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Background: Tracheal, Bronchus, and Lung (TBL) cancer continues to represent

the majority of cancer-related incidence and mortality in United States (U.S.).

While air pollutants are considered essential risk factors, both global and national

average concentrations of major harmful air pollutants have significantly

decreased over the decades. Green space may have a beneficial effect on

human health.

Methods: We obtained data on national and state-level burden of TBL cancer,

the annual average concentration of main air pollutants, and levels of green

spaces in 2007, 2013, and 2019. According to generalized estimating equation

(GEE), we examine the associations among incidence and mortality of TBL

cancer, air pollutants, and greenspaces, represented by the Normalized

Difference Vegetation Index (NDVI) in different age groups with models

adjusted with meteorological, and socio-demographic. We observed additional

effects of the interaction between the NDVI, Ozone, PM2.5, and other factors,

which helped us to interpret and understand our results. Also, we collated states

that witnessed net increments in forest coverage and conducted the same

analysis separately.

Results: In our analysis, the majority of associations between NDVI and air

pollutants with TBL cancer remained significantly positive, particularly

noticeable among individuals aged 20 to 54. However, our findings did not
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explore air pollution as a potential mediator between greenspace exposure and

TBL cancer. While the associations of PM2.5 with TBL cancer remained positive,

the other four pollutants showed positive but statistically insignificant

associations. Our interaction analysis yielded that there were positive

associations between NDVI and ozone, PM2.5, and tobacco use. Max NDVI

acts as a protective factor along with high HDI. Additionally, PM2.5 and HDI also

showed a negative association. In 18 states with more forest, NDVI acts as a

protective factor along with higher health care coverage, better health status, and

participation in physical activities.

Conclusion: In the state-level of U.S., the effects of total greenspace with TBL

cancer are mixed and could be modified by various socio-economic factors.

PM2.5 has a direct correlation with TBL cancer and the effects can be influenced

by underlying socioeconomic conditions.
KEYWORDS

air pollutants, particulate matter, greenspace, TBL cancer, age groups
1 Introduction

Tracheal, bronchus, and lung (TBL) cancer stands as one of the

significant contributors to cancer-related fatalities in U.S. as of

2023. It is projected to constitute 21% of cancer-related deaths and

12% of cancer diagnoses. Despite its profound impact on public

health, TBL cancer exhibits a comparatively low survival rate (1, 2).

According to the Cancer Tomorrow report by GLOBOCAN,

incident cases of TBL in U.S. are forecasted to surge by

approximately 38% by 2040, with mortality cases expected to rise

by about 45%. Furthermore, the majority of TBL cancer cases in

U.S. occur in individuals aged 50 and above. However, roughly 20%

of total TBL cancer deaths are not linked to tobacco use, potentially

placing it as the eighth most prevalent cause of cancer-related

mortality (1, 3, 4).

According to the International Agency for Research on Cancer

(IARC), outdoor air pollution is classified as a Group 1 human

carcinogen and significantly contributes to the burden of diseases,

including lung cancer (5). Moreover, ambient PM2.5 air pollution

has been identified as a contributing factor in nearly 14.1% of lung

cancer deaths globally (6). The persistence of unhealthy air

pollution levels for more than one-third of Americans

underscores the need for continued research and public health

interventions (1, 4, 7). The evolutionary and developmental

mechanisms underlying TBL cancer remain complex. Exposure to

air pollution may play a role in the progression of TBL cancer

through the activation of signal transduction pathways, DNA

damage, inflammation, metabolism, and epigenetic regulation (8).

Recent studies have revealed a mechanistic relationship between air

pollution and lung cancer, both in functional mouse models and

clinical cohorts (9–11).
02
Based on the findings from seven European cohorts participating

in the “Effects of Low-level Air Pollution: a Study in Europe”

(ELAPSE), researchers have discovered a significant link between

long-term exposure to PM2.5 and an increased risk of lung cancer,

even at concentrations below the current European Union (EU) limit

values. Similarly, the Adventist Health and Smog Study-2

(AHSMOG-2) cohort study also observed significant positive

associations between incident lung cancer and PM2.5 exposure,

particularly among individuals who have never smoked or are past

smokers, at low concentrations (12, 13). Moreover, a case study in

Canada suggests that never-smoking patients have indicated

relationships with air pollution exposures, and chronic exposure to

home air pollution is linked to an elevated risk of lung cancer in

Nepal among never-smokers (14, 15). Besides, more than half of lung

cancer patients in Taiwan are individuals who have never smoked.

Elevated levels of PM2.5 can influence both the occurrence and the

survival of patients with adenocarcinoma lung cancer (16, 17).

Similarly, in Pennsylvania and California, air pollution could affect

the survival rates of lung cancer patients following diagnosis (18, 19).

Greenspace was considered to provide health benefits and

higher access to greenspace is positively correlated with longer life

expectancy (20–22). Exposure to green spaces is inversely associated

with overall and cause-specific mortality, indicating that it provides

a protective role (23–25). For TBL cancer, green spaces may act as a

protective role or work as an effective tool to improve air quality.

Studies in France and Belgium have reported varying associations

between exposure to greenspace, cancer incidence, and mortality.

However, a retrospective cohort study in Taiwan revealed that

increased exposure to green space may mitigate the harmful

impacts of PM2.5 and reduce the risk of lung cancer (26–28). For

other cancers, including breast and prostate cancer, there might be a
frontiersin.org
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protective relationship between exposure to greenspace and the

development of malignancies (29).

