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Brain tumors occur due to the expansion of abnormal cell tissues and can be

malignant (cancerous) or benign (not cancerous). Numerous factors such as the

position, size, and progression rate are considered while detecting and

diagnosing brain tumors. Detecting brain tumors in their initial phases is vital

for diagnosis where MRI (magnetic resonance imaging) scans play an important

role. Over the years, deep learning models have been extensively used for

medical image processing. The current study primarily investigates the novel

Fine-Tuned Vision Transformer models (FTVTs)—FTVT-b16, FTVT-b32, FTVT-l16,

FTVT-l32—for brain tumor classification, while also comparing them with other

established deep learning models such as ResNet50, MobileNet-V2, and

EfficientNet - B0. A dataset with 7,023 images (MRI scans) categorized into

four different classes, namely, glioma, meningioma, pituitary, and no tumor are

used for classification. Further, the study presents a comparative analysis of these

models including their accuracies and other evaluation metrics including recall,

precision, and F1-score across each class. The deep learning models ResNet-50,

EfficientNet-B0, and MobileNet-V2 obtained an accuracy of 96.5%, 95.1%, and

94.9%, respectively. Among all the FTVT models, FTVT-l16 model achieved a

remarkable accuracy of 98.70% whereas other FTVT models FTVT-b16, FTVT-

b32, and FTVT-132 achieved an accuracy of 98.09%, 96.87%, 98.62%,

respectively, hence proving the efficacy and robustness of FTVT’s in medical

image processing.
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1 Introduction

A tumor in the brain is an abnormal mass or cell that grows

inside the brain or central nervous system. The indicators of a brain

tumor depend on its size, position, and rate of progression.

Symptoms include headaches, seizures, and cognitive deficits (1).

Diagnostic techniques involve MRI scans or CT scans followed by

biopsy for further identification of the disease. Surgery, targeted

therapy, radiation therapy, chemotherapy, or combination of any of

these methods can be used as treatment options (2). Tumors

encompass both cancerous (malignant) and non-cancerous

(benign) growths, with cancers specifically referring to malignant

tumors. Nevertheless, not every tumor is cancerous since all cancers

grow in the form of tumors (1). Compared to other types of cancer,

brain tumors have a shorter survival rate. Early diagnosis of brain

tumors presents a challenging task because of its irregularity,

morphology, heterogeneous location, and blurred boundaries.

Accurate tumor characterization at this stage enables clinicians to

make better treatment decisions. There are two types of tumor:

primary and secondary. In primary tumor, the tumor cells develop

in the brain first before spreading to other parts of the body, and in

secondary or metastatic tumor, the tumor cells start in other parts of

the body and then spread to the brain (3). The proposed study aims

to classify glioma, meningioma, and pituitary brain tumor. This

study particularly focuses on classification on these types of tumors

due to their distinct diagnostic challenges and differences in

location, behavior, and method of treatment. They are clinically

significant tumors which require accurate classification which in

turn requires sufficient data for training and testing the Deep

Learning (DL) models effectively. Glioma develops from glial cells

that support neurons in the brain; these are primary tumors. In

adults, the meningioma is commonly seen, and subtypes include

astrocytoma, oligodendroglia, and ependymoma (4). Meningioma

arises from the protective nerves of the brain and tends to be benign

and grow slowly. These are more common in women and the older

adults and both may have different symptoms and need different

treatments (5). Pituitary tumors, from the pituitary gland, can be

benign or malignant, with most being benign and they grow slowly

(6). The data in Figure 1 show for brain tumor incidence and

mortality have increased sequentially for 4 years.. Although there

was a slight increase in reported cases in 2020 compared to 2019 (7),

there was a slight increase in mortality and the following years have

seen notable rise in reported cases and mortality. This change

indicates the increase of brain tumors, which suggests that this

topic deserves attention and further research. Overall, the

information presented in Figure 1 highlights the importance of

ongoing research and interventions aimed at providing

accurate results.

Machine learning to DL techniques are employed in brain

tumor classification due to their ability to extract intricate

patterns and features from MRI images efficiently. These

advanced algorithms enhance the precision and efficiency of

tumor diagnosis. In brain tumor classification, the machine

learning algorithms analyze MRI images to identify patterns such

as texture and longitudinal patterns; features such as intensity

variations, shape, and size; and statistical features such as mean
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intensity to classify. The machine learning techniques used include

K-Nearest Neighbors (KNN) (8), an instance-based learning;

ensemble learning methods like ExtraTrees (ET) (8); Random

Forest (9); a combination of ensemble learning methods such as

Ada and Random Forest (10); a combination of ensemble learning

as classifier with feature extractors like Random Forest (RF)

classifier and for feature extraction using TGA (Tree Growth

algorithm); LBP (Local Binary Pattern) and GLCM (Gray level

co-occurrence matrix) (11); and a probabilistic technique, namely,

Naive Bayes (8), which are also used in brain tumor classification.

They are effective techniques but come with fair share of drawback.

Random Forest is effective for high-dimensional data but can over

fit noisy data. KNN’s performance may degrade with high-

dimensional data and requires a suitable distance metric for

image data. SVM’s effectiveness heavily relies on choosing the

right kernel and appropriate regularization parameters, which can

be challenging. XGBoost performance may deteriorate with noisy

data and could be computationally expensive. ET might struggle

with small and noisy datasets. Naive Bayes assumes independence

among features, which might not hold true for image data,

potentially impacting its performance.

CNNs (convolutional neural networks) and DL techniques have

attested to their ability to automatically extract relevant features

from un-processed MRI image data, thus providing improved

accuracy for brain tumor classification (12). CNN models

especially pre-trained models, that is, trained on large dataset (13)

leverage transfer learning, models such as Inception V3, VGG 16,

and Resnet-50 (14) have shown exceptional performance in

classifying brain tumors on different datasets as they can learn

complex representations. Auto-encoders in combination with DL

models like ResNet (15) and machine learning models like KNN

(16) were used in recent studies. However, to avoid overfitting and

to generalize well, huge loads of data for training are required by

CNNs (17), computationally intensive and require high processing

power, especially for large-scale applications; they struggle with

translation equivariance, that is, highly responsive to small changes

in input data, such as changes in lighting and orientation, which can

affect their performance.

ViTs (Vision Transformers) can effectively process long-range

dependencies in data, overcoming the limitations of machine

learning and CNNs in handling global information (18). ViTs are

highly parallelizable, making them suitable for scalable and efficient

training on modern hardware. They offer improved interpretability

through feature learning mechanisms called the multi-head self-

attention modules, allowing for a better understanding of model

predictions (18). ViTs can handle objects at different scales within

the same image effectively due to their self-attention mechanism,

reducing the need for handcrafted scale-specific features. These

models are more robust to changes in the input data, because they

can understand how different parts of the input are connected, with

the help of a special technique called self-attention (18). The need

for extensive medical imaging data and reducing computational

resources, potential overfitting limits the novelty of the ViT models

which must be addressed. To reach their full potential, ViTs require

a substantial amount of training data. However, collecting such

extensive data is a challenge in medical imaging. To address this
frontiersin.org
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limitation, recent efforts, as described in (19), have resulted in

several pre-trained and optimized models trained on large datasets,

ImageNet21k and ImageNet2012. Notably, these approaches have

demonstrated success in various medical imaging diagnostics (20,

21). The proposed study introduces Fine-Tuned Vision Transform

models (FTVTs) with updated classifier heads, tuned the hyper-

parameters for efficient brain tumor classification and along the

same lines developing the DL models and comparing

their performance.

