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pediatric sarcomas determined
by the telomeric DNA
C-circle assay
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Wenyue Sun4, Frederic G. Barr4, Timothy J. Triche5

and C. Patrick Reynolds1,2,3*

1Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer
Center, Lubbock, TX, United States, 2Department of Translational Neuroscience and Pharmacology,
Texas Tech University Health Sciences Center, Lubbock, TX, United States, 3Department of Cell
Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of
Biomedical Sciences, Lubbock, TX, United States, 4Laboratory of Pathology, National Cancer Institute,
Bethesda, MD, United States, 5Children’s Hospital Los Angles, Department of Pathology and
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Introduction: Alternative lengthening of telomeres (ALT) occurs in sarcomas

and ALT cancers share common mechanisms of therapy resistance or

sensitivity. Telomeric DNA C-circles are self-primed circular telomeric

repeats detected with a PCR assay that provide a sensitive and specific

biomarker exclusive to ALT cancers. We have previously shown that 23% of

high-risk neuroblastomas are of the ALT phenotype. Here, we investigate the

frequency of ALT in Ewing’s family sarcoma (EFS), rhabdomyosarcoma (RMS),

and osteosarcoma (OS) by analyzing DNA from fresh frozen primary tumor

samples utilizing the real-time PCR C-circle Assay (CCA).

Methods: We reviewed prior publications on ALT detection in pediatric

sarcomas. DNA was extracted from fresh frozen primary tumors,

fluorometrically quantified, C-circles were selectively enriched by isothermal

rolling cycle amplification and detected by real-time PCR.

Results: The sample cohort consisted of DNA from 95 EFS, 191 RMS, and 87 OS

primary tumors. One EFS and 4 RMS samples were inevaluable. Using C-circle

positive (CC+) cutoffs previously defined for high-risk neuroblastoma, we

observed 0 of 94 EFS, 5 of 187 RMS, and 62 of 87 OS CC+ tumors.
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Conclusions: Utilizing the ALT-specific CCA we observed ALT in 0% of EFS, 2.7%

of RMS, and 71% of OS. These data are comparable to prior studies in EFS and OS

using less specific ALT markers. The CCA can provide a robust and sensitive

means of identifying ALT in sarcomas and has potential as a companion

diagnostic for ALT targeted therapeutics.
KEYWORDS

rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, alternative lengthening of
telomeres, telomere
1 Introduction

Telomeres are nucleoprotein structures at the ends of chromosomes

(1) that contain 5-10 kilobases of the canonical hexanucleotide (5’-

TTAGGG-3’) repeat sequence encased in sheltering proteins (2). This

complex protects genomic DNA from replicative erosion (3, 4), shields

the ends of chromosomes from aberrant fusion (5), and prevents DNA

damage response (DDR) elements from errantly recognizing genomic

DNA (2, 6, 7). Approximately 85-90% of all cancers achieve replicative

immortality by utilizing the telomere maintenance mechanism (TMM)

telomerase (TA), a ribonucleotide reverse transcriptase (8, 9). The

remaining 10-15% of cancer cases (~250,000 U.S. patients annually)

use a non-telomerase TMM called alternative lengthening of telomeres

(ALT) (10, 11).

Incidence of ALT varies amongst sarcomas (Tables 1, 2), with

the majority of cases arising from tissues of mesenchymal or

neuroepithelial origin (10, 22). Cancers with an estimated ALT

frequency >40% include osteosarcoma (OS), diffuse and anaplastic

astrocytomas, undifferentiated pleomorphic sarcomas, and

pediatric grade 4 glioblastoma multiforme (10, 14). Previously

reported patient sample screenings have demonstrated a broad

range of ALT frequency amongst pediatric cancers, from 0% in

Ewing’s Family Sarcoma (EFS), up to 85% in OS (10, 12, 14).

Recently, there have been calls for assessing patient samples with

currently available ALT biomarkers to confirm historically reported

ALT frequencies, especially for OS (23).

The hallmarks of the ALT phenotype include absence of TA

activity (TERT mRNA expression provides a suitable surrogate for

TA activity) (24) with the presence of high telomere content and

heterogenous telomere length (25, 26), non-canonical telomere

variant repeats (27), extra-chromosomal telomeric repeats (28),

ALT-associated PML bodies (APBs) (14, 29–31), ultrabright

telomere foci by FISH (10), and telomeric DNA C-circles

(Tables 1, 2) (32). These characteristic markers have been used to

screen tumor sample cohorts to determine the frequency of ALT

among various tumor histologies (10, 13, 14, 18, 33, 34). Each of the

methods has advantages and disadvantages (Table 3).