Despite extensive studies on the health benefits of green spaces

and the detrimental effects of air pollution, the specific interactions

between green space, air pollution, and TBL cancer at the state level

in the United States remain underexplored. This study addresses the

following gaps: (1) Limited exploration of green space and cancer

links: While existing research validates the general health benefits of

green spaces, there is a lack of detailed exploration regarding their

specific association with TBL cancer. This study aims to provide a

more comprehensive understanding of how green spaces influence

TBL cancer incidence and mortality. (2) Reconfirmation of PM2.5

impact: Although the link between PM2.5 air pollution and TBL

cancer has been established, this study reconfirms this connection

within the context of green space exposure, emphasizing the need to

consider multiple environmental factors simultaneously. (3) Need

for nuanced analysis: Current research often overlooks the complex

interactions between green spaces, air pollution, lung cancer, and

varying population demographics. This study highlights the

necessity of a more nuanced and precise analysis that accounts

for these interactions to better inform future research and public

health policies.

By addressing these gaps, the study aims to enhance our

understanding of the interplay between environmental factors and

TBL cancer, ultimately providing valuable insights for the

development of more effective health interventions and policies.

Therefore, in this study, we conducted a comprehensive analysis to

assess the interplay between green spaces, air pollutant levels, and

the risk of tracheal, bronchus, and lung (TBL) cancer across

different age groups (over 20 years, 20–54 years, and over 55

years) at the state level in U.S. Furthermore, we explored

potential underlying mechanisms by investigating their

associations with meteorological, sociodemographic, and

socioeconomic factors.
2 Materials and methods

2.1 Study design and population

The contiguous U.S. spans approximately 9,834,633 square

kilometers and is inhabited by nearly 330 million people. It

comprises 50 states and the District of Columbia. Our analysis

focused on 48 states along with the District of Columbia. The health

system at the state level in U.S. holds significant authority. Alaska

and Hawaii, along with overseas territories, were excluded from our

research due to the non-applicability of study variables (30).
2.2 Data collection and measurements

2.2.1 Outcome: TBL cancer incidence and
mortality data

The Global Burden of Diseases (GBD) data visualization tool

was developed by the Institute for Health metrics and Evaluation

(IHME) in U.S (31). It provides statistics on the incidence and
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mortality rate of TBL cancer data by state, age, and year. Using the

terminology defined in the GBD research, the state-wide incidence

and mortality rate of TBL cancer were calculated (32). GBD is a

reliable data source in U.S., compiling and summarizing data from

various national databases. For individuals aged 20 and older, 20 to

54, and over 55, we estimated the incidence and mortality rate of

TBL cancer for the 48 states and the District of Columbia, spanning

three specific years: 2007, 2013, and 2019. We rounded the collected

epidemiological data to integers for the convenience of

subsequent research.

2.2.2 Exposures and other variables
2.2.2.1 Area greenness

In accordance with the US Environment Protection Agency

(EPA), “greenspace” is any vegetated land, including gardens,

lawns, forests, wetlands, and agricultural land (33). Using the

NDVI, green space was estimated based on land surface

reflectance, NDVI is a remote sense indicator that has been

extensively utilized in epidemiological studies to evaluate the

association between greenness and health. The following formula

was used to obtain the NDVI proportions: NDVI = (NIR − R)/

(NIR + R) (34). The MODIS images, composed of surface

reflectance images updated every 16 days with a spatial resolution

of 1000m per pixel, were primarily employed to assess the greenness

on www.gisrs.cn (accessed on 30 April 2023). This website offers

annual state-level estimates of the NDVI in U.S. An NDVI value of

‘0’ indicates the absence of vegetation, while values approaching ‘1’

indicate the highest level of greenness (35).

2.2.2.2 Air pollution

Data sources from EPA were used to calculate the

concentrations of main ambient air pollutants (36). The routine

air quality monitoring stations in the U.S. gathered annual average

concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2),

ozone (O3), and particulate matter with diameters up to 2.5 μm

(PM2.5) and 10 μm (PM10) for the years 2007, 2013, and 2019. We

downloaded the average annual data of different time nodes for

corresponding states and calculated the average values. The data

were measured in various units, including parts per billion (ppb)

and parts per million (ppm), and these were converted to

micrograms per cubic meter (μg/m³).

2.2.2.3 Weather and other variables

Data from the National Centers for Environmental Information

(NCEI) and the Statewide Mapping and Climate at a Glance online

sources were utilized to gather meteorological information for the

states across U.S. for the years 2007, 2013, and 2019 (37). We

selected a time scale of 12 months to obtain the yearly average

temperature(°F) and annual precipitation(in inches). Data on PD

(population density) and GDP (gross domestic product) for each

state were compiled from the U.S. Bureau of Economic Analysis and

the U.S. Census Bureau (38, 39). In assessing educational

attainment, we used the rate of college completion as an indicator

of higher education levels (40). State-level tobacco use age-adjusted

prevalence was sourced from the BRFSS Prevalence & Trends Data
frontiersin.org
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portal (41). For the state-level HDI, we acquired the data from

https://globaldatalab.org/shdi/, version v7.0 (42). Additionally, we

collected potential socioeconomic factors, including healthcare

coverage, health status, obesity rate, and participation in physical

activities (43). We did not adjust the collected relevant factors as

they met the criteria for our research. To explore the impact of

different types of green spaces, We identified 18 states with

increasing net forest coverage from 2000 to 2020 (44).
2.3 Statistical analysis

Utilizing state-level map charts and data visualization

techniques, we depicted the variations in mean NDVI, TBL

cancer incidence, and mortality across 48 states and Washington

D.C. from 2007, 2013, to 2019. Two-dimensional multiple line

graphs were employed to explore the relationship between TBL

cancer data and mean NDVI (Y1 and Y2-axis) over the specified

periods on the horizontal axis (X-axis), using R studio. The

statistical software R, v.4.3.0, facilitated the plotting of multiple

variables, utilizing gg-plot for bubble charts. The bubble plot,

resembling a scatterplot, portrayed the average concentrations of

pollutants and mean NDVI across the X-axis and Y-axis.