The following discussion explores the studies of eight authors,

investigating the various datasets, algorithms, and methods they

have employed. The initial focus is on ViTs in the research of the

first two authors, while the remaining studies are centered around a

range of DL models.

In his work using the dataset consisting 3064-MRI scans of the

brain from figshare, the author Sudhakar Tummala et al., (22)

developed ViTs and gained an approximate accuracy of 98% for all

the models. Various optimizer and hyperparameter values for each

optimizer were tested. For the classification of brain tumor, an

ensemble of the model’s results were used. In the proposed study,

both the DL and FTVT models feature less complex architectures.

These models have updated classifier heads using Dropout, linear,

and Batch Normalization (BN) layers, meticulously tailored for

brain tumor classification, a feature not observed in the previous

study. Additionally, fine-tuning in the proposed study led to

significantly higher values for accuracy, F1 score, precision,

and recall.

Abdullah A. Ansari et al. (23) used a database of 5,712 MRI

images and performed classification of brain tumors using a neural

network model, with the pre-trained ViTs as the initial layer and

introduced BN, Dense layers for task-specification, and developed

five models R50-ViT-l16, ViT-l16, ViT-l32, ViT-b16, and ViT-b32.

With complex architecture, high accuracy values are gained.

Mallika.M Badža et al. (24) presented a custom CNN model for

brain tumor classification from the images collected from various

Chinese hospitals from the years 2005–2010 and recorded results
Frontiers in Oncology 03
using 10-fold cross-validation methods and different datasets

containing 3,064 MRI images and obtained an accuracy of 96%.

The architecture of this model is simple and fails to study

complex patterns.

A pairwise GAN (generative adversarial network) model is used

to classify various types of glioma brain tumors by Chenjie Ge et al.

(25) and gained a mean accuracy of 88.82% and augmented MRI

images are added to overcome the insufficiency of images

for classification.

Zhiguan Huang et al. (26) used a dataset named “Segmentation

Labels for the Pre-operative Scans of the TCGA-LGG collection”

and proposed a complex CNN model in which randomly generated

graph algorithms are used for building the network with an

activation function modification obtained an accuracy of 95.49%.

The results obtained are visually represented using scatterplots and

compared with various CNN models such as ResNet, DenseNet,

MobileNet, and EfficientNet models, which acquired lower

accuracies in comparison with the suggested model.

Gokalp Cinarer et al. (27) studied sophisticated DNN (deep

neural network) model in combination with DWT (discrete wavelet

transform) for glioma subtype classification where the brain tumor

MRI scans were collected from (TCIA) Cancer Imaging Archive

portal, the model classifies the MRI scans into four grades as per the

World Health Organization and with appropriate feature selection

and extraction techniques the model recorded an accuracy

of 96.15%.

Ayadi Wadhah, et al. (28) proposed a classification model using

feature extractors D-SURF (Descriptor Speeded Up Robust

Features) and HoG (Histogram of Oriented Gradients). For the

classification process, an SVM (Support Vector Machine) is used for

a dataset of 3,064 images in their work. Even with the careful

process for feature extraction, an accuracy of 90.27% is achieved

which suggests that further fine-tuning is required for SVM.

A comparative analysis of models CNN, Inception-V3, VGG 16,

and Resnet-50 on a dataset containing 3,264 MRI images was

performed by Md Ishtyaq Mahmud et al, (14) achieved accuracy
FIGURE 1

Brain tumor incidence and mortality worldwide.
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in the range of 80%–93.30%, respectively. For data preprocessing,

Gaussian and Laplacian filters were employed. A complex CNN

architecture, pretrained ResNet-50, Inception-V3, and VGG-16

models are used for brain tumor classification. A detailed

overview for the models was provided.

Table 1 contains all the brief descriptions of the studies

mentioned in relevant.
2 Materials and methods

2.1 Dataset used

The dataset used in this analysis is a combination of three-

distinct datasets, namely, figshare, SARTAJ, and Br35H datasets.

The figshare dataset on brain tumors comprises 3,064 brain scan

images of three classes of brain tumors captured via T1-weighted

contrast-enhanced imaging. The SARTAJ dataset is a directory of

folders containing MRI data in which the images are already split

into Training and Testing folders, which again are divided into four

subfolders. These subfolders encompass MRI scans of

corresponding tumor classes. The third dataset Br35H contains

three folders namely yes, no, and pred. The yes and no folders

include 1,500 MRI scans that are classified as tumorous and non-

tumorous, respectively. Altogether, the dataset has 7,023 images of

MRI scans that are classified into four distinct classes, namely,

glioma, meningioma, pituitary, and no tumor as shown in the

Figure 2. In this research, 5,712 images are utilized for training and
Frontiers in Oncology 04
1,311 other images for testing. A glimpse of the dataset is shown in

the Figure 2.

In the brain tumor classification dataset, a correlation matrix is

calculated using Pearson correlation coefficient. This matrix depicts

the correlation between pixel values across all pairs of images within

each class. Samples of 100 images per class are chosen, and pairs of

images are examined. For each pair, the Pearson correlation

coefficient is computed, signifying the degree and direction of

their linear relationship. Subsequently, an average correlation

matrix is derived from these coefficients. Figure 3 shows this

average correlation matrix. Each cell in the matrix reflects the

average correlation coefficient between the pixel values of two

images, offering insight into the overall similarity or dissimilarity

of pixel values in the dataset.
2.2 Data preprocessing on “brain tumor
classification (mri)” dataset

Data preprocessing is a machine learning technique that can

convert any input data into a suitable format that is more useful for

training the model. This study implemented some image

augmentation and transformation techniques such as image

resizing, flipping, rotating, jittering, and normalization using

transform.compose() function from torchvision library. Data

augmentation is an essential technique in machine learning,

particularly for tasks such as image classification. By applying

transformations such as resizing, flipping, rotating, and jittering
TABLE 1 List of all the authors and the dataset in the relevant work.

SNo. Author name Dataset
used

Proposed method Disadvantages

1. Abdullah A. Asiri, et
al. (23)

5,712
MRI images

ViT-b16,b32, l16, l32, R50-
ViT-l16,

1. Complex architecture
2. Low accuracy values observed for individual brain tumor classes.

2. Sudhakar Tummala,
et al. (22)

TCIA
(29, 30)

ViT B16,B32,L16,
L32

1. Measures for preventing feature overlapping between tumor classes meningiomas
and gliomas, meningioma, and pituitary are not taken.

3. Mallika Naser
et al. (24)

Figshare
(31)

CNN Model 1. The augmented dataset’s accuracy was only 88%.
2. Classification error rates are higher compared to other CNN models.

4. Chenjie Ge
et al. (25)

Cancer
Imaging
Archive
(TCIA)
(32)

Pairwise GAN 1. Accuracy of the model depends on size of dataset used, worked well for small
datasets.

