertainty-aware Pseudo-label

and Consistency (UPC) (37); Here, the 2D U-Net is trained in a fully

supervised manner using a limited set of labeled samples. Our

proposed method and the other five approaches utilize semi-
A B C

FIGURE 3

(A) False color images synthesized using bands 5,15, and 25; (B) The original label provided in (34); (C) Our re-labeling.
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supervised learning algorithms with a certain proportion of labeled

data and a large amount of unlabeled data.

Table 1 presents quantitative results obtained using various semi-

supervised models with different labeling ratios. From Table 1, it can be

observed that our proposed method outperforms the fully supervised

approach in scenarios with different labeling ratios. Particularly, when

using 20% labeled data, our method shows improvements of 1.23% in

OA, 0.77% in AA, 2.04% in MIOU, and 1.97% in DICE compared to

the fully supervised 2D U-Net. This indicates that our proposed

method is able to better utilize the information embedded in the

unlabeled data compared to the fully supervised approach. In

comparison with other semi-supervised methods, our method

achieves results close to the other methods, indicating that our

proposed approach is suitable for histopathological microscopic

hyperspectral images. Figure 4 displays the predicted results of the

fully supervised and semi-supervised methods, including our proposed

method, using different labeling ratios. It can be observed from the

figure that our method’s predicted results are closer to the ground

truth labels.
5.2 Ablation study

In order to validate the effectiveness of the proposed method,

ablation experiments were conducted on the multi-dimensional bile

duct dataset. We removed the “multi-consistency” learning method

and the Soft-Hard pseudo-label generation method, constructing a

“basic” model that uses a shared encoder and three independent

decoders. We then separately added the multi-consistency learning

strategy and the Soft-Hard pseudo-label generation method,

referred to as “basic+mcl” and “basic+s-h” respectively. Next, we

incorporated both of these methods into the “basic”model to obtain
Frontiers in Oncology 07
our final model, MCL-Net. The quantitative analysis results of the

ablation study are presented in Table 2.

From Table 2, it can be observed that when using the “basic”

model, the experimental results showed little improvement

compared to the fully supervised approach. This indicates that

merely employing a multi-decoder structure does not significantly

enhance experimental performance. When we added our proposed

multi-consistency learning strategy to the original model, the Dice

coefficient and MIoU improved by 1.07% and 1.11% respectively.

This demonstrates that the multi-consistency learning strategy

effectively integrates features extracted by different decoders,

extracting more sample information from unlabeled data.

When we separately added the Soft-Hard method to the model,

the two evaluation metrics improved from 69.43% and 71.12% to

70.69% and 72.23%. This suggests that our proposed pseudo-label

generation strategy can bring pseudo-labels closer to real labels to a

greater extent. When we applied both of our proposed methods

together on the model, experimental performance further

improved. This indicates that our multi-consistency method and

Soft-Hard method can collaborate synergistically to enhance

experimental performance.
5.3 Influence of different data
perturbation methods

To increase the diversity of input data among different

decoders, we applied perturbations to the inputs of the two

decoders, excluding the main decoder. We utilized three

perturbation methods: adding Gaussian noise (Add-gn), adding

salt-and-pepper noise (Add-spn), and adding Poisson noise (Add-

pn). In our experiments, we employed strategies of using the same
TABLE 1 Quantitative experimental results of different methods on multi-dimensional common bile duct dataset.

Labeled data Method OA↑ AA↑ Dice↑ MIoU↑

6/66(10%) MT (23) 88.69% 82.34% 66.00% 69.24%

UA-MT (33) 88.62% 82.93% 66.59% 69.35%

CCT (36) 87.83% 82.69% 65.24% 68.21%

CPS (14) 88.72% 82.83% 66.38% 69.53%

UPC (37) 88.50% 83.32% 66.81% 69.65%

2D-Unet (35) 88.56% 82.20% 65.24% 68.77%

Ours 88.81% 82.76% 65.50% 68.95%

13/66(20%) MT (23) 89.84% 86.50% 70.61% 72.45%

UA-MT (33) 90.17% 86.05% 70.77% 72.67%

CCT (36) 89.74% 85.96% 71.05% 72.79%

CPS (14) 90.19% 86.03% 70.88% 72.59%

UPC (37) 90.32% 85.11% 70.40% 72.53%

2D-Unet (35) 89.25% 85.14% 69.15% 71.00%

Ours 90.48% 85.91% 71.19% 72.97%
Bold text represent the optimal result.
The symbol '↑' signifies that a higher metric corresponds to better segmentation performance.
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noise and adding different noises to different decoder inputs.