Initially, we assessed the correlations among air pollutants and

between air pollutants and meteorological factors using Spearman’s

correlations. Subsequently, the association between NDVI and TBL

cancer incidence and mortality for each year was examined,

controlling for individual air pollutants. A Poisson regression

model was applied for each year, adjusting for meteorological

parameters, GDP, and population density. Then, integrating the

three-time points into a single model using a Generalized

Estimating Equation (GEE) with a Poisson link, we estimated the

association between NDVI (as the primary exposure variable) and

TBL cancer incidence and mortality across different subgroups.

Additionally, we investigated how NDVI and air pollution

interacted with other relevant factors over the three time periods

in the GEE model. All statistical analyses were two-sided, with effect

estimates and 95% confidence intervals (CI) provided for

associations with a p-value less than 0.05, indicating strong

evidence of association. These statistical analyses were conducted

using R Studio.
3 Results

Although TBL cancer incidence and mortality in over 20 years

subgroup peaked in 2019 with relatively similar numbers (86.87 in

2007; 82.33 in 2013, and 88.69 in 2019), overall trends remained

consistent and declined over the three time periods. The overall

incidence and mortality rates of adult TBL cancer for individuals

aged 20–54 years and over 55 years decreased across the three time

periods (Table 1). The East South-Central region of U.S. showed

higher rates of TBL cancer incidence and mortality among

individuals over 55 years (Figure 1). The overall mean NDVI

values in U.S. ranged from 0.70 in 2007 to 0.71 in 2013 to 0.72 in

2019 (Figure 1). The East and East Central regions of U.S. had
Frontiers in Oncology 04
higher mean NDVI values in 2007, 2013, and 2019. Conversely, the

Western region, including states with high altitudes such as

Arizona, Nevada, Utah, New Mexico, and Wyoming, exhibited

comparatively lower NDVI values.

There was a strong correlation between PM2.5 and SO2, while

the other air pollutants showed weak to moderate relationships

(Supplementary Table S1). PM2.5, PM10, NO2, and Ozone levels

exhibited moderate and positive correlations with the annual

average temperature. On the contrary, annual average

precipitation was negatively and moderately correlated with

PM10 and Ozone. Controlling for specific pollutants, NDVI was

primarily associated with TBL cancer incidence and mortality in

individuals over 20 years old across all three years (Supplementary

Table S2). We also employed a unified model to evaluate all three

years, adjusting for meteorological and socio-demographic factors.

In this analysis, the associations between NDVI, air pollutants, and

TBL cancer incidence and mortality remained largely positive.

The study found a significant association between the NDVI

and the incidence of TBL cancer in individuals aged 20 and above.

Specifically, for PM2.5, the association was quantified with a b
coefficient of 0.713 (95% CI: 0.856, 1.140; p < 0.01). Similar

significant associations were observed for other air pollutants:

PM10 (b = 0.756; 95% CI: 0.590, 0.922; p < 0.001), SO2 (b =

0.692; 95% CI: 0.525, 0.859; p < 0.001), NO2 (b = 0.730; 95% CI:

0.557, 0.903; p < 0.001), and Ozone (b = 0.808; 95% CI: 0.626, 0.990;

p < 0.001).

Similarly, NDVI was associated with TBL cancer mortality in

the same age group. The b coefficient for PM2.5 was 0.664 (95% CI:

0.426, 0.902; p < 0.01). For other pollutants, the associations were:

PM10 (b = 0.748; 95% CI: 0.579, 0.917; p < 0.001), SO2 (b = 0.669;

95% CI: 0.496, 0.842; p < 0.001), NO2 (b = 0.712; 95% CI: 0.540,

0.884; p < 0.001), and Ozone (b = 0.796; 95% CI: 0.610, 0.982; p <

0.001) (Table 2). Especially, more pronounced effects were observed

among individuals aged 20 to 54 in terms of mortality (0.777 –

1.780) (Table 2). These findings were further supported by

subgroup analyses, which demonstrated statistically significant

correlations in both middle-aged individuals (20–54 years old)

and older adults (55 years and above), reinforcing the overall

relationship between NDVI, air pollution, and TBL cancer

outcomes. The consistent significance across multiple pollutants

and age groups underscores the robustness of the observed

associations and suggests a broad impact of vegetation and air

quality on TBL cancer incidence and mortality.

Furthermore, the associations of PM2.5 with TBL cancer

remained significantly positive after adjusting for meteorological

and socio-demographic variables, ranging from 0.012 to 0.080.

Notably, PM2.5 was associated with TBL cancer mortality in

individuals aged 20–54 years (b = 0.076; 95% CI =0.070, 0.082;

p < 0.001) for PM10, along with SO2, NO2, and Ozone (b = 0.062;

95% CI = 0.053, 0.070; p < 0.001), (b = 0.079; 95% CI =

0.072, 0.085; p < 0.001), and (b = 0.080; 95% CI = 0.073, 0.087; p

< 0.001), respectively (Table 3). Despite this, the associations for

the other four pollutants were positive but not statistically

significant (Table 3).

Our interaction analysis between NDVI and ozone revealed

positive associations with all TBL cancer rates, while concentrations
frontiersin.org
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TABLE 1 Summary statistics for the incidence and mortality rates of Tracheal, Bronchus, and Lung (TBL) cancers, along with other socio-demographic factors in U.S. states for the years 2007, 2013, and 2019.