2. Only glioma subtype classification is performed.

5. Zhiguan Huang
et al., (26)

Figshare
(31)

CNN models
(ResNet, DenseNet,

EfficientNet, MobileNet)

1. Complex architecture generated through graph algorithms and network generators.
2. Higher training time for the models (in minutes).

6. Gokalp Cinarer
et al. (27)

TCIA
(33)

DNN with DWT (discrete
wavelet transform)

1. Model is trained only to detect and classify various glioma brain tumor grades.
2. The size of the dataset is very less with only 121 images of brain tumor scans.

7. Wadhah Ayadil
et al. (28)

3064
MRI images

DSURF and HoG
with SVM

1. SVM with a linear kernel is used for classification, which achieved 90.27% accuracy
which suggests absence of fine tuning.

8. Md Ishtyaq
Mahmud et al. (14)

3264
MRI images

Inception V3,VGG 16 and
Resnet-50

1. Pre-trained models lacked fine tuning as result low accuracies ranging from 80% to
93.3%, which are significantly low for deep learning models.

2. Complex CNN architecture was employed
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to the input data, augmentation increases the robustness of the

model by exposing it to variations in the data, allowing it to

recognize patterns in different orientations, sizes, and positions.

This, in turn, leads to improved generalization, as the model

becomes less likely to overfit to the training dataset and can

better handle variations in real-world data. Augmentation

enhances the performance of the model, particularly on unseen

data, by diversifying the training dataset and enabling the model to

learn from a wider variety of examples. It also serves as a form of

regularization, reducing overfitting by introducing noise and

variations into the training data. Overall, data augmentation plays

a critical role in enhancing the performance, robustness, and

generalization ability of machine learning models. All the input

scans are resized to 224 × 224 sized pixels; the images are then

horizontally flipped by an angle of 10° with a 0.5 probability and

rotated. The “0.5 probability” refers to the chance or likelihood of

the horizontal flipping being applied to each image. It indicates a

50% probability, meaning there’s a 50/50 chance for each image to

undergo horizontal flipping. This randomness helps introduce
Frontiers in Oncology 05
diversity into the dataset, enhancing its quality and allowing the

model to learn from various perspectives. To adjust the brightness,

contrast, hue, and saturation, a data augmentation technique called

color jitter is applied. The images are then transformed into

PyTorch tensor format from PIL image format. In the next step,

image normalization is performed to normalize the pixel values of

images, which improves training and performance of the model.

The images are then split into three sets training, testing, and

validation—with random_split() function. Applying preprocessing

techniques such as transformation and augmentation increases the

quality, volume, and diversity of image data. It also helps in model

regularization, prevent overfitting, and to obtain better

model performance.
2.3 Brain tumor classification methods

This section comprehensively examines two prominent

methodologies employed for brain tumor classification: DL
A B

DC

FIGURE 2

Shows the dataset comprises images of four distinct classes. Each class is identified by a specific label: (A) denotes glioma; (B) corresponds to
meningioma; (C) represents pituitary; (D) signifies no tumor. The numeric values associated with each class label is the number of test images within
the dataset for brain tumor classification task.
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models and FTVT. The discussion commences by providing a

detailed explanation of the architectural design principles

underlying each model. Subsequently, the implementation of

these models for the specific task of brain tumor classification is

meticulously explored. Finally, a rigorous comparison is undertaken

to evaluate the overall performance of both DL models and their

FTVT counterparts.
2.4 Deep learning models for multi-class
brain tumor classification using MRI
scan imagery

Deep learning models leverage advanced neural network

architectures to automate the process of identification and

classification of brain tumors for magnetic resonance imaging

(MRI) scans. These architectures may be CNNs (Convolution

Neural Networks), FNNs (Feedforward Neural Networks), RNNs

(Recurrent Neural Networks), or more recent FTVTs. Trained on a

large number of datasets containing labeled MRI images, the model

can detect tumor formations on any newly presented MRI image

with great accuracy. Let us first understand the general architecture

of deep learning models Figure 4.
Frontiers in Oncology 06
2.4.1 Architecture of deep learning models
In deep learning models, a brain MRI scan acts as primary

input for the model. The MRI scan produces high-resolution,

three-dimensional images of the brain, where varying shades of

gray represent different tissue characteristics, thus helping in

tumor detection. Then, input image is resized if necessary, apart

from image resizing various preprocessing techniques are applied

including image jittering and normalization. The pretrained

model is initiated, which contains convolution and pooling

layers where convolution layers filter the input and extract

features, dimensionality reduction is performed by the

pooling layer.

A combination of Dropout, Linear, and ReLU layers is added to

the model for prevention of overfitting and better model

performance. The output is a classification of the input image

into the appropriate brain tumor class. The model classifies the

input brain MRI scan into corresponding brain tumor types

(glioma-meningioma-pituitary or no tumor). ReLU6 is an

activation function that is generally the modification of ReLU,

that is, Rectified Linear Unit. The ReLU6 and ReLU activation

function can be mathematically defined as

ReLU6f (x)=min(max(x,0), 6) 
FIGURE 3

Correlation matrix for each class in brain tumor MRI dataset.
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ReLU f (x)=max(x,0)

ReLU6 limits the activation to a size of 6, which increases the

functions robustness along with decreasing the precision computations.

To understand Dropout, consider a single-linear input layer of

neural network (Figure 4) for simplicity with inputs as ik and

corresponding weights as wk where k = 1–4, the below Figure 5

helps in understanding the working of Dropout layer.

The output is the sum of product of inputs and weights. The

error rate is calculated as

ED=1=2(t−o
n

k=1

d iwkik)

where t is target value and d is a drop rate which lies between 0

and 1.The error is back propagated to find gradient.

dE
dwk

= −tdkik+wkd
2
ki

2
k+ o

n

j≠1≠k

wjdkdjikij

This equation calculates the expectation of concerning the

gradient of the normal error rate EN where p is Bernoulli (p = 0 or 1)

and it is gradient dE
dwk

, we get the below equation.

EN=1=2(t−on
k=1pkwkik)

2,

dE
dwk

= −tdkik+wkd
2
ki

2
k+on

j≠1≠kwjdkdjikij

E
dE
dwk

� �
= 
dEN

dwk
+wkpk(1−pi)i

2
k
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Equation 4 is equal to the gradient of Eɴ if w = p*w. To obtain

maximum regularization p = 0.5.
2.5 Deep learning models

2.5.1 ResNet-50
ResNet (Residual Network) model is a CNN consisting 50 layers

(48 convolutional layers, a max pool layer, and an average pool

layer), which is a pretrained network trained on over a million

images and can classify them into 1,000 object categories. The

model is applied on the brain tumor dataset (224 × 224—input

image size) with required adjustments to detect brain tumor and its

types. Dropout, Linear, and ReLU layers are added for better

computation and to prevent overfitting. The final fully connected

layer is altered to enable multi-class classification. During fine-

tuning, various parameters of ResNet-50 are adjusted with respect

to complexities identified. Stochastic Gradient Descent (SGD)

optimizer optimizes the model’s parameters with a learning rate =

0.001, momentum = 0.7, and weight decay = 1e−4. In the training

process, a scheduler is introduced for learning rate modification to

gain better accuracy. The model’s performance is calculated after

each epoch to analyze the overall model’s performance. The detailed

architecture of ResNet-50 is depicted in Figure 6. Like any other

convolutional network, the architecture of ResNet-50 starts with a

convolution layer that performs filtering and feature extraction with

a pooling layer following it. The pooling layer performs

dimensionality reduction, thus reducing the model’s complexity.