Historically, ALT has been identified by the telomerase repeated

amplification protocol (TRAP) assay to demonstrate low TA activity
02
(35) and/or low TERT mRNA expression, since TA is mutually

exclusive to ALT (36). Telomere content and heterogeneity have

been evaluated by telomere restriction fragment (TRF) analysis (37)

and telomere fluorescence in situ hybridization for ultra-bright

telomeric foci (UTF). UTF was combined with immunofluorescence

(IF) of the PML protein, which was discovered to co-localize with

telomeres in ALT samples, to detect APBs, yielding an additional ALT

feature (38). Recently C-circles, circular self-primed telomeric DNA

repeats, have been shown to be a sensitive and specific biomarker for

ALT in tumors (32) that also circulate in patient plasma, potentially

increasing the clinical utility of C-circles as a biomarker (39, 40).

After genomic DNA is extracted (Figure 1) from fresh frozen

tumor, or plasma, C-circles can be enriched and subsequently detected

by blot or real-time PCR (41, 42). First, C-circles are selectively

amplified by f-29 DNA polymerase via isothermal rolling-circle

amplification (Figure 1) (41, 43, 44), which enriches the partially

double-stranded telomeric DNA, termed C-circles, when compared

to a reaction without f-29. Subsequently, the telomeric signals can be

compared by real-time PCR (Figure 1) for the f-29 and no f-29
reactions (Supplementary Figures S1A, C), which is then normalized to

a single copy gene (e.g. VAV2) for the same f-29 and no f-29 reactions
(Supplementary Figures S1B, D) (41, 42). This unique molecular

diagnostic assay allows for high-throughput screening of DNA from

fresh frozen tumor and plasma samples with as little as 1 ng of template

input (14, 41). Herein, we sought to assess the frequency of ALT in
TABLE 1 A review of published pediatric sarcoma data on incidence of
ALT-positive tumors.

Histology Estimated
Annual
Cases

%ALT Method N Ref

Ewing’s
Family Sarcoma

200
0
0
0

UTF
TRF, TRAP

UTF

23
30
10

(10, 12, 13)

Osteosarcoma 800
66
35
47

TERT, TRAP
TERT, TRF, TRAP

APB

44
60
58

(14–16)

Rhabdomyosarcoma 350
6
6
0

APB
UTF
UTF

35
16
4

(10, 13, 14)
fro
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pediatric sarcomas using the real-time PCR CCA on DNA samples

extracted from fresh frozen tumor.
2 Materials and methods

2.1 Tumor samples

Genomic DNA was extracted using the QIAamp DNA mini kit

(Qiagen, 51104), in accordance with the manufacturer’s instructions,

and stored at -20°C, or in liquid nitrogen vapor, until aliquoted and

sent to TTUHSC on dry ice for use in the C-circle assay. PAX3-FOXO1

or PAX7-FOXO1 fusion status was previously determined on all

samples without unambiguous embryonal RMS histology. Fusion

status was determined by reverse transcriptase-polymerase chain
Frontiers in Oncology 03
reaction assays (45) of RNA isolated using RNA STAT-60 (Tel-Test,

Friendswood, TX).
2.2 DNA quantification

Fluorometric quantification of DNA samples was carried out on

a Qubit 2.0 system with the Qubit dsDNA Broad Range Assay Kit

(Invitrogen Cat. No. Q32853).
2.3 The real-time PCR C-circle assay

The isothermal rolling circle amplification reactions were

performed on an Eppendorf Vapo.Protect thermocycler at 30°C for
TABLE 3 Advantages and disadvantages of assays used to determine telomere maintenance mechanisms (TMM).

TRF TRAP TERT UTF APB/IF-FISH Real-time CCA

Advantages

Heterogeneity in telomere length Direct measure
of

telomerase
activity

High-
throughput,
Quantitative

Heterogeneity
in telomere
length,
Highly
specific,

Input/FFPE

Direct ALT measure,
Input/FFPE

Direct ALT measure,
High-throughput, Plasma

monitoring possible,
Quantitative,

Sensitivity and specificity
Widely

clinically translatable

Disadvantages

High complexity, Large template
input, Sensitivity/specificity, Some TA

cells have long telomeres

False negative
rate, Indirect
ALT measure

Indirect ALT
measure,

Input/RNA

High
complexity,

Low
throughput

High complexity Low
throughput Not all ALT
have detectable APBs

CC relatively fragile, Not
all ALT have
detectable CC
TABLE 2 A review of published adult sarcoma data on incidence of ALT-positive tumors.