2019

,Min Mean(SD) Median(IQR) Max,Min

96 89.92(±20.66) 88.69(103.82-77.74) 138.09,36.94

8.75(±2.77) 8.21(10.42-6.98) 15.65,3.52

.49 210.46(±40.99) 206.79(240.14-182.02) 318.14,11.03

52 110.40(±24.55) 110.31(127.21-97.35) 175.73,42.95

12.36(±3.68) 11.47(14.71-10.06) 23.23,4.82

.60 255.84(±47.21) 258.00(287.61-229.87) 403.67,127.51

0.92(±0.04) 0.93(0.94-0.91) 0.97,0.72

0.72(±0.16) 0.80(0.84-0.64) 0.89,0.29

7.00(±1.47) 7.39(8.18-5.98) 9.25,2.85

16.79(±5.28) 16.28(19.10-13.89) 38.33,7.18

6.58(±6.07) 5.07(7.64-2.97) 34.39,0.68

33.83(±14.26) 32.10(41.47-26.48) 75.65,6.04

4 78.28(±6.71) 77.11(83.80-73.03) 92.18,63.75

0 52.88(±8.74) 53.00(59.20-45.65) 73.50,38.30

41.82(±14.73) 46.48(49.88-31.52) 70.61,13.19

373.79
(±1336.25) 88.70(220.55-41.40) 9370.60,5.10

0,28681.50
382161.30
(±488529.52)

219588.00
(501016.95-97940.10) 2729225.80,29940.70

cancer trends over time. Note: age groups (over 20 years, 20–54 years, and over 55 years).
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Measures

2007 2013

Mean(SD) Median(IQR) Max,Min Mean(SD) Median(IQR) Max

TBL cancer mortality in 20+ 86.87(±18.15) 85.78(98.74-74.84) 131.45,34.84 84.23(±19.00) 82.33(97.03-72.22) 128.65,34

TBL cancer mortality in 20-54 12.21(±3.62) 11.51(14.64-10.03) 21.28,4.91 10.26(±3.37) 9.42(12.64-8.03) 18.56,3.98

TBL cancer mortality in 55+ 239.14(±40.34) 237.57(264.24-217.94) 339.60,123.74 212.49(±40.17)
205.08
(238.10-188.54) 319.23,11

TBL cancer incidence in 20+ 106.01(±21.42) 108.19(119.39-93.46) 164.08,41.33 104.13(±22.80)
103.15
(118.52-92.38) 168.88,41

TBL cancer incidence in 20-54 17.02(±4.68) 16.32(20.20-13.93) 29.15,6.74 14.58(±4.53) 13.69(17.77-11.73) 28.14,5.54

TBL cancer incidence in 55+ 287.49(±46.89) 291.88(318.81-262.33) 438.97,144.11 259.34(±47.09)
259.58
(288.92-228.42) 412.51,13

Environmental factors

MaxNDVI 0.90(±0.05) 0.92(0.93-0.89) 0.96,0.71 0.91(±0.05) 0.92(0.94-0.91) 0.98,0.73

Mean NDVI 0.70(±0.17) 0.77(0.82-0.61) 0.88,0.23 0.71(±0.18) 0.80(0.83-0.60) 0.87,0.23

Air pollutants

PM2.5(mg/m³) 10.94(±2.81) 11.52(13.09-8.20) 15.61,5.31 8.45(±1.56) 8.75(9.60-7.31) 11.25,3.90

PM10(mg/m³) 23.50(±6.64) 23.44(27.08-20.09) 52.51,10.99 19.53(±7.02) 18.17(21.27-14.89) 43.00,8.85

SO2(mg/m³) 24.88(±14.07) 23.14(36.15-13.63) 75.86,3.21 10.42(±7.10) 8.54(14.64-5.07) 38.45,2.16

NO2(mg/m³) 44.57(±20.22) 40.56(54.08-31.92) 103.13,8.49 34.85(±15.76) 31.41(42.35-25.42) 89.03,6.13

OZONE(mg/m³) 86.09(±10.22) 87.52(94.83-78.52) 104.81,63.54 79.14(±6.80) 78.35(82.64-74.42) 96.29,64.1

Meterorological variables

Annual average temperature
(degree Fahrenheit) 53.00(±7.79) 52.90(59.25-46.40) 71.5,40.8 51.59(±7.60) 50.30(57.00-45.25) 70.90,38.6

Average precipitation
(degree Inch) 34.06(±10.77) 36.31(42.24-28.62) 50.13,8.74 37.92(±15.37) 42.76(48.01-23.64) 63.50,7.28

Socio-economic variables

Population density
436.27
(±1605.31) 108.80(242.25-49.95) 11280.00,5.90

395.75
(±1404.40)

101.20
(235.10-45.80) 9856.5,5.8

GDP
316943.29
(±373357.02)

189002.50
(415680.35-90324.80) 2041192.20,26226.7

331896.06
(±402848.75)

19169.80
(436805-93593.80) 2179229.0

This table includes data on cancer incidence and mortality rates per 100,000 population. These factors are analyzed to understand the potential socio-demographic influences on
.
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of other air pollutants showed no significant associations.

