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Chongfeng Duan1, Yande Ren1*, Yaqian Qiao1

and Yueshan Tang1

1Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China,
2Department of Radiology, Shizuishan First People's Hospital, Shizuishan, China, 3Department of
Radiology, Qilu Hospital, Shandong University, Jinan, China
Purpose: This study evaluates the efficacy of radiomics-based machine learning

methodologies in differentiating solitary fibrous tumor (SFT) from angiomatous

meningioma (AM).

Materials and methods: A retrospective analysis was conducted on 171

pathologically confirmed cases (94 SFT and 77 AM) spanning from January

2009 to September 2020 across four institutions. The study comprised a

training set (n=137) and a validation set (n=34). All patients underwent

contrast-enhanced T1-weighted (CE-T1WI) and T2-weighted(T2WI) MRI scans,

from which 1166 radiomics features were extracted. Subsequently, seventeen

features were selected through minimum redundancy maximum relevance

(mRMR) and the least absolute shrinkage and selection operator (LASSO).

Multivariate logistic regression analysis was employed to assess the

independence of these features as predictors. A clinical model, established via

both univariate and multivariate logistic regression based on MRI morphological

features, was integrated with the optimal radiomics model to formulate a

radiomics nomogram. The performance of the models was assessed utilizing

the area under the receiver operating characteristic curve (AUC), accuracy (ACC),

sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative

predictive value (NPV).

Results: The radiomics nomogram demonstrated exceptional discriminative

performance in the validation set, achieving an AUC of 0.989. This
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outperformance was evident when compared to both the radiomics algorithm

(AUC= 0.968) and the clinical model (AUC = 0.911) in the same validation sets.

Notably, the radiomics nomogram exhibited impressive values for ACC, SEN, and

SPE at 97.1%, 93.3%, and 100%, respectively, in the validation set.

Conclusions: The machine learning-based radiomic nomogram proves to be

highly effective in distinguishing between SFT and AM.
KEYWORDS

solitary fibrous tumor, angiomatous meningioma, radiomics, nomogram,
machine learning
1 Introduction

Solitary fibrous tumor (SFT) represents a form of invasive soft

tissue sarcoma (1). Previously grouped with hemangiopericytomas

(HPC) under the term "solitary fibrous tumor/hemangiopericytoma"

by the CNS WHO in 2016, the classification was revised in 2021,

exclusively designating these lesions as SFT (2, 3). Meningioma, the

most common adult intracranial tumor, is categorized into three

WHO grades (3, 4). Angiomatous meningioma (AM), a grade 1

meningioma, poses diagnostic challenges owing to its histological

resemblance to SFT (5, 6). Unlike AM, which generally has a

favorable prognosis following surgical resection, SFT often

manifests with extracranial metastasis and local recurrence (6–8).

Accurate preoperative differentiation between these tumors is

paramount for treatment planning.

Magnetic Resonance Imaging (MRI) is a primary tool for

evaluating central nervous system malignancies (9). Contrast-

Enhanced T1-Weighted Imaging (CE-T1WI) is instrumental in

evaluating blood-brain barrier integrity and delineating tumor

characteristics. T2-Weighted Imaging (T2WI) is valuable for

superior soft tissue resolution in tumor detection (10).

Preoperative imaging methods, including the intratumoral flow
racy; ADC, Apparent

AUC, Area under the

ontrast-Enhanced T1-

ecision curve analysis;

matrix; GLDM, Gray

matrix; GLSZM, Gray

s, Intraclass correlation

absolute shrinkage and

tic Resonance Imaging;

DM, Neighboring gray

PV, Positive predictive

t; SEN, Sensitivity; SFT,

vector machine; T2WI,

me.

02
void sign and apparent diffusion coefficient (ADC) map, have

been explored for differentiating SFT from AM (11, 12).

However, these techniques are subjective and heavily reliant on

radiologist expertise, underscoring the necessity for more objective

and quantitative diagnostic approaches.