Histology Estimated
Annual Cases

%ALT Method N Ref

Angiosarcoma 260
24
11
20

UTF
UTF
UTF

70
9
8

(10, 13, 17)

Chondrosarcoma 1500
100
NA

UTF
TRF, APB

2
3

(10, 14)

Leiomyosarcoma 130

78
62
59
53

CCA
TRF, APB

UTF
UTF

49
13
86
59

(10, 14, 18, 19)

Liposarcoma 1500
31
26

UTF
TRF, TRAP, APB

75
139

(13, 20)

Myxofibrosarcoma 530 76 UTF 25 (13)

Malignant Peripheral Nerve
Sheath Tumor

300
26
21
0

UTF
UTF
UTF

49
14
4

(10, 13, 21)

Synovial Sarcoma 900
9
0

TRF, APB
UTF

11
13

(13, 14)

Undifferentiated Pleomorphic/
MFH Sarcoma

2250
77
65
63

TRF, APB
UTF
UTF

22
34
52

(10, 13, 14, 69)
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8 hrs, 65°C for 20 min, and held at 4°C. Reactions were comprised of:

32 ng of template DNA, 2 µL BSA (2 µg/µL), 2 µL of 1% Tween, 0.8

µL DTT (100µM), 2 µL of 10 mM dNTPs (NEB, Ipswich, MA,

N0447L), 2 µL of f-29 Buffer, 0.8 µL of f-29 DNA polymerase (NEB,

Ipswich, MA, M0269L), and nuclease-free water up to 20 µL. No f-29
control reactions consisted of the aforementioned reagents with

nuclease-free water in place of f-29 DNA polymerase. After

isothermal rolling circle amplification, all reactions were diluted

with 20 µL nuclease-free water to a final volume of 40 µL.

Subsequent real-time PCR amplification of telomere DNA

(Forward Primer: 5’ - CGGTTTGTTTGGGTTTGGGTTTGGGTT

TGGGTTTGGGTT - 3’, Reverse Primer: 5’ - GGCTTGCCTTACC

CTTACCCTTACCCTTACCCTTACCCT - 3’) and VAV2 DNA

(Forward Primer: 5’ - TGGGCATGACTGAAGATGAC - 3’,

Reverse Primer: 5’ - ATCTGCCCTCACCTTCTCAA - 3’) (IDT,

Coralville, IA) was performed using a 96-well Thermo-Fisher

Quantstudio 3 Real-Time PCR System with the following cycling

conditions: Telomere reaction: 95°C for 15 min, 33 cycles of 95°C

for 15 sec and 56°C for 2 min, and VAV2 Reaction: 95°C for 15 min,

40 cycles of 95°C for 15 sec, 57°C for 30 sec, and 72°C for 1 min.

Real-time PCR reactions consisted of: 5 µL of diluted isothermal

reaction product, 12.5 µL QuantiTect SYBR Green PCRMaster Mix

(Qiagen, 204445), 1 µL DTT (100 µM), 0.5 µL DMSO, 1 µL

nuclease-free water, and 2.5 µL of primers (5 µM Tel, or 2 µM

VAV2). All real-time reactions (Telomere f, Telomere No-f, VAV2
f, VAV2 No-f) were carried out in triplicate and assessed via

arbitrary unit (AU) calculations. DNA from CHLA-90 and CHLA-

20 cell lines were used for positive and negative controls,

respectively. Samples were considered CC+ if they had ≥5 AU,

after normalization to CHLA-90, as previously described (46–48).
Frontiers in Oncology 04
2.4 Statistical analysis

The relationship between clinical characteristics and C-circle status

(Table 4) was evaluated by Chi-square, or Fisher’s exact test, when

appropriate. The Mann-Whitney U Test was used to analyze telomere

content. Two-tailed statistical tests with P values ≤ 0.05 were considered

significant. All analyses were performed in GraphPad Prism v10.2.2.
FIGURE 1

The real-time PCR CCA. Self-primed telomeric C-circles are selectively amplified by f-29 polymerase via rolling circle amplification. Subsequent
real-time PCR detection of telomere content reveals an enriched telomeric signal, indicating the presence of C-circles.
TABLE 4 Clinicopatholgical data for the osteosarcoma sample cohort.