Interaction between PM2.5 and HDI showed a negative

association (b = -0.324; 95% CI = -0.177, -0.471; p < 0.05) (b =

-0.351; 95% CI = -0.484, -0.219; p < 0.01) with TBL cancer incidence

and mortality in individuals over 20 years old. The interaction

between PM2.5 and educational level was negatively associated with

TBL cancer rates in all subgroups except for TBL cancer incidence

in individuals aged over 55. Our interaction analysis between

tobacco use and PM2.5 concentration levels indicated a positive

association (b = 2.710; 95% CI = 1.510, 3.910; p < 0.05) (b = 2.710;

95% CI = 1.640, 3.780; p < 0.05) with TBL cancer incidence and

mortality in individuals over 20 years old. Additionally, the

interaction between max NDVI and HDI was negatively

associated with TBL cancer incidence in the individuals aged 20–

54 (b = -25.053; 95% CI = -13.052, -37.054; p < 0.05), as well as TBL

cancer mortality in individuals aged 20 to 54 and those aged over 55
Frontiers in Oncology 06
(b = -64.227; 95% CI = -18.502, -82.794; p < 0.001) (b = -25.053;

95% CI = -13.052, -37.054; p < 0.05) (Table 4).

In the analysis of 18 states with increasing net forest coverage

from 2000 to 2020, we observed additional effects between mean

NDVI and health care coverage, health status, obesity rate, and

participation in physical activities, separately. (Supplementary

Table S3). Regarding health care coverage, better health status,

and participation in physical activities, NDVI indicated a protective

role. However, when interacting with high BMI individuals, NDVI

was positively associated with TBL cancer rates.

The graph depicts the TBL cancer incidence and mortality rates

(per 100,000 population) among individuals aged over 55 years and

the mean NDVI across 49 states in the United States for the years

2007, 2013, and 2019 (Figure 2). The lines on the graph illustrate the

temporal trends of the data series, with blue lines representing

cancer incidence, orange lines representing cancer mortality, and
FIGURE 1

Distribution of mean NDVI, TBL cancer mortality, TBL cancer incidence, and mean PM2.5 concentration levels in ages over 20 years in the U.S. in
2007, 2013, and 2019. The normalized differential vegetation index (NDVI) values for 2007 (left), 2013 (middle), and 2019 (right), are shown on a
spectrum of light green (least value) to dark green (highest value). Mean NDVI values of 0 to 0.2 are categorized as low, >0.2 to 4.0 as moderate,
and >0.4 as high levels of greenspaces. Rates of TBL cancer incidence and mortality in ages over 55 years are shown on a spectrum of white (least
value) to red (highest value) and dark blue (highest value).
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green lines indicating the mean NDVI. The horizontal axis (X-axis)

displays the three time periods (2007, 2013, and 2019), while the

Y1-axis on the left side corresponds to the cancer rates, and the Y2-

axis on the right side corresponds to the mean NDVI (Figure 2).

Selected states in U.S. of our study: (1) Alabama, (2) Arizona,

(3) Arkansas, (4) California, (5) Colorado, (6) Connecticut,

(7) Delaware, (8) District of Columbia, (9) Florida, (10) Georgia,

(11) Idaho, (12) Illinois, (13) Indiana, (14) Iowa, (15) Kansas,

(16) Kentucky, (17) Louisiana, (18) Maine, (19) Maryland,

(20) Massachuset ts , (21) Michigan, (22) Minnesota ,

(23) Mississippi, (24) Missouri, (25) Montana, (26) Nebraska,

(27) Nevada, (28) New Hampshire,(29) New Jersey, (30) New

Mexico, (31) New York, (32) North Carolina, (33) North Dakota,

(34) Ohio, (35) Oklahoma, (36) Oregon, (37) Pennsylvania,

(38) Rhode Island, (39) South Carolina, (40) South Dakota,

(41) Tennessee, (42) Texas, (43) Utah, (44) Vermont, (45)
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Virginia, (46) Washington, (47) West Virginia, (48) Wisconsin,

and (49) Wyoming (Figure 2).

Figure 3 presents the mean NDVI and concentrations of PM2.5

and Ozone across states for the years 2007, 2013, and 2019. In the

left panel, the association between the mean NDVI (Y-axis) and the

levels of PM2.5 or Ozone concentration (X-axis) is depicted. The

size and color of the bubbles indicate the TBL cancer incidence and

mortality for each state across the three time periods. Note: The

data are represented as asthma prevalence (cases per 100,000

population), NDVI as the mean value, PM2.5 (particulate matter

of diameter 2.5 μm or smaller), PM10 (particulate matter of

diameter 10 μm or smaller), NO2 (nitrogen dioxide), SO2 (sulfur

dioxide), O3 (ozone) in μg/m3, annual average temperature in

degrees Fahrenheit, average annual precipitation in inches, GDP

(gross domestic product), PD (population density) as persons/

sqkm. Average values are presented as mean (± standard
TABLE 3 Generalized estimation equation (GEE) result coefficients (b) (95% CI, lower, upper) of PM2.5 for association of TBL cancer incidence,
mortality and air pollutants.

PM2.5

TBL cancer
incidence in
20+

TBL cancer
mortality in
20+

TBL cancer
incidence in
20-54

TBL cancer
mortality in
20-54

TBL cancer
incidence in
55+

TBL cancer
mortality in
55+

Unadjusted 0.015(0.009,0.021) * 0.016(0.010,0.023) ** 0.033(0.028,0.038) *** 0.067(0.058,0.076) *** 0.031(0.026,0.036) *** 0.033(0.028,0.038) ***

Model 1 0.025(0.017,0.033) ** 0.029(0.020,0.038) ** 0.042(0.035,0.049) *** 0.078(0.065,0.091) *** 0.037(0.031,0.044) *** 0.042(0.035,0.049) ***

Model 2 0.017(0.013,0.022) *** 0.019(0.014,0.024) *** 0.035(0.031,0.038) *** 0.076(0.070,0.082) *** 0.033(0.029,0.036) *** 0.035(0.031,0.038) ***

Model 3 0.012(0.006,0.019) * 0.014(0.007,0.050)* 0.030(0.025,0.035) *** 0.062(0.053,0.070) *** 0.028(0.023,0.033) *** 0.030(0.025,0.035) ***