Radiomics, an emerging field in medical imaging, leverages

data-characterization algorithms to extract quantitative features

from radiological images, thereby augmenting prognostic

monitoring and treatment strategies in oncology (13). Central to

this domain, machine learning, particularly deep learning, plays a

critical role in feature analysis, significantly contributing to

advancements in medical imaging (14). By objectively assessing

tumor heterogeneity, radiomics propels the development of

precision oncology (15). Numerous studies have demonstrated

that its application spans various cancer types, including

stomach and esophageal cancers, and extends to intracranial

tumors like gliomas and meningiomas (16, 17). In addition,

radiomics has proven effective in differentiating between SFT and

AM (5, 18, 19). According to Li et al. (19), the area under the

receiver operating characteristic curve (AUC) of the CE-T1WI-

based radiomics algorithm for distinguishing SFT and AMwas 0.90,

significantly higher than the AUCs of three neuroradiologists

(AUC=0.69, 0.70, and 0.73). Nevertheless, MRI-based radiomics

nomograms, integrating both conventional imaging features and

radiomics for differentiating SFT and AM, remain underexplored.

Here, our research aims to ascertain the diagnostic performance

of MRI-based radiomics nomogram in preoperative differentiation

between SFT and AM, using data from four centers to enhance the

precision of therapeutic decision-making.
2 Materials and methods

2.1 Study participants

The multicenter study was approved by the Institutional Review

Board of our hospital, and written informed consent was waived on

account of its retrospective nature. MRI data of SFT and AM were
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retrieved from picture archiving and communication systems via

the radiology database. Patient recruitment occurred at four

medical centers: the First Affiliated Hospital of Qingdao

University (Medical Center A), Guangxi Medical University

(Medical Center B), the Frist Affiliated Hospital of Zhengzhou

University (Medical Center C), and Qilu Hospital of Shandong

University (Medical Center D), over the time period extending from

January 2009 to September 2020. The inclusion criteria were as

follows: (1) pathological diagnosis of SFT or AM; (2) preoperative

MRI examination performed without image artifacts; and (3) no

prior treatment at the initial diagnosis. The exclusion criteria

comprised: (1) artifacts on MRI images; (2) previous history of

brain surgery or biopsy; and (3) previous history of intracranial

diseases, such as subarachnoid hemorrhage or cerebral infarction.

Ultimately, the study comprised 94 patients with SFT and 77

with AM. The training cohort, selected from all of Medical Center
Frontiers in Oncology 03
A, B and a part of C, consisted of 75 SFT and 62 AM patients (n =

137), while the validation cohort from the remaining part of

Medical Center C and D included 19 SFT and 15 AM cases (n =

34). The clinical characteristics of the 171 patients are shown in

Table 1. The workflow of this study is illustrated in Figure 1.
2.2 Image acquisition

The whole imaging data encompassed preoperative T2WI and

CE-T1WI images, obtained using either a 3.0 T Siemens or a 3.0 T

GE scanner. For CE-T1WI, images were acquired post-contrast

injection through the cubital vein (gadopentetate dimeglumine, 0.1

mmol/kg), covering axial, coronal, and sagittal planes. The scanning

parameters for each scanner were as follows: 3.0 T Siemens:

relaxation time / echo time (TR/TE) 1800/8.5 ms; 3.0 T GE: TR/
TABLE 1 Patients' demographic information and morphological characteristics of SFT and AM in the training and validation sets.

characteristic

Training set
(n = 137)

Validation set
(n = 34)

SFT 75 AM 62 P value* SFT 19 AM 15 p value*

Age(years)
(mean ± SD)

46.77±
12.20

55.32±
10.70 <0.001

39.74±
16.20

52.87±
14.14 0.019

Size
(mean ± SD)