Osteosarcoma C-circle Positive C-circle Negative P Value

Sex

Male 17 11

0.16Female 26 7

NA 14 9

Age

< 18 years 40 17

0.83> 18 years 6 3

NA 11 7

Location

Axial 5 2

0.96
Extremity 34 13

Metastasis 5 3

NA 13 9

(Continued)
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3 Results

3.1 Patient cohort

The Children’s Oncology Group (COG) Biopathology Center

provided 82 RMS DNA samples from residual stored DNA. These

RMS specimens were collected from patients enrolled on a variety

of Intergroup Rhabdomyosarcoma Study Group or COG Soft

Tissue Sarcoma studies and received as de-identified samples. All

Ewing sarcoma cases were part of COG clinical trial AEWS0031. All

cases were reviewed by COG pathologists and a EWS-ETS fusion

gene was identified in all cases. None were Ewing-like tumors with

FET-ETS or CICX-DUX4. All cases expressed an EWS-FLI1 or

EWS-ERG fusion gene and were part of the NCI Strategic
Frontiers in Oncology 05
Partnering to Evaluate Cancer Signatures (SPECS) program for

childhood sarcoma gene expression profiling (49). EFS, OS, and

additional RMS DNA was isolated from primary tumors obtained

under informed consent by COG and processed by the pediatric

division of Cooperative Human Tissue Network at Nationwide

Children’s Hospital. These anonymized samples were originally

used for genomic analyses in the NCI SPECS program, and in the

case of OS, also the NCI TARGET program, and, in both cases,

exempt from Human Subjects Research per IRB review (49–51).
3.2 CCA results

Of the 373 DNA samples received (n = 95 EFS, n = 191 RMS, and

n = 87 OS), five samples (1 EFS and 4 RMS) did not amplify due to

poor DNA quality. CCA results are shown in Figure 2A.We observed

0 of 94 (0%) CC+ EFS cases, which is in concordance with previous

reports (Table 1) (10, 12, 23). In contrast to EFS, 62 of 87 (71%) of OS

tumors were CC+, which fell within the range of prior studies (12,

23). We did not observe statistically significant relationships between

C-circle status and the clinicopathological data (Table 4), which

aligns with the conclusions of previous studies that identified ALT

through methods other than the CCA (14–16). We observed 5 of 187

(2.7%) CC+ RMS in the sample cohort (Table 5), which is lower than

the previously reported 6%, which was determined by APB analysis

(14). Of the 5 CC+ RMS samples identified, four were fusion negative

(FN) embryonal RMS (ERMS) and one was fusion positive (FP)

alveolar RMS (ARMS).
3.3 Telomere content

Telomere content amongst EFS, OS, and RMS (Figure 2B) ranged

from 0.35 - 9.1, 0.56 - 33.73, and 0.93 - 14.42, respectively.

Each histology showed a significant difference (p < 0.05) in

telomere content, and CC+ OS had a significantly higher (p < 0.05)

telomere content than CC- OS samples (Figure 2C), which is in

concordance with reports that ALT telomere content is generally

higher than non-ALT samples (39, 52).
4 Discussion

The prognostic value of ALT, and other TMM, is gaining

traction (23, 33, 53), including in veterinary care (54). Studies

have linked high telomerase expression with exceptionally

aggressive tumors that can result in rapid progression and poor

clinical outcomes (15, 33). By contrast, ALT has been associated

with indolent disease progression; yet, patients with various tumor

types have been observed to have a worse overall survival (23, 28,

33, 55). Recently, we observed high amounts of ATM kinase

activation (which promotes chemotherapy resistance) in patient-

derived neuroblastoma cell lines (PDCLs) and patient-derived

xenografts (PDXs) (48), and also in PDCLs of other histologies

(rhabdomyosarcoma, osteogenic sarcoma, triple negative breast

cancer, and colorectal cancer) that have the ALT phenotype (47).
TABLE 5 PAX3/7-FOXO1 fusion status rhabdomyosarcoma
sample cohort.

Rhabdomyosarcoma C-circle
Positive

C-circle
Negative

PAX3/7-FOXO1 Fusion Status

Fusion Positive 1 87

Fusion Negative 4 74

NA 0 21
NA, Not Applicable.
TABLE 4 Continued

Osteosarcoma C-circle Positive C-circle Negative P Value

Histology

Chondroblastic 1 0

N/A

Fibroblastic 1 1

Osteoblastic 5 5

Telangiectatic 1 0

Osteoblastic
& Chondroblastic

1 1

Osteoblastic
& Fibroblastic

1 0

Osteoblastic
& Sclerosing

1 0

Osteoblastic
& Telangiectatic

1 0

Osteoblastic,
Chondroblastic
& Telangiectatic

1 0

NA 44 20

Response

Responder 12 6

0.65Non-responder 24 9

NA 21 12
NA, Not Applicable.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1399442
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Burrow et al. 10.3389/fonc.2024.1399442
We have also observed that certain clinical stage drugs (an ATM

kinase inhibitor (48) and a p53 reactivator (47)) are active in

reversing chemotherapy resistance in ALT PDCLs and PDXs.