Model 4 0.015(0.010,0.020) ** 0.017(0.012,0.021) *** 0.035(0.031,0.039) *** 0.079(0.072,0.085) *** 0.033(0.029,0.037) *** 0.035(0.031,0.039) ***

Model 5 0.022(0.017,0.026) *** 0.023(0.019,0.028) *** 0.039(0.035,0.043) *** 0.080(0.073,0.087) *** 0.037(0.033,0.041) *** 0.039(0.035,0.043) ***
Each of the study variables was used in the GEE with the Poisson link to explore the associations between the incidence and mortality of TBL cancer and PM2.5 as the primary exposure variable.
The unadjusted variables are reported separately. In the multivariate analysis, Model 1: Each covariate and weather parameters; further adjusted for GDP, PD, Mean temperature, Annual
precipitation and population density with each of the air pollutants in Model 2: PM10; Model 3: SO2; Model 4: NO2; Model 5: Ozone; “*” Indicates significant p-interaction values and is reported
if p-int < 0.05; “**” Indicates significant p-interaction values and is reported if p-int < 0.01; “***” Indicates significant p-interaction values and is reported if p-int < 0.001.
Note: age groups (over 20 years, 20–54 years, and over 55 years).
TABLE 2 Generalized estimation equation (GEE) result coefficients (b) (95% CI, lower, upper) of NDVI for association of TBL cancer incidence,
mortality and air pollutants.

NDVI
continuous

TBL cancer
incidence in
20+

TBL cancer
mortality in
20+

TBL cancer
incidence in
20-54

TBL cancer
mortality in
20-54

TBL cancer
incidence in
55+

TBL cancer
mortality in
55+

Unadjusted 0.726(0.499,0.953) ** 0.673(0.440,0.906) ** 0.281(0.068,0.494) 0.840(0.533,1.147) ** 0.343(0.131,0.555) 0.281(0.068,0.494)

Model 1 0.998(0.856,1.140) ***
0.930
(0.787,1.070) *** 0.558(0.431,0.684) *** 1.159(0.964,1.350) *** 0.636(0.511,0.762) ***

0.558
(0.431,0.684) ***

Model 2 0.713(0.482,0.944) ** 0.664(0.426,0.902) ** 0.277(0.059,0.495) 0.777(0.467,1.087) * 0.334(0.118,0.550) 0.277(0.059,0.495)

Model 3 0.756(0.590,0.922) ***
0.748
(0.579,0.917) *** 0.763(0.605,0.921) *** 1.830(1.579,2.081) *** 0.764(0.605,0.923) ***

0.763
(0.605,0.921) ***

Model 4 0.692(0.525,0.859) ***
0.669
(0.496,0.842) *** 0.559(0.401,0.717) *** 1.350(1.099,1.601) *** 0.578(0.424,0.732) ***

0.559
(0.401,0.717) ***

Model 5 0.730(0.557,0.903) ***
0.712
(0.540,0.884) *** 0.728(0.564,0.892) *** 1.780(1.530,2.030) *** 0.736(0.569,0.903) ***

0.728
(0.564,0.892) ***

Model 6 0.808(0.626,0.990) ***
0.796
(0.610,0.982) *** 0.755(0.585,0.925) *** 1.710(1.445,1.975) *** 0.765(0.595,0.935) ***

0.755
(0.585,0.925) ***
Each of the study variables was used in the GEE with the Poisson link to explore the associations between the incidence and mortality of TBL cancer and NDVI as the primary exposure variable.
The unadjusted variables are reported separately. In the multivariate analysis, Model 1: Each covariate and weather parameters; further adjusted for GDP, Mean temperature, Annual
precipitation and population density with each of the air pollutants in Model 2: PM2.5; Model 3: PM10; Model 4: SO2; Model 5: NO2; Model 6: Ozone; “*” Indicates significant p-interaction values
and is reported if p-int < 0.05; “**” Indicates significant p-interaction values and is reported if p-int < 0.01; “***” Indicates significant p-interaction values and is reported if p-int < 0.001.
Note: age groups (over 20 years, 20–54 years, and over 55 years).
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deviation), with minimum (Min) and maximum (Max) values, and

percentile measures at 25th, 50th, 75th (Figure 3).
4 Discussion

In this research, we investigated the relationship between

greenspace, air pollutant concentration, and TBL cancer across

different age groups at the state level in U.S. Our findings uncovered

a direct relationship between the average NDVI and PM2.5 levels

with TBL cancer rates across all age groups, particularly notable in

the 20 to 54 age range. This study stands as the first at the state level

to identify such a connection. In our examination of interactions,

we noted positive correlations between ozone and NDVI, as well as

between PM2.5 and tobacco consumption. Conversely, we observed

negative associations between PM2.5 concentration and educational

attainment as well as HDI, and between maximum NDVI and HDI

in the GEE models analyzing TBL cancer data.

Several studies have investigated the impact of greenspace on

TBL cancer and other types of cancer. These studies have identified

variability in the observed relationships, influenced by factors such

as the type of greenspace, method of exposure measurement,

individual attributes, and geographic location. For instance,

studies in France and Spain found different results depending on

the type of greenery. In France, spending more time near farmland

was positively linked to a higher chance of getting breast cancer.