After the pooling layer, there are 48 layers—a division of layers into

four residual blocks (9 + 12 + 18 + 9). The ResNets help the model
FIGURE 4

General architecture for the deep learning models for multi-class brain tumor classification using MRI scan imagery.
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to learn complex patterns. ResNet-50 includes concepts such as

residual learning and bottle-neck blocks.

Consider an initial mapping I(x) where “x” is input, instead of

approximating this mapping function directly to output function,

residual learning re-parameterized the function to

G(x) = I(x)-x thus representing output as z=G(x) + x as shown

in Figure 7. ResNet is based on skip connections. It includes

skipping of layers which helps in regularization.

Another key concept of ResNet includes bottleneck blocks. This

block is a sequence of 3- convolutional network layers. The initial

one is a 1 × 1-convolution layer whose role is dimensionality

reduction, followed by a 3 × 3 convolution layer which is

responsible for extraction of features and the last layer is again an
Frontiers in Oncology 08
1 × 1 convolution layer with its function-to restore dimensions.

These layers are shown in Figure 4.

2.5.2 EfficientNet-B0
EfficientNet model is a CNN similar to the first model with an

additional concept called compound scaling [29]. It is a pretrained

network trained on over a million images and can classify them into

1,000 object categories. The model is applied on the brain tumor

dataset (224 × 224—input image size) with required adjustments to

detect brain tumor and its types. Dropout, Linear, and ReLU layers

are added for better computation and to prevent overfitting. The final

fully connected layer is altered to enable multi-class classification.

During fine-tuning, various parameters of efficientnet_b0 are
FIGURE 5

A single-linear input layer of neural network to understand the Dropout layer.
FIGURE 6

Extension of general architecture to ResNet-50 for brain tumor classification task.
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adjusted with respect to complexities identified. SGD optimizer

optimizes the model’s parameters with a learning rate = 0.001,

momentum = 0.7, and weight decay = 1e−4. In the training

process, a scheduler is introduced for learning rate modification to

gain better accuracy. Themodel’s performance is calculated after each

epoch to analyze the overall model’s performance.

The EfficientNet-b0 model architecture contains a series of

MBConv layers, which are nothing but mobile inverted bottleneck

convolution layers. As its name implies, the MBConv layers are

inverted versions of bottleneck blocks discussed in ResNet-50,

which have the same three layers and functions but in reverse.

The detailed layers are shown in Figure 8.

2.5.3 MobileNet-V2
MobileNet model is a CNN developed for small-scale

classifications. It is a lightweight neural network model designed

for mobile services. The model was applied to the brain tumor dataset

(224 × 224—input image size) with required adjustments to detect

brain tumors and their types. Dropout, Linear, and ReLU layers are

added for better computation and to prevent overfitting. The final

fully connected layer is altered to enable multi-class classification.

During fine-tuning, various parameters of mobilenet_v2 are

adjusted with respect to the complexities identified. SGD optimizer

optimizes the model’s parameters with a learning rate = 0.001,

momentum = 0.7, and weight decay = 1e−4. In the training process,

a scheduler is introduced for learning rate modification to gain

better accuracy. The model’s performance is calculated after each

epoch to analyze the overall model’s performance. Figure 9 shows a

detailed architecture of MobileNet-v2; it includes a series of 17

bottleneck blocks with different sizes, which are similar to the one

discussed above. The bottleneck blocks contain a 1 × 1 convolution
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layer that uses activation function ReLU6, a 3 × 3 convolution layer

with the same activation, and the last is again a 1 × 1 convolutional

layer without any activity function.
2.6 Vision transformers for multi-class
brain tumor classification using MRI
scan imagery

ViTs are progressive deep-learning models designed specifically

for computer vision tasks. Following the impressive results of

transformers in NLP (natural language processing), ViTs have

revolutionized the field by introducing a novel approach to

processing visual data. Unlike traditional CNNs, which perform

on grid-like structures, ViTs deal with images as sequences of

tokens, permitting them to efficiently capture worldwide

information and complicated spatial relationships inside images.

2.6.1 General architecture for vision transformers
ViTs is an encoder-only transformer architecture without a decoder

for image classification; see Figure 10. They utilize self-attention to

understand the relationships between different parts of an image. The

initial step involves the segmentation of the image into discrete, smaller

regions known as patches. These patches are subsequently transformed

into a linear sequence of tokens, each representing a distinct portion of

the image. This transformation from a 2D image to a 1D sequence helps

the model to understand and process these individual components of

the image. The flattened patches undergo linear projection to transform

them into lower dimensional vectors, preserving important features and

relationships. To retain spatial information within the flattened

sequence, additional “position embeddings” are incorporated, each

encoding the original location of its corresponding patch within the

image. The transformed patches enter the transformer encoder. Its self-

attention layers and feedforward networks work together so that each

patch can learn from the others, making the model aware of both

localized features and larger patterns within the image. Unlike

traditional transformers used in natural language processing, ViTs

lack a decoder and instead feature an additional Linear layer called

the MLP head (Multi-layer Perceptron) for final classification. This

architectural difference reflects the focus of ViTs on extracting

meaningful features and understanding spatial relationships within

images for tasks like image classification and object detection. The

encoder in a ViT leverages self-attention to achieve this goal, making it

suitable for computer vision tasks.
2.6.2 ViT model encoder
In a ViT, encoder operates in a multi-stage process. First,

normalization ensures consistent data for smooth training. Then

multi-head self-attention on each image patches to analyze spatial

relationships. Then a normalization and MLP to refine and

calculate more intricate patterns in the imag.e

Normalization (layer normalization), the input embeddings are

first normalized using layer normalization. This step ensures that

the input features have a consistent scale across different

dimensions, which can improve the stability and convergence of
FIGURE 7

Residual learning.
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FIGURE 8

Extension of general architecture to EfficietNet-B0 for brain tumor classification task.
FIGURE 9

Extension of general architecture to MobileNet-V2 for brain tumor classification task.
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the model. Where g is learnable parameters for scaling and b is

learnable parameters for shifting. µ is the mean of the input vector

and s2 is the variance of the input vector x. A small constant e is

added for numerical stability.

LayerNorm(x)=g (x−μ=
ffiffiffiffiffiffiffiffiffiffiffiffi
s 2+ e

p
)+ b

Next is multi-head attention here after normalization, the

normalized embeddings are passed through the multi-head

attention mechanism. This mechanism computes attention scores

between each pair of elements in the input sequence using learned

weight matrices Wq, Wk, Wv, and to the obtained weights the

softmax function is applied. Where, Q is query, K is key, and V is

value of matrices. The dimensionality of the key vectors is dk. ViT

models use the multi-head self-attention to extract multifaceted

information from the input sequence. Each attention head, denoted

as headi, operates independently. It calculates attention scores by

multiplying the query (Wi
Q) and key (Wi

K) weight matrices with

the transformed input sequence. These scores represent the

relevance of each element in the sequence to the current one.