46.35±
17.49

39.34±
12.06 0.008

60.23±
17.67

44.57±
12.10 0.006

Sex

Male 37 37
0.300

12 5
0.167

Female 38 25 7 10

Shape

Defined 33 35 5 11

0.017Ill-defined 42 27 0.201 14 4

Dural tail sign

Presence 22 53 6 14

0.001Absence 53 9 <0.001 13 1

Width

Wide base 32 56 9 13

0.043Narrow base 43 6 <0.001 10 2

Cystic

Presence 45 24 13 5

0.091Absence 30 38 0.021 6 10

Vessel flow voids

Presence 46 38 1.000 14 13

0.615Absence 29 24 5 2

Edema

Presence 53 43 1.000 15 13

0.894Absence 22 19 4 2
SFT, solitary fibrous tumor; AM, angiomatous meningioma; SD, standard deviation.
*Calculated from independent-sample t test for continuous variables and Fisher's exact or chi-square tests for categorical variables.
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TE 2250/24 ms. The T2WI scanning parameters were: TR/TE, 700–

6370/40–120 ms. The following imaging acquisition parameters

were used for both Siemens and GE scanners: field of view (FOV) of

23 cm, slice thickness of 5 mm and slice gap of 1 mm.
2.3 MRI morphologic characteristics

Two experienced radiologists (7 and 25 years of neuroimaging

experience, respectively) independently analyzed the images,

blinded to the clinical data. Intraclass correlation coefficients

(ICCs) were calculated to assess intraobserver reliability, with one

radiologist repeatedly identifying signs, while interobserver

reliability was determined by comparing analyses between

different radiologists. For intraobserver reproducibility

assessment, radiologist 1 conducted a second region of interest

(ROI) delineation one week later. The morphologic signs evaluated

included: (1) size (maximum diameter of mass); (2) shape (defined

or ill-defined); (3) dural tail sign (presence or absence); (4) width

(wide base or narrow base); (5) cystic area (presence or absence); (6)

vessel flow voids (presence or absence); and (7) peritumoral edema

(presence or absence).
2.4 ROI segmentation

The images were imported into 3D-slicer software (v.4.8.1,

http://www.slicer.org/) in DICOM format. Utilizing axial images,
Frontiers in Oncology 04
two radiologists delineated the ROI along the tumor edge in a

stepwise manner. After delineating the ROI on each slice around the

tumor periphery, a three-dimensional (3D) ROI was constructed.

The ROIs comprised cystic and hemorrhagic areas while avoiding

the edema area, aorta, venous sinus and enhanced meninges (20).

Any discrepancies were reconciled through discussion.
2.5 Image normalization and
feature extraction

Due to the heterogeneity of the dataset, resulting from varying

scanners and protocols, standardization processes such as

resampling, noise reduction, and wavelet transform were applied

to both CE-T1WI and T2WI images to minimize this impact. 3D

Slicer was used for resampling to a voxel size of 1 × 1 × 1 mm and

for performing Gaussian filtering with sigma values of 0.5, 1.0, and

1.5 (21). For further analysis, radiomics features with acceptable

interobserver and intraobserver reproducibility (intraclass

correlation coefficients [ICC] > 0.75) were chosen.

An internal MATLAB script (MATLAB R2017b, TheMathWorks,

Inc., Natick, MA, USA) was employed for the extraction of radiomics

features in conjunction with 3D Slicer (22). A comprehensive set of

1,166 features, encompassing shape, first-order, gray level co-

occurrence matrix (GLCM), gray level run length matrix (GLRLM),

gray level size zone matrix (GLSZM), gray level dependence matrix

(GLDM), and neighboring gray tone difference matrix (NGTDM)

features, were extracted from CE-T1WI and T2WI images.
FIGURE 1

Workflow of the study.
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2.6 Feature selection

The Mann-Whitney U test and univariate logistic regression

analysis were performed to examine whether these features were any

significant differences between SFT and AM. To reduce redundancy in

features, the least absolute shrinkage and selection operator (LASSO)

and the minimum redundancy maximum relevance (mRMR)methods

were applied. Only features exhibiting the highest predictive value and

significant association with the differentiation of SFT and AM were

retained. In this study, three machine-learning classifiers were

employed: support vector machine (SVM), logistic regression (LR)

and k-nearest neighbor (KNN).
2.7 Developing the radiomics model,
adding the clinical model, and constructing
the radiomics nomogram

Clinical morphology signs were selected through univariate

logistic regression, and clinical features with P < 0.05 were

incorporated into a multivariate logistic regression to develop a

clinical model with backwards stepwise selection and Akaike’s

information criterion as the stopping rule. Subsequently,

radiomics features selected by mRMR and LASSO were combined

with SVM, LR and KNN respectively to develop the radiomics

models. Utilizing the best classifier and feature selection approach, a

radiomics score (Rad-score) was determined. After that, combining

the morphologic features identified through multivariable logistic

regression analysis and the rad-score to construct a nomogram.