Meanwhile, in Spain, it was linked to a higher risk of getting any

type of cancer (26, 45). While exposure to neighborhood-level

greenspace in Australia is speculated to be linked to higher risks

of having skin cancer (46). In addition to a cross-sectional study

conducted in Philadelphia, when green parcels as tiny as 1m² are

included as greenspace, there is a positive correlation between the

density of greenspace and both overall and cause-specific mortality

(47). A recent meta-analysis compiled data from nine papers

investigating the link between greenspace exposure and lung

cancer, eventually, the combined findings suggested no significant

association (29). Therefore, the relationship between green space

and health appears to be nuanced, potentially varying based on
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geographical context, study methodologies, and the techniques used

to assess exposure in the studies (48).
4.1 NDVI, Ozone, and TBL cancer

In our analysis of the interaction between maximum NDVI and

HDI, we observed a protective effect of high greenspace in areas

with high HDI. We theorized those individuals residing in high

socioeconomic status areas, compared to those in low-income

regions, exhibited lower rates of TBL lung cancer and stronger

health preservation. This may be attributed to the likelihood that

individuals with higher incomes are more inclined to benefit from

the protective effects of greenspaces (49, 50). Additionally, we

observed a positive correlation between NDVI and ozone levels

with all TBL cancer rates. We considered the possibility that

greenspaces could emit hydrocarbons, such as isoprene and

terpenes, which serve as precursors to ozone. These biogenic

hydrocarbons might contribute to the development of TBL cancer

(51). According to research conducted in California, there was a

moderate association observed between ozone levels and patients

diagnosed with either squamous cell carcinoma or adenocarcinoma,

which are two subtypes of lung cancer (19).

In the analysis of 18 states with increasing net forest coverage,

we observed the NDVI exhibited a protective effect with higher

healthcare coverage, improved health status, and engagement in

physical activities (Supplementary Table S3). This indicates that the

health impacts of different types of green spaces are diverse. States

with net increases in forest coverage exhibit a more significant and

positive effect on health promotion compared to states with

unchanged or decreasing green spaces, demonstrating a better fit

between the health effects and the presence of green spaces (52).

Our study did not account for other air pollution as a possible

mediator between greenspace exposure and TBL cancer. However,

it is hypothesized that certain trees and plants may release pollen,

exacerbating allergies, while other aspects of urban vegetation may

impede air circulation, leading to the accumulation of air pollutants

(51). A study conducted in Los Angeles found higher levels of
TABLE 4 GEE interaction analysis result (b) (95% CI, lower, upper) of related factors for association of TBL cancer incidence, mortality and air
pollutants in different age groups.

TBL cancer
incidence in
20+

TBL cancer
mortality in
20+

TBL cancer
incidence in
20-54

TBL cancer
mortality in
20-54

TBL cancer
incidence in
55+

TBL cancer
mortality in
55+

NDVI*OZONE 0.026(0.015,0.037)* 0.025(0.014,0.036)* 0.034(0.0260.042)*** 0.039(0.024,0.055)* 0.034(0.025,0.042)*** 0.034(0.026,0.042)*

PM2.5*HDI -0.324(-0.177,-0.471)*
-0.351(-0.484,-
0.219)** -0.110(0.006,-0.226) -0.283(-0.105,-0.461) -0.081(0.062,-0.224) -0.110(-0.006,0.226)

PM2.5*EDU
-0.229(-0.168,-
0.289)***

-0.249(-0.193,-
0.305)*** -0.108(-0.059,-0.157)* -0.216(-0.134,-0.298)** -0.087(-0.027,-0.147)

-0.108(-0.059,-
0.157)*

PM2.5*SMOKE 2.710(1.510,3.910)* 2.710(1.640,3.780)* 0.751(-0.106,1.526) -0.235(0.765,-1.235) 0.807(-0.333,1.947) 0.751(-0.065,1.567)

MaxNDVI*HDI 2.067(-13.329,17.463) -5.383(8.692,-19.458)
-25.053(-13.052,-
37.054)*

-64.227(-18.502,-
82.794)*** -24.50(12.00,37.00)

-25.053(-13.052,-
37.054)*
Models in first four rows were adjusted for GDP, population density, mean temperature, annual precipitation, and population density. In italicized MaxNDVI with HDI, model were adjusted for
Mean temperature and Annual precipitation; “*” Indicates significant p-interaction values and is reported if p-int < 0.05; “**” Indicates significant p-interaction values and is reported if p-int <
0.01; “***” Indicates significant p-interaction values and is reported if p-int < 0.001. Note: age groups (over 20 years, 20–54 years, and over 55 years).
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PM2.5 in areas adjacent to greenspaces compared to the parks or

the broader region (49). This underscores the importance of

considering potential unintended consequences when increasing

green space in urban areas. For instance, it may create conditions

favorable for the survival of infectious pathogens, potentially

contributing to the spread of diseases (53). However, despite

these considerations, the evidence regarding the association

between access to green space and physical activity remains

inconclusive (54).
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4.2 PM2.5 and TBL cancer

With regard to our analysis, there is a significant positive

relation between PM2.5 with TBL cancer mortality, which was

similar to mortality attributable to risk factors of ambient particular

pollution in the GBD compare visualization tool and one related

research (55). As an avoidable cause of TBL cancer, attention to

outdoor air pollution had perhaps been distracted away owing to

the dominance of tobacco smoking. It is generally accepted that
FIGURE 2

Data depicts the TBL cancer incidence and mortality (per 100,000 population) among individuals aged over 55 years, alongside the mean NDVI
across 49 states in the United States for the years 2007, 2013, and 2019. Temporal trends are depicted by lines on the graph, with blue lines
representing cancer incidence, orange lines representing cancer mortality, and green lines indicating the mean NDVI. The horizontal axis (X-axis)
spans the three time periods of 2007, 2013, and 2019, while the Y1-axis on the left represents the cancer rate, and the Y2-axis on the right
represents the mean NDVI.
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hazardous ambient emissions could be reduced to improve air

quality, thus improving the morbidity and mortality of lung

cancer (56). Interestingly, research on PM2.5 exposure in Europe,

Japan, and Canada has uncovered several significant findings. Both

long-term and short-term exposure to PM2.5 can contribute to lung

cancer. Moreover, even exposure levels lower than the current EU

limit values and possibly the WHO Air Quality Guidelines have

been linked to lung cancer risk (12, 57, 58). In a population study

conducted in Pennsylvania, researchers observed “U-shaped” dose-

response curves, suggesting that both low and high exposures to

PM10 can have a similar impact on lung cancer survival (18). In a

cohort study in Canada, researchers applied a newly developed class

of concentration-response models and observed sublinear

associations between lung cancer incidence and PM2.5 (58).