Subsequently, the scores are normalized using a softmax function,

resulting in attention weights. These weights are then used to

compute attention-weighted sums of the value vectors (Wi
V) from

the input sequence. Finally, the outputs from all heads (headi) are

concatenated and linearly transformed using the output projection

matrix (W°.) to produce the final multi-head attention output.

Where headi represents the output of the i-th attention head. Wi
Q is

weight matrices for the query, Wi
K is weight matrices for the key

and Wi
V is the weight matrices for the value projections of the i-th
Frontiers in Oncology 11
attention head respectively. The output projection matrix is

represented by W°.

Attention (Q, K, V)=softmax(QKt=√dk)* V

MultiHead(Q,K,V)=Concat(head1,…:,headh)W
o 

head=Attention (QWQ
i,KW

K
i,VW

V
i) 

This step helps the model to capture dependencies and

relationships between different parts of the input sequence.

Following the multi-head attention layer, the model

incorporates a Layer Normalization step. This technique

normalizes the activations of the network, ensuring they maintain

a consistent distribution. This promotes stable gradients during

training, which ultimately leads to improved model convergence

and generalization performance.

Following the multi-head attention layer, the model utilizes a

MLP to further refine the extracted features. This MLP, essentially a

feed-forward neural network (FFNN), consists of two consecutive

linear transformations separated by a non-linear activation

function, typically ReLU. The purpose of this MLP is to extract

even more complex patterns from the features identified by the

multi-head attention. By applying these additional transformations,

the model is able to learn higher level representations within the

data. Where W1, W2 are the weight matrices of vectors of MLP and

b1, b2 are the bias vectors of the MLP.

FFNN(x)=ReLU(xW1 + b1)W2 + b2
FIGURE 10

General architecture of vision transformer for multi-class brain tumor classification task using MRI scan imagery.
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2.6.3 Fine-tuning vision transformers
Unlike traditional fine-tuning approaches where only the final

layers are modified, the FTVT model introduces a custom classifier

head consisting of BN, dense layers, ReLU activation, and Dropout

layers. This structural change enables the model to learn task-

specific representations directly from the data. By incorporating

task-specific layers, the FTVT model can adapt more flexibly and

effectively to various tasks compared to standard fine-tuning

approaches. These modifications allow the model to capture and

leverage task-specific features, leading to improved performance

and generalization. The introduction of structural changes in the

FTVT model helps mitigate the risk of overfitting, especially on

smaller datasets. The added regularization layers, such as dropout,

prevent the model from memorizing noise in the training data,

leading to better generalization performance. Leveraging pre-

trained weights from the original ViT model, the FTVT model

benefits from transfer learning while still retaining the flexibility to

adapt to task-specific requirements. This approach combines the

strengths of pre-training with the adaptability of task-specific fine-

tuning, resulting in a more efficient and effective learning process.

The ViT models, especially the pretrained versions, such as

ViT-b16, ViT-b32, ViT-l16, and ViT-l32, incorporate a Conv2d

layer referred to as “conv_proj.” This layer is essential for

computational efficiency; it reduces the number of parameters in

the input image, that is, dimensionality reduction prior to it being

fed into the computationally intensive transformer encoder layers.

The input data format, 32 samples, three channels (RGB), and

image size of 224 × 224 pixels. This information feeds into

subsequent processing stages like patching and embedding. The

pre-trained ViT model is fine-tuned by initializing it for the specific

task. During training, a batch size of 16 images is used alongside the

Adam optimizer with a learning rate of 1e−4. The Cross Entropy

Loss function then evaluates the model’s performance on each

batch, guiding parameter updates through the Adam optimizer to

improve accuracy.

Adam Optimizer (Optimizer) q t+1=qt – e� mt = (√vt+ h)

This equation defines how the Adam optimizer updates the

model’s weights (q) during training. The learning rate (h)
determines how much the weights are adjusted in each step. The

terms mt and vt keep track of past changes to help the optimizer learn

efficiently, and e is a small value to avoid division by zero errors.

Cross Entropy Loss(Loss Function)= −1 * o
N

i
yi * log(ŷ i) 

The above equation represents the cross-entropy loss function,

which is used during training to measure how far off the model’s

predictions are from the actual labels. It considers the number of

samples (N), the true labels (yi), and the predicted probabilities (ŷi)

to calculate the error.

The training process consists of iterating through the dataset for

a total of 10 epochs, during which the model’s classifier head,

integrated within the pretrained ViT feature extractor, is trained

using the training dataset. The original classifier head is replaced

with a custom sequence of layers, shown in Figure 11 which
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includes BN, Linear (Dense), ReLU activation, and Dropout

layers, thus making it a FTVT Model.

BN layer, Normalizes activations within each batch. This equation

normalizes activations across each batch, improving stability and

training speed. Where, m is mean of the batch, s₂ is variance of the
batch and e is small constant to prevent division by zero.

BN(x) = (x − μ) =√( s 2+ e)

This layer uses the ReLU activation function. ReLU helps the model

learn complex relationships by introducing non-linearity. It simply

keeps positive values unchanged and turns negative values to zero.

RELU(x) = max(0, x) 

The Dropout regularization layer randomly drops neurons to

prevent overfitting. This equation randomly sets activations to zero

during training, preventing overfitting. Where p is the Dropout

probability.

Dropout=x(with probability p) or 0 (otherwise)

The linear transformation layer here performs linear

transformation on the input vector using weights (W) and biases (b).

Linear(x, W , b) = W  * x + b 

These additional layers make the model better at learning

intricate patterns, leading to improved overall performance. The

final layer’s size is adjusted to match the number of brain tumor

types that are being classified (four: glioma, tumor, meningioma

tumor, no tumor, and pituitary tumor). The output from this

modified section predicts the probability of each class, enabling

accurate classification of brain tumor images.

X0 = ReLU(BathNorm(W2 � Dropout(ReLU(BatchNorm(W1 � X)))))

The above equation represents the modified classifier head. It

describes the final layers responsible for classification. Where X is

input feature vector; it can have 768, 1,024 dimensions for B and L

variants used in linear transformation. W1, W2 are weight matrices

of Linear layers. BatchNorm, Dropout, and ReLU are BN layer,

Dropout layer, and Rectified Linear Unit activation function.
2.7 Fine-tuned vision transformers models

2.7.1 FTVT-b16
The architecture of the ViT-b16 model, representing the ViT

with a “B” variant and 16 layers, comprises a total of 12 transformer

blocks. Pretrained on the ImageNet dataset with over a million

images, ViT-b16 undergoes fine-tuning using the Adam optimizer

with a learning rate of 1e−4 and the Cross Entropy Loss function

across 10 epochs. During this process, the parameters of both the

pre-trained ViT-b16 model and the additional layers are updated

through back propagation. The input image size is set at 224 × 224

pixels. To enhance its classification performance, the ViT-b16

model’s classifier head incorporates extra layers including BN,

Linear, ReLU, and Dropout layers, thus making it FTVT-b16.

These layers are designed to improve the model’s ability to
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identify crucial features relevant to the target categories. Their

parameters are randomly initialized and trained concurrently with

the existing parameters of the ViT-b16 model. The input features

for these additional layers correspond to the model’s output size,

which is 768. The sequence of added layers begins with BN,

followed by a linear transformation layer, ReLU activation

function, and a Dropout layer with a rate of 0.5 to prevent

overfitting. Subsequently, another linear transformation layer

reduces the feature dimensionality to 512, followed by ReLU
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activation and another Dropout layer with the same rate for

regularization. Finally, the feature vector is transformed into the

output space via a Linear layer, determining the number of output

classes representing brain tumor categories.