The performance of the models was evaluated by calculating the

AUC, accuracy, sensitivity, specificity, negative predictive value

(NPV), and positive predictive value (PPV). Calibration curves

and decision curve analysis (DCA) were utilized for assessing the

nomogram’s calibration ability and clinical utility, respectively. The

dependability of models was evaluated at the net benefit level using

DCA, with a higher standard net benefit indicating greater clinical

applicability across various threshold probabilities (23).
Frontiers in Oncology 05
2.8 Statistical analysis

All statistical analyses were executed using R statistical software

(https://www.Rproject.org). The independent-sample t test assessed

continuous variables (such as age), while categorical variables, like

gender, were analyzed using Fisher's exact or chi-square tests. A

value of P < 0.05 was considered statistically significant.
3 Results

3.1 Clinical characteristics screening and
model development

Table 1 presents the clinical characteristics of the training set

and validation set. The assessment of intraobserver and

interobserver reliability yielded ICCs for MRI morphological

features that consistently exceeded 0.75. Univariate and

multivariate logistic regression analysis results are presented in

Table 2. Notably, multivariate logistic regression analysis

identified age, width, and dural tail sign as independent risk

factors for discriminating between SFT and AM. A clinical model

incorporating these variables was developed, demonstrating AUCs

of 0.875 (95% confidence interval [CI], 0.814-0.936) in the training

set and 0.911 (95% CI, 0.794-1.000) in the validation set. A list of

results is displayed in Table 3 and Figure 2.
3.2 Radiomics feature selection and
radiomics models development

A total of 1,166 radiomics features, after confirming that both

intraobserver and interobserver ICCs exceeded 0.750, were analyzed

using the mRMR method, LASSO method and the Mann-Whitney U

test. Ultimately, seventeen features revealed significant differences,

encompassing 1 shape-based, 4 first-order statistics features, 2

GLCM features, 3 GLRLM features, 4 GLSZM features, and 3

GLDM features (Figure 3). Shape feature describes geometric
TABLE 2 Results of univariate and multivariate logistic regression analysis in SFT and AM.

Variable
Univariate Analysis Multivariate Analysis

OR (95% CI) P-value OR (95% CI) P-value

Shape 0.826 [0.729;0.935] 0.012 0.941 [0.850;1.041] 0.318

Dural tail sign 1.775 [1.598;1.970] <0.001 1.428 [1.267;1.610] <0.001

Width 1.642 [1.462;1.844] <0.001 1.312 [1.163;1.481] <0.001

Cystic 0.788 [0.697;0.891] 0.002 0.890 [0.797;0.994] 0.083

Age 1.013 [1.009;1.018] <0.001 1.008 [1.004;1.012] <0.001

Size 0.992 [0.988;0.996] <0.001 0.997 [0.993;1.000] 0.112
OR, odds ratio; CI, confidence interval.
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parameters such as location and size of the lesion. The first-order

feature describes the distribution of gray values of each voxel in the

region of interest. Matrix-based features are second-order statistics that

analyze the complexity of the structure inside and around the tumor,

the variation of the layers, and the thickness of the texture. Regression

analysis confirmed these features as independent predictors (P < 0.05).

To establish the radiomics models, these seventeen characteristics were

combined with SVM, KNN and LR. In regard to AUC and accuracy

performance, the LR classifier achieved the maximum performance,

yielding an AUC of 0.926 (95% CI, 0.885-0.967) in the training set and

0.968 (95% CI, 0.915-1.000) in the validation set. Correspondingly,

accuracy rates were recorded at 0.854 and 0.941, respectively (Table 4).