Specifically, we denoted the use of Gaussian noise and salt-and-

pepper noise as (Add-gspn), the use of Gaussian noise and Poisson

noise as (Add-gpn), and the use of salt-and-pepper noise and

Poisson noise as (Add-sppn). Table 3 records the quantitative

results corresponding to the six methods mentioned above. For

each noise adding method, we conducted numerous experiments,

and the results in Table 3 represent the optimal settings for each

method. From Table 3, it can be observed that the optimal

experimental results are achieved when adding Gaussian noise to

both auxiliary decoders. This may be attributed to the fact that

Gaussian noise better simulates the existing noise patterns in

images, aligning more closely with real-world requirements.
5.4 Impact of different decoder numbers

In order to obtain more comprehensive sample features, we

designed a multi-decoder structure. To better understand the
Frontiers in Oncology 08
influence of the number of decoders n on the experimental

results, we set n to different values. When n = 1, the model

corresponds to the classic 2D U-Net model. Since it is not

possible to apply the proposed multi-consistency loss and Soft-

Hard method in this case, the model operates in a fully supervised

manner. When n ≥ 1, as described in section 5.3, experiments were

conducted by perturbing the input data to the decoders using

Gaussian noise applied before the auxiliary decoders.

Figure 5 illustrates the influence of the number of decoders on

the Dice similarity coefficient under different proportions of labeled

data. It can be observed from the figure that as n increases from 1 to

2, the Dice coefficient significantly improves. This indicates that the

multi-decoder structure and multi-consistency learning strategy can

comprehensively learn the model features. As n further increases

from 2 to 3, the Dice coefficient continues to improve, suggesting

that appropriately increasing the number of decoders allows for

more effective utilization of information from unlabeled data.

However, when n is increased to 4, the Dice coefficient

experiences only a slight increase. Therefore, to balance accuracy

and efficiency in the experiments, we set n = 3.
5.5 Impact of temperature T

In Equation 2, we use a sharpening function to generate

preliminary pseudo-labels. Figure 6 presents the Dice coefficients

obtained by training our MCL-Net+ model on the multi-

dimensional bile duct dataset with different temperature values T .

Following the guidance from (29), we experimented with different

values of T , specifically setting T to 0.01, 0.1, 0.5, and 1.
TABLE 2 Ablation results on multidimensional common bile
duct dataset.

Labeled data Method Dice↑ MIoU↑

6/66(10%) basic 69.43% 71.12%

basic+mcl 70.50% 72.23%

basic+s-h 70.69% 72.01%

ours 71.19% 72.97%
The symbol '↑' signifies that a higher metric corresponds to better segmentation performance.
FIGURE 4

Visualizations of different methods.
TABLE 3 Influence of different data perturbation methods.

Labeled data Method OA↑ AA↑ Dice↑ MIoU↑

6/66(10%) Add-gn 90.48% 85.91% 71.19% 72.97%

Add-spn 89.60% 84.28% 69.24% 71.51%

Add-pn 88.77% 84.07% 70.61% 71.94%

Add-gpn 90.45% 84.50% 70.81% 72.85%

Add-gspn 89.59% 84.36% 69.29% 71.54%

Add-sppn 89.72% 84.85% 69.23% 71.40%
Bold text represent the optimal result.
The symbol '↑' signifies that a higher metric corresponds to better segmentation performance.
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From Figure 6, it can be observed that when  , the model

achieves the optimal experimental results. When T is too large, the

model may fail to generate reasonable soft pseudo-labels due to the

inability to utilize entropy minimization. On the other hand, when

T is too small, it may introduce noise into the pseudo-labels, leading

to prediction errors. Therefore, this study ultimately selects a

temperature coefficient of T = 0:5.
5.6 Impact of supervised loss weight l

We further investigated the influence of the weight of the

supervised loss term l in the loss function. In Equation 5, the

weight of the unsupervised loss is set according to a Gaussian

warming function, while l affects the balance between the two types

of losses. Figure 7 illustrates how different weights impact the

experimental performance.

When l is too high, the model tends to focus more on

extracting features from the labeled data, but this comes at the

cost of neglecting the unlabeled data, as the proposed multi-

consistency loss may not be effectively utilized. On the other

hand, when l is too low, the accurately labeled data is not

effectively leveraged, resulting in poorer experimental results.

Therefore, we finally chose l = 0:5 as the final experimental setting.
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6 Conclusion and future work

In this paper, we proposed a novel semi-supervised segmentation

model, MCL-Net, for microspectroscopic pathology images. The

model combines consistency regularization and pseudo-labeling

methods. MCL-Net employs a shared encoder and multiple

independent decoders. Through the proposed Soft-Hard pseudo-

labeling strategy, MCL-Net generates pseudo-labels that are closer to

the real labels for pathological images. Additionally, we introduced a

multi-consistency learning strategy, treating the pseudo-labels

generated by the Soft-Hard process as real labels. This encourages

consistency among predictions from different decoders, enabling the

model to learn more sample features.

The effectiveness of this approach was demonstrated through

extensive experiments, providing a new perspective for the

segmentation of microspectroscopic pathological images. Despite

the promising results, there are limitations. Specifically, when using

only 10% labeled data for experiments, our method did not

significantly improve performance. This might be attributed to

the limited explicit application of spectral information, which is

unique to microspectroscopy. In the future, we will further explore

ways to utilize spectral information and consider both labeled and

unlabeled samples from multiple angles.
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