2.7.2 FTVT-b32
The architecture of the ViT-b16 model, representing the Vision

Transformer with a “B” variant and 16 layers, comprises a total of

12 transformer block has been trained on the ImageNet dataset
FIGURE 11

Architecture of FTVT for multi-class brain tumor classification task using MRI scan imagery.
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(millions of images). It is fine-tuned for brain tumor classification.

Adam optimizer (lr = le−4) and Cross-Entropy Loss are used over

10 epochs to adjust model parameters. During this process,

backpropagation optimizes both pre-trained and additional layer

parameters. For input, images were resized to a standard 224 × 224

pixel. To enhance its classification performance, the ViT-b16

model’s classifier head incorporates extra layers including BN,

Linear, ReLU, and Dropout layers thus making it FTVT-b16. This

set of layers is specifically engineered to enhance the model’s

capacity to discern critical features that are directly linked to the

target categories. Their parameters are randomly initialized and

trained concurrently with the existing parameters of the ViT-b16

model. The input features for these additional layers correspond to

the model’s output size, which is 768.The additional layers begins

with BN for stable training. This is followed by a linear

transformation layer where feature dimensionality is reduced

from 768 to 512 and a ReLU activation function to introduce

non-linearity. A Dropout layer with a rate of 0.5 is then

incorporated to prevent overfitting. Finally, the feature

dimensionality is reduced to 256 through another linear

transformation, followed by ReLU activation and another

Dropout layer (0.5) for regularization. Finally, the feature vector

is transformed into the output space via a Linear layer, determining

the number of output classes representing brain tumor categories.

2.7.3 FTVT-l16
The ViT-l16 model, identified by its “L” variant and 16 layers,

consists of 12 transformer blocks within its architecture had been

trained on the ImageNet dataset (millions of images). It is fine-

tuned for brain tumor classification. Adam optimizer (lr = le-4) and

Cross-Entropy Loss are used over 10 epochs to adjust model

parameters. During this process, backpropagation optimizes both

pre-trained and additional layer parameters. For input, images were

resized to a standard 224 × 224 pixel. To enhance its classification

performance, the ViT-l16 model’s classifier head incorporates extra

layers including BN, Linear, ReLU, and Dropout layers, thus

making it FTVT-l16. Their parameters are randomly initialized

and trained concurrently with the existing parameters of the

pretrained ViT-l16 model. The input features for these additional

layers correspond to the model’s output size, which is 1024. The

additional layers begin with BN for stable training. This is followed

by a linear transformation layer where feature dimensionality is

reduced from 1024 to 512 and a ReLU activation function to

introduce non-linearity. A Dropout layer with a rate of 0.5 is then

incorporated to prevent overfitting. Finally, the feature

dimensionality is reduced to 256 through another linear

transformation, followed by a ReLU activation and another

Dropout layer (0.5) for regularization. Finally, the feature vector

is transformed into the output space via a Linear layer, determining

the number of output classes representing brain tumor categories.

2.7.4 FTVT-l32
The ViT-l32 model, denoted by its “L” variant and 32 layers,

comprises 24 transformer blocks. It has been trained on the

ImageNet dataset (millions of images). It is fine-tuned for brain
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tumor classification. Adam optimizer (lr = le-4) and Cross-Entropy

Loss are used over 10 epochs to adjust model parameters. During

this process backpropagation optimizes both pre-trained and

additional layer parameters. For input, images were resized to a

standard 224 × 224 pixel. To adapt the model for the task,

additional layers are introduced into its classifier head. These

layers, include Batch Normalization (BN), Linear, ReLU, and

Dropout layers, make up the FTVT-b32 model. With randomly

initialized parameters, these layers are trained alongside the existing

parameters of the ViT-l32 model. The input features for these layers

match the model’s output size of 1024. The additional layers begin

with BN for stable training. This is followed by a linear

transformation layer where feature dimensionality is reduced

from 1024 to 512 and a ReLU activation function to introduce

non-linearity. A Dropout layer with a rate of 0.5 is then

incorporated to prevent overfitting. Finally, the feature

dimensionality is reduced to 256 through another linear

transformation, followed by a ReLU activation and another

Dropout layer (0.5) for regularization. Finally, the feature vector

is transformed into the output space via a Linear layer, determining

the number of output classes representing brain tumor categories.
2.8 Experimental procedure

The first step in data preprocessing involved standardizing the

brain MRI images by resizing them to a uniform dimension. This

resizing to 256 × 256 pixels was chosen to balance sufficient

resolution for accurate brain tumor diagnosis and efficient

training times. Next, feature extraction was carried out using deep

learning models on the preprocessed MRI images. Our approach

utilized novel FTVTs – including FTVT-b16, FTVT-b32, FTVT-

l16, and FTVT-l32 for brain tumor classification. These were

compared against established deep learning models such as

ResNet50, MobileNet-V2, and Efficientb0. The FTVT models

were trained on the preprocessed images using suitable

optimization techniques and loss functions. For evaluation and

prediction, a separate test set of MRI images was used to assess the

trained model’s performance. Metrics such as accuracy, precision,

recall, and F1-score were calculated to evaluate the model’s

effectiveness. Finally, the trained model was applied to new MRI

scans to predict brain tumors, providing a probability score for each

class, with the highest score indicating the predicted class.

The following points outline the pipeline for brain tumor

classification, as shown in Figure 12:
• Specify the path to the dataset directory.

• Convert hexadecimal files to images: this function

transforms hexadecimal data into images, ensuring each

array has 16 columns.

• Reshape the data into square images and save them as

JPEG files.

• Apply Gaussian blur to the images using OpenCV.

• Preprocess and load dataset: utilize ImageDataGenerator to

load images from the directory.
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Fron
• flow_from_directory loads images, resizes them to 256 ×

256, and creates batches.

• Train-Test Split: divide the dataset into training and testing

sets, normalizing the image data.

• Define and compile model: load the model without its top

layers, add a global average pooling layer, and a dense layer

for classification.

• Freeze the base model layers and compile the model.

• Compute class weights and train model: calculate class

weights to address class imbalance and train the model

with the training data using the computed weights.

• Confusion matrix and classification report: Evaluate the

model on the test data, generating and printing a

classification report and confusion matrix.
2.9 Evaluation metrics

In this study, we utilized several key metrics to evaluate the

performance of our models in the task of brain tumor classification.

These metrics provide valuable insights into the effectiveness of the

models in making accurate predictions and can help in determining

their overall reliability.

2.9.1 Accuracy
Accuracy measures the proportion of correctly predicted

samples out of the total number of samples in the dataset. It

provides an overall assessment of the model’s performance across

all classes. A higher accuracy indicates a better ability of the model

to classify samples correctly.
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Accuracy=
TN+TP

TP+TN+FP+FN
2.9.2 F1 Score
The F1 score is the harmonic mean of precision and recall. It

considers both false positives and false negatives and is particularly

useful when dealing with imbalanced datasets. The F1 score

provides a balance between precision and recall, with higher

values indicating better performance.