The texture feature model formula was as follows:

Radscore = 0.438967728381277+0.000521*T2_SmallAreaLow

GrayLevelEmphasis.3−0.096624*T2_Median.4+0.052464*T2_

DependenceVariance.6−0.002580*T2_Idmn.6−0.008362*T2_Gray

LevelNonUniformity.20−0.010714*T2_RunVariance.8−0.010133*T2

_Skewness.9−0.011496*T2_GrayLevelNonUniformity.32+0.004185*

T2_SmallAreaLowGrayLevelEmphasis .10−0.111251*T2_

Skewness.11−0.090475*T2_GrayLevelNonUniformity.34+0.042483*

T1+C_Elongation+0.030545*T1+C_LargeDependenceHighGray

LevelEmphasis.1+0.013493*T1+C_SmallAreaEmphasis.6−0.014165*

T1+C_Median.9+0.031357*T1+C_LongRunLowGrayLevel

Emphasis.10+0.017206*T1+C_MCC.11ccccc−4.130
Frontiers in Oncology 06
3.3 Establishment and performance
of nomogram

A radiomics nomogram, integrating age, width, dural tail sign, and

rad-score, was established (Figure 4). Compared to the individual

performance metrics of the radiomics algorithm (AUCs of 0.926 and

0.968 for the training and validation sets, respectively) and the clinical

model (AUCs of 0.875 and 0.911), the nomogram exhibited superior

predictive capabilities, with AUCs of 0.958 (95% CI, 0.929-0.987) and

0.989 (95% CI, 0.966-1.000) for the respective sets. Additionally, the

nomogram demonstrated high accuracy (0.898), sensitivity (0.871), and

specificity (0.920) in the training set, and similarly outstanding

performance in the validation set (accuracy of 0.971, sensitivity of

0.933, specificity of 1.000) (Table 3, Figure 2). In the training group,

the AUC of the nomogram was higher than that of both the clinical

model and the radiomics model according to DeLong test. In the test

group, there was no significant difference in AUC among the three

groups (P > 0.05).

The calibration curves for the radiomics nomogram indicated

excellent performance in both the training and validation sets

(Figure 4). Furthermore, DCA of the nomogram revealed that

within a threshold probability range of 0.15 to 0.85, and when

comparing strategies of 'treat none' versus 'treat all', the nomogram

consistently outperformed the clinical model (Figure 4).
FIGURE 2

Performance of the clinical model, radiomics algorithm and the radiomics nomogram. (A) Training set. (B) Validation set.
TABLE 3 Results of Clinical Model, Radiomics Algorithm and the Radiomics Nomogram Predictive Performance.

Group AUC 95% CI ACC SEN SPE PPV NPV

Training set

Clinical 0.875 0.814 0.936 0.825 0.855 0.800 0.779 0.870

Algorithm 0.926 0.885-0.967 0.854 0.935 0.787 0.784 0.937

Nomogram 0.958 0.929-0.987 0.898 0.871 0.920 0.900 0.896

Validation set

Clinical 0.911 0.794-1.000 0.882 0.800 0.947 0.923 0.857

Algorithm 0.968 0.915-1.000 0.941 0.933 0.947 0.933 0.947

Nomogram 0.989 0.966-1.000 0.971 0.933 1.000 1.000 0.950
AUC, area under the receiver operating characteristic curve. ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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4 Discussion

The preoperative distinction between SFT and AM is of

paramount clinical significance. SFT, characterized by its invasive

nature, has a propensity for recurrence and metastasis to

extracranial organs post-surgical resection. Typically, the primary

therapeutic strategy encompasses postoperative radiotherapy or

chemotherapy, supplemented by regular clinical follow-ups to

monitor patient prognosis (24). Conversely, AM exhibits a benign

pathology, with low aggressive growth potential and recurrence

rates, often resulting in favorable outcomes after gross total

resection (25). SFT and AM exhibit similar MRI findings.