However, due to socioeconomic inequalities such as ethnicity,

income level geography specificity, and so on, it is challenging to

determine whether disparities in air pollution have been rising or

falling in U.S (59). A study of U.S. veterans found that black

individuals and those in socioeconomically deprived areas face a

higher risk of PM2.5-related deaths from non-accidental and non-

communicable causes, highlighting the impact of socioeconomic

and racial factors (60).
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In our interaction analysis, we found protective effects between

PM2.5 and HDI, as well as educational level, respectively. Increased

indoor PM2.5 concentrations were noted in rural U.S. households

during winter, especially among those using wood stoves for heating.

Additionally, urbanization overall has a notably positive impact on

HDI (61, 62). Educational interventions have demonstrated efficacy

in lowering indoor PM2.5 levels in specific subsets of households

studied (63). It’s worth noting that air pollution can impact school

performance, particularly in test scores. Air pollution does affect

school performance, in particular test scores (64, 65). Regarding the

combined effects of air pollution and smoking, we observed

significant positive associations between PM2.5 and tobacco use.

Hence, it is crucial to assess the risks of air pollution-related lung

cancer alongside smoking risks. Remarkably, individuals with lung

cancer who have never smoked showed significant associations with

ambient air pollution exposure, compared to those who have ever

smoked. Hence, it is vital to consider cumulative exposure to ambient

air pollutants when assessing the risk of developing lung cancer,

alongside accurately quantifying traditional risk factors like smoking.

As smoking prevalence continues to decrease, the lung cancer risks

associated with long-term current and previous ambient air quality

may become relatively more important to public health (66).
FIGURE 3

Mean NDVI and concentrations of PM2.5 and ozone across the states in the years 2007, 2013, 2019. Note: the left panel shows the association of
the mean NDVI along the Y-axis and the PM2.5 or Ozone concentration levels on the X-axis. The size and colors of the bubbles measure the TBL
cancer incidence and mortality of each state in the three time periods.
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4.3 Age Subgroup analysis

Our subgroup analyses based on age revealed some evidence of

effect modification by selected individual characteristics. The TBL

cancer mortality of 20–54 years subgroup was found to be strongest

and positively associated with all the variables. Age appeared to modify

the association between TBL cancer and exposure to PM2.5, with

stronger impacts among young individuals compared to the elderly.

This finding is consistent with a cohort study in Canada, which also

indicated a tendency for stronger associations between lung cancer

incidence with PM2.5 among younger adults (58). We attributed our

findings to several factors distinguishing young adults from the elderly.

For instance, they exhibit varying patterns of response to negative

stimuli, with older adults showing different mobility performance

compared to their younger counterparts. Additionally, young adults

may not experience increased self-confidence due to their greater

reliance on the Internet for cancer care. Notably, there are significant

differences in immune profiles between adults and the elderly among

colorectal cancer patients. A study conducted in U.S. revealed that the

elderly group had notably higher levels of monocyte chemoattractant

protein-1 (MCP-1) and lower levels of epidermal growth factor (EGF)

compared to adults (67–71).
4.4 Limitations

Our study has a few limitations, one of which is the constrained

accessibility of the EPA air quality monitoring network for measuring

state-level air pollutant concentrations in specific cities. For greenspace,

our measure of state-wide greenness was rather crude in that it lacked

specification of the space type. Annual green space may be influenced

by weather and geographical characteristics. Furthermore, contact with

green space is indirect, complex, and multidimensional exposure.

Green space including agriculture, lawns, forests, wetlands, and

gardens, may contribute differently to public health. The risk of TBL

cancer is influenced by numerous factors, and our findings regarding

the association between green space exposure, air pollutants,

socioeconomic factors, and TBL cancer should be interpreted

cautiously. The benefits offered by green space may be overshadowed

by other conditions and accompanying lifestyles. Additionally, our

study’s findings may not apply to other regions globally due to

differences in urban morphology, air quality improvement efforts,

and car-oriented lifestyles, particularly in U.S. Unfortunately, we

lacked information on other significant factors potentially related to

cancer, which could confound our analyses. There is an urgent need for

standardized methods of analysis when considering green space

exposure and its various forms. Existing and future studies focusing

on greenness in specific areas should be interpreted with caution (72).

The characteristics such as access, biodiversity, facilities, and aesthetics

would influence green spaces when exerting their health benefits to the

public (73, 74). Future studies should aim to adjust for a comprehensive

set of covariates, assess the quality of greenspace, and explore the

association of greenspace exposure with different cancer subtypes (20,

23, 29, 75, 76).
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5 Conclusion

In U.S., the distribution of greenspace and air pollution

concentrations varies from east to west, with both factors being

linked to TBL cancer along with distinct socioeconomic variables

and other correlated risk factors. This study represents the first

attempt to investigate the relationship between greenspace, air

pollutants, socioeconomic factors, and TBL cancer at the state

level in U.S. By correlating and contrasting with existing research

on air pollution, greenspace, and various diseases, this study

contributes to a better understanding of the association between

the natural environment and health issues.
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