F1 Score= 2� Precision x Recall
Precision+Recall
2.9.3 Precision
Precision measures the proportion of true positive

predictions out of all positive predictions made by the model.

It indicates the model’s ability to accurately identify relevant

samples within a class, minimizing false positives. Higher

precision values signify fewer false positives and higher

confidence in positive predictions.

Precision=
TP

TP+FP
2.9.4 Recall
Recall, also known as sensitivity or true positive rate (TPR),

measures the proportion of true positive predictions out of all actual

positive samples in the dataset. It assesses the model’s ability to

capture all relevant samples within a class, minimizing false

negatives. Higher recall values indicate fewer false negatives and
FIGURE 12

Experimental procedure flowchart.
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better coverage of positive samples.

Recall=
TP

TP+FN
3 Results

Using Google’s proprietary Kaggle platform’s notebook the

proposed experiment was conducted. Within Kaggle, the Kaggle

Kernel acts as a free Jupyter notebook server with GPU integration.

This allows cloud computing resources to be used instead of relying

solely on local machines. Two GPU T4 instances each with a

memory amount of 15 GB for handling large image datasets and

a RAM size of 29 GB were used. The coding was performed in

Python, the PyTorch library was used for building Deep learning

and FTVT models and the Matplotlib library to visualize the results.
3.1 Deep learning models

The performance of the Deep learning model using the

evaluation metrics (accuracy, F1 score, precision, and recall) for

individual model with its confusion matrix is shown in Figure 13

and across tumor classes (glioma, meningioma, pituitary, and no

tumor) using Table 2 and Figure 14.

3.1.1 ResNet-50
The ResNet-50 Figures 13E, F achieved values ranging from

96.58% to 96.59% for all the metrics. Particularly showed high

values in accuracy and recall. From Figure 14A and Table 2, it can

be observed that the accuracy of the pituitary class is highest with

96.6% and accuracy of the meningioma class is lowest with 86.6%,

while the glioma and no tumor classes acquired 97.6% and 97.3%

respectively. We can observe that the recall has a similar pattern

with highest class being pituitary (97.6%), lowest being meningioma

(86.6%) followed by glioma (96.6%) and no tumor (97.3%). The F1

score for meningioma (89.9%), glioma (95%), no tumor (95.7%),

and pituitary (97.2%) is in increasing order. The precision values of

glioma and meningioma coincide at 93.5% and no tumor, pituitary

acquired 94% and 96%. Overall, ResNet-50 performed well in

detecting pituitary class with all the evaluation metrics being

highest than others.

3.1.2 EfficientNet-b0
The EfficientNet-b0 Figures 13C, D model showed consistent

performance across all the metrics, with the values ranging from

95.14% to 95.18%. The F1 values indicate its good performance in

correctly identifying positive cases while minimizing false positive

predictions. The no tumor class obtained highest accuracy and

recall which is 98.6%, but the precision for no tumor is least with

93.6% and it acquired a moderate F1 score of 96% from Figure 14B

and Table 2. The accuracy, recall, and F1 score of meningioma is

least with 87.7%, 87.7%, and 90.7%, respectively, with 93.9% recall,

which is slightly higher than no tumor. This indicates that the
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EfficientNet-b0 model and ResNet-50 model are similar as both the

models performed well in classifying no tumor and could not

identi fy meningioma type of brain tumors perfect ly .

EfficienetNet-b0 performed moderately in classifying glioma and

pituitary classes with an accuracy of 96% and precision, recall, f1

score all greater than 95%.

3.1.3 MobileNet-v2
The MobileNet-v2 Figures 13A, B achieved values ranging from

94.92% to 95.26% across all the metrics. Its high precision value

indicates a low false-positive rate and a high proportion of correctly

identified positive instances among all predicted positive instances.

As we can observe, the graphs of MobileNet-v2 and EfficientNet-b0

models Figure 14B and Table 2 are similar in pattern indicating that

the performance of these two models is almost similar. As

meningioma is detected by EfficientNet-b0 with least accuracy,

the MobileNet-v2 has also acquired least accuracy for

meningioma class which is 86.6%.The precision, recall, and f1

score of this class are 93.5%, 86.65%, and 89.9%, respectively. The

highest accuracy is again obtained for no tumor (98.9%) class while

the precision, recall and f1 score of this class are 93.6%, 98.9%, and

96.4%.The other classes which are pituitary and glioma has the

accuracy, precision, recall, and f1 score values of 95.9%, 93.4%,

95.9%, 94.6% and 96.9%, 97.2%, 96.9%, 97%, respectively.
3.2 FTVT models

The performance of the FTVT model using the evaluation

metrics (accuracy, F1 score, precision, and recall) for each model

along with the confusion matrix is shown in Figure 15 and across

tumor classes (glioma, meningioma, pituitary, and no tumor) using

Table 3 and Supplementary Figure 1.

3.2.1 FTVT-b16
FTVT-b16 model Figures 15A, B showed remarkable performance

in all the evaluation metrics accuracy, F1 score, recall, and precision. It

achieved values ranging from 98.09% to 98.10% for all the metrics. Its

high accuracy and recall values show how well it is able to classify true

positive and true negative values in all categories. FTVT-b16 model

Supplementary Figure 1A and Table 3 across all classes, demonstrated

an accuracy ranging from 98.85% to 99.69%. Particularly, for pituitary

tumor classification, it demonstrated the highest accuracy of 99.31%

among other two tumor classes. Its achieved precision values in the

range of 95.51%–99.51%; it showed 98.63% for glioma, which is the

highest and 95.51% inmeningioma which is the lowest in the other two

tumor classes. Recall and F1 score values are in the range of 96.33%–

99.51%, where 98.67% recall and 98.50% F1 score in pituitary are

highest among other tumor classes. For no tumor class, the FTVT-b16

achieved the highest values across all the metric consistently in the

range of 99.51% to 99.69%.

3.2.2 FTVT-b32
The FTVT-b32 Figures 15C, D model performed consistently

across all the metrics from values ranging from 96.87% to
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96.98%, but comparatively scored lowest among the other FTVT

models. FTVT-b32 Supplementary Figure 1B and Table 3 model

showed highest values for all metrics in no tumor class ranging

from 99.26% to 99.75%, which is higher than FTVT-b16. Its

accuracy is ranging from 96.94% to 99.69% and scored highest in

pituitary tumor class with 99.00%, which is highest in all the

other tumor classes. Its precision, recall and F1 score values are
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ranging from 91.05% to 99.26%, 92.67% to 99.75%, and 93.65%

to 99.51%. In glioma tumor class, it scored highest precision of

98.93%; in pituitary, it achieved 97.67%, 97.83% recall, F1 score

which are higher than other tumor classes, but showed

consistently lower performance for meningioma tumor class.