Although previous studies have demonstrated that certain MRI

features—such as tumor size, signal intensity, vascular flow voids,

and the dural tail sign—can aid in differentiating between SFT and
Frontiers in Oncology 07
AM (26). However, traditional MRI features are susceptible to the

influence of physician experience due to the lack of objectivity and

quantitative analysis, so differentiating between these two entities

using conventional MRI poses a considerable challenge. In our

study, we selected the radiomics algorithm with superior predictive

performance, integrating it with the clinical model to construct a

radiomics nomogram specifically for distinguishing SFT from AM.

The radiomics nomogram AUC was 0.989 in the validation set,

outperforming the clinical model and the radiomics algorithm in

predictive capability. Demonstrating satisfactory calibration and net

benefits, the radiomics nomogram appears reliable for

differentiating AM from SFT.

Image segmentation in machine learning for intracranial

tumors, a crucial step, demands high reproducibility. Current

methodologies range from manual to semiautomatic and fully
TABLE 4 Performance of the three machine-learning methods.

Classifier
Training set Validation set

AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

SVM 0.967 (0.943-0.991) 0.905 0.839 0.960 0.954 (0.886-1.000) 0.912 0.933 0.895

LR 0.926 (0.885-0.967) 0.854 0.935 0.787 0.968 (0.915-1.000) 0.941 0.933 0.947

KNN 0.912 (0.868-0.957) 0.847 0.855 0.840 0.935 (0.858-1.000) 0.882 0.800 0.947
fr
AUC, area under the receiver operating characteristic curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity.
FIGURE 3

Predicated on the premise of an optimal l value, delineated by a perpendicular line, a suite of 17 radiomic features was identified (A). With
modulation parameters (l values), the various characteristics will affect the LASSO coefficients (B). The selected 17 radiomics features and their
nonzero coefficients (C).
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automatic approaches (27, 28). Hu et al. (29) implemented a

semiautomatic method based on a signal intensity threshold and

edge-based algorithms via 3D Slicer, achieving efficient tumor

segmentation. This approach automatically aligned the ROIs with

multimodal MRI images, proving more efficient than manual

sketching. However, despite its efficiency, automatic mapping

encounters challenges, particularly with the variability in tumor

morphology. In our study, manual segmentation was meticulously

conducted using 3D Slicer to ensure precise tumor delineation.

The efficacy of morphological features in differentiating

between AM and SFT remains contentious. Various studies

advocate for their diagnostic relevance, noting characteristics

typical of SFT such as large volume, irregular shape, uneven

enhancement, vascular flow voids, dural stenosis, necrosis, and

bone deterioration (19, 30–33). Contrarily, our research suggests

a divergence from these findings, potentially due to the subjective

nature of clinical observations. Our multivariate logistic regression

analyses identified age, width, and dural tail sign as independent

predictors in distinguishing SFT from AM. In addition, the AUC of

the clinical model in our validation set was inferior to that of the

radiomics algorithms and nomograms, underscoring the

dependency of the clinical model's performance on radiologist

expertise and emphasizing the superior discriminative

performance of machine learning algorithms (33).

Radiomics, a constantly evolving new subject in medical

imaging, refers to the quantitative extraction of radiological

features from two-dimensional or three-dimensional medical

images. Its integration with clinical data has proven beneficial in

monitoring tumor progression and aiding personalized treatment
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strategies (34). Machine learning plays a crucial role in analyzing

brain tumor MRI imaging data, facilitating deeper exploration of

patterns that can aid in diagnosis. At present, domestic and foreign

scholars have applied machine learning based on radiomics

methods to study SFT and AM. Fan et al. (35) utilized SVM to

develop a model for distinguishing SFT from AM using CE-T1WI,

T2WI, and a combined CE-T1WI and T2WI sequence. The

combined CE-T1WI and T2WI model demonstrated the highest

predictive performance, achieving an AUC of 0.90. Kong et al. (36)

assessed various algorithms' effectiveness in differentiating SFT

from AM using multiparameter MRI sequences. Their results

indicated that the performance improvements offered by the

different algorithms were limited. However, most studies typically

utilize only one machine learning algorithm or a single traditional

MRI sequence to construct their models, often using data from a

single center. Validating the generalizability of these models

necessitates the inclusion of multicenter data. Therefore, in line

with previous research, we integrated data from multiple centers

and employed LR, SVM, and KNN algorithms in conjunction with

conventional MRI sequences to establish radiomics models, and the

models ultimately showed robust predictive capabilities.