Thus, robust identification of ALT has the potential to be a

prognostic biomarker and a companion diagnostic for ALT-

targeted therapies.

Generally, ALT is activated by loss-of-function (LOF) genetic

alterations in the chromatin remodelers a thalassemia-mental

retardation, X linked (ATRX) (33) and death domain-associated

protein 6 (DAXX) (56). ATRX inactivating mutations are

commonly observed among different tumor types, while DAXX

mutations are primarily associated with pancreatic neuroendocrine

tumors (PanNETs) (56). ALT is less frequently associated with LOF

alterations in H3F3A (57, 58) and SMARCAL1mutated tumors (59,

60). Previous studies have used these genomic alterations as proxies

to identify ALT, but depending on histology, as many as ½ ALT

cancers can be wild-type for ATRX or DAXX (41, 61).

C-circles, TERT expression, high telomere content with

heterogenous telomere length, and APBs have been used to screen

sample sets to establish ALT frequencies amongst sarcomas; however,

each of these techniques have their own advantages and

disadvantages. Relatively fragile, C-circles can be degraded by

excess freeze-thaw cycles, prolonged vortexing, and formalin-fixing;

thus, proper sample handling and storage are required (62). Recently,

ALT tumors have been shown to protect C-circles from nuclease

degradation in the blood by releasing C-circles within exosomes,

which may provide a non-invasive blood-based biomarker for the

detection and monitoring of ALT tumors in vivo (40). Although there

is no standardized method for determining ALT status (28), C-circles

are the only known molecule specific to ALT (40), and the

molecularly based real-time PCR C-circle assay can utilize DNA

that has been isolated for sequencing; thus, it is readily translatable to

the clinical laboratory, and it’s for these reasons that we selected this

approach (28, 32, 42, 61).
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We observed no CC+ EFS cases, which is likely due to the

activation of TERT by EFS fusion proteins (39). The ALT phenotype

is known to be essentially exclusive to TERT activation (32, 39, 40).

In OS patients, expression of TERT has been shown to portend an

unfavorable clinical prognosis (15); however, stage and clinical

outcomes of ALT cases were shown to be equivalent to TA cases

(16), but, the ALT phenotype provides a potentially targetable

mechanism present in the majority of OS patients, some of which

have poor clinical outcomes (47, 63, 64).

ALT is also known to occur in RMS (14), the most common

pediatric soft tissue sarcoma (65). Classically, pediatric RMS cases were

generally categorized histologically as ERMS, which was linked with

better prognoses, or ARMS, which was associated with poor clinical

outcomes (66). Further, molecular identification of PAX3, or PAX7,

fusions with forkhead box protein O1 (FOXO1), is currently considered

the preferred method of distinguishing the latter from the former (67).

Instead of histologic criteria, which are inexact, the fusion status

identifies ARMS and ERMS, which are FP and FN, respectivly (68).

The tested RMS samples were from banked DNA extracted

from fresh frozen tissue; thus, it is possible that the age of the

samples, or excess freeze-thaw cycles could have contributed to the

lower ALT frequency, due to the degradation of C-circles (41). APB

analysis from a previous study (14) has the advantage of using FFPE

material, which enables distinguishing of tumor cells from stromal

tissue; however, the APB assay is very labor intensive, not all ALT

samples have APBs (33), and C-circles have been postulated to be

more specific than other ALT markers (32). Ideally, future studies

should evaluate the various methods for detecting ALT in the same

histology within the same patient sample cohort, since each ALT

marker is not necessarily present in every ALT sample or tumor

model (14, 33). However, our data suggests that the real-time PCR

CCA can identify ALT in sarcomas, and it has potential as a

companion diagnostic assay for ALT targeted therapies in RMS,

and especially OS, patient populations.
FIGURE 2

Patient sample CC status and telomere content. (A) Normalized relative CC content was plotted by tumor histology. Samples above the previously
established cutoff of 5 arbitrary units (AU) were considered CC+. (B) Telomere content, normalized to CHLA-90 at 5 AU, were plotted by histology.
(C) Telomere content was plotted for CC+ and CC- OS samples. * P < 0.05.
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