Furthermore, our integrated model demonstrated superior

diagnostic accuracy, outperforming the individual LR, SVM, and

KNN models, as well as the clinical model. This underscores that

while tumor radiomics models possess enhanced predictive abilities

compared to the clinical model alone, the integration of clinical data

is indispensable. The synergy of these elements effectively

differentiates between SFT and AM. A radiomics nomogram,

established by Wei et al. to differentiate SFT from AM, showcased
FIGURE 4

The nomogram integrates radiomic features with morphological characteristics (A). Calibration curves for the radiomic nomograms in the training
and validation cohorts are presented in (B, C). A 45-degree line indicates perfect prediction; the closer the curve approximates this line, the greater
the nomogram's predictive accuracy. Decision curve analysis (DCA) was employed for the radiomic nomogram (D), with the net benefit plotted on
the y-axis. In the nomogram, this is represented by a black line. The line labeled "All" assumes every patient has SFT, while the "None" line assumes
no patients have SFT.
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remarkable diagnostic capability, with AUCs of 0.985 and 0.917 in

the training and validation sets, respectively (37).

In our study, 1,166 radiomics features, predominantly texture

features representing second-order attributes that reflect voxel/pixel

relationships, were extracted. Texture features illustrate not only

pixel intensity distribution, but also how quantized pixels position

each other (38). The feature selection process in machine learning,

crucial for the reliability of radiomics algorithms, involved the use

of mRMR and LASSO. LASSO is particularly effective in datasets

with numerous features but limited samples without noticeably

increasing the bias, while mRMR facilitates the selection of features

with minimal redundancy and maximum relevance (39, 40).

Subsequently, seventeen features were selected to develop

radiomics models using SVM, LR, and KNN classifiers. SVM is

adept at analyzing high-dimensional, small-scale data. KNN excels

in processing nonlinear data, identifying multiple predictive

biomarkers in clinical datasets. LR, as a classification method,

investigates the relationship between specific outcome

probabilities and features (41, 42). Our results indicated that LR

yielded the highest accuracy and AUC, prompting their adoption

for the optimal radiomics model. Integrating this model with the

clinical model to create the radiomics nomogram resulted in

excellent calibration and accurate differentiation between SFT and

AM in the validation set, affirming its efficacy and reliability in

diagnosing these conditions.

Multicenter studies, essential for obtaining extensive sample sizes

and enhancing classifier generalization, encounter challenges like data

heterogeneity and variability arising from different scanners and

methodologies. To mitigate these issues, we implemented

preprocessing steps such as resampling, denoising, and wavelet

transformation. In the validation set, clinical model, radiomics

algorithm, and the nomogram demonstrated AUCs of 0.911, 0.968,

and 0.989, respectively, suggesting robust generalizability (43).

This investigation had certain restrictions. Firstly, its

retrospective nature and relatively small size might introduce

selection bias. Considering the retrospective design, scanner and

protocol heterogeneity were addressed through resampling to

stabilize model performance. Additionally, patient distributions

varied between training and validation sets. Lastly, our analysis

was confined to images from the CE-T1WI and T2WI. Future

studies aim to include a broader range of imaging sequences to

further enhance the predictive accuracy and generalizability of

the model.
5 Conclusions

In summary, compared to conventional MRI, the MRI-based

radiomics nomogram demonstrates greater efficacy in

differentiating SFT and AM, offering significant information for

the subsequent treatment and detection. Furthermore, the study of a
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larger prospective dataset is needed to certify the real value

of nomogram.
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