Except for no tumor class it demonstrated slightly lower

performance than FTVT-b16.
A B

D

E F

C

FIGURE 13

Shows values of evaluation metrics (accuracy, F1 Score, precision, recall) and confusion matrix for Deep Learning models for multi-class brain tumor
classification task using MRI scan imagery: (A, B) confusion matrix and evaluation metrics of MobileNet-V2; (C, D) confusion matrix and evaluation
metrics of EfficientNet-B0; (E, F) confusion matrix and evaluation metrics of ResNet-50.
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3.2.3 FTVT-l16
FTVT-l32 Figures 15E, F model achieved accuracy ranging

from 98.62% to 98.63% having the second highest values among

all models. The FTVT-l16 model Figures 15E, F performed

remarkably by achieving the highest values in all the metrics

among all the models ranging from 98.63% to 98.64%. The

FTVT-l16 model Supplementary Figure 1C and Table 3 exhibited

superior performance with accuracies ranging from 98.03% to

99.77% across all classes. For the glioma tumor class, it achieved

99.38% accuracy, which is highest in all other tumor classes. FTVT-

l16 consistently achieved precision, recall, and F1 scores values

ranging from 97.02% to 99.75%. It achieved the highest values of

99.67%, 98.67%, and 98.84% for precision, recall, F1 score, which

higher than all tumor classes, followed by in glioma and

meningioma. In no tumor class, it achieved the highest values

across all the metrics.

3.2.4 FTVT-l32
The FTVT-l32 model Figures 15G, H, Supplementary Figure

1D, and Table 3 also demonstrated excellent performance, with

accuracies ranging from 98.70% to 99.84%. The highest in pituitary

with 99.54% followed by glioma 99.16%, which is higher than

meningioma 98.70%. Its precision values are in the range of

96.46%–99.51%, with 98.98% in glioma which is higher than the

other two tumor classes. Its precision and recall is in the ranges of

97.24% to 99.51%, with 98.67%, 98.04% recall in pituitary and

meningioma and 98.15%, 98.50% F1 score in glioma, pituitary

tumor classes, with 99.84% accuracy in no tumor class which is

highest among all the models.
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4 Discussions

This study investigates brain tumor classification through

preprocessing data, fine-tuning pre-trained models, and

evaluating performance metrics such as accuracy, precision, recall,

and F1 score. By analyzing model performance for each tumor class

and deploying models on unseen data, it aims to enhance diagnostic

accuracy and clinical applicability in medical imaging.

In this study, the FTVT models and the established deep

learning models—ResNet50, MobileNet-V2, and EfficientNetb0—

are compared, primarily focusing of FTVT models. FTVT models,

including FTVT-B16, FTVT-B32, FTVT-L16, and FTVT-L32,

consistently outperform ResNet50, MobileNet-V2, and Efficientb0

in brain tumor classification tasks across all metrics, as shown in

Supplementary Figure 2. Additionally, Supplementary Figure 3

highlights FTVT models’ superior performance in accuracy,

precision, recall, and F1-score across tumor classes—glioma,

meningioma, pituitary, and no tumor. This superiority can be

attributed to the custom classifier head introduced in FTVT

models, allowing for task-specific representations directly from

the data. Also FTVT models incorporate attention mechanisms,

enabling them to effectively capture intricate patterns and

dependencies within medical imaging data.

The FTVT models’ exceptional performance metrics

demonstrate their ability to distinguish between distinct forms of

brain tumors. With accuracy levels reaching 98% and precision,

recall, and F1-score values continuously exceeding 96%, these

models demonstrate extraordinary precision in their predictions,

which is critical for precise clinical diagnosis and treatment
TABLE 2 Provides an in-depth analysis of performance of the four classes namely glioma, meningioma, pituitary, and no tumor for the three deep
learning models for multi-class brain tumor classification task using MRI scan imagery.

Model Class

Evaluation metrics

Accuracy
(%)

F1 score
(%)

Precision
(%)

Recall
(%)

Images
misclassified

ResNet-50 Glioma 96.64 95.05 93.50 96.64 11

Meningioma 86.67 89.98 93.56 86.67 38

Pituitary 97.61 97.28 96.95 97.61 8

No tumor 97.31 95.70 94.14 97.31 8

EfficientNet-B0 Glioma 96.64 95.93 95.22 96.64 9

Meningioma 87.72 90.74 93.98 87.72 35

Pituitary 96.93 97.09 97.26 96.93 9

No tumor 98.65 96.07 93.61 98.65 4

MobileNet-v2 Glioma 95.90 94.66 93.45 95.90 11

Meningioma 86.67 89.98 93.56 86.67 38

Pituitary 96.93 97.09 97.26 96.93 9

No tumor 98.99 96.24 93.63 98.99 3
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stratification. This outstanding performance can be attributed to the

sophisticated architectures of the FTVT models, which were

rigorously fine-tuned utilizing optimization techniques.

Furthermore, the addition of extra layers considerably contributes

to the increased precision reported across all FTVT models,

reaching 99.75%. Furthermore, these layers improve the models’

ability to classify brain tumors by capturing fine information in

medical imaging.

Based on the comparison of the models’ performance values

provided in the results section, Supplementary Figure 2, we can see

that FTVT-l16 achieved the highest overall accuracy of 98.70%,

followed by FTVT-l32 with an accuracy of 98.63%, indicating the

model’s overall correctness in predicting tumor types, reflecting the

proportion of correctly classified instances out of the total

evaluated. Both models demonstrated exceptional precision

scores, demonstrating that they can properly classify tumor types

across the board. Furthermore, FTVT-l16 had a significantly higher

recall rate for glioma tumors (98.33%) than FTVT-l32 (97.33%) in

the same category. High recall values across all models indicate their
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efficiency in catching true positives, which improves their capacity

to detect relevant tumor types. In contrast, the FTVT-b32 and

FTVT-b16 models had commendable precision and recall values,

with FTVT-b16 having a slightly higher recall rate for meningioma

tumors (97.39%) than FTVT-b32 (96.41%). The F1-score, FTVT-

l16, and FTVT-l32 models achieved high scores of 98.66% and

98.54%, respectively, demonstrating balanced performance in terms

of precision and recall. While the FTVT-b32 and FTVT-b16 models

had respectable precision and recall values, their F1-scores were

slightly lower than the FTVT-l16 and FTVT-l32 models, indicating

a little less balanced performance in tumor classification. Overall

findings indicate that the FTVT-l16 and FTVT-l32 models perform

consistently across all tumor types, but the FTVT-b16 and FTVT-

b32 models excel at identifying specific tumor types.

The confusion matrices provided a detailed breakdown of each

model’s performance, revealing where certain tumor types might

pose challenges. Despite slight variations, all models showcased

exceptional accuracy, precision, recall, and F1-score values. For

instance, in FTVT-b16, with an overall accuracy of 98.09%, minimal
A B

C

FIGURE 14

Shows performance of the four classes namely glioma, meningioma, pituitary and no tumor for the three deep learning models for Multi-Class Brain
tumor classification task using MRI scan imagery: (A) ResNet-50; (B) EfficientNet-B0; (C) MobileNet-V2.
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misclassifications were observed across all tumor classes: 11

misclassified images in glioma out of 300, eight in meningioma

out of 306, two in no tumor out of 405, and four in pituitary out of

300. Similarly, FTVT-l16 achieved an impressive overall accuracy of

98.70%, with slight misclassifications across tumor classes: five in
Frontiers in Oncology 20
glioma, nine in meningioma, fwo in no tumor, and one in pituitary.

However, FTVT-b16 and FTVT-l16 outperformed both FTVT-b32

and FTVT-l32 models in terms of overall accuracy and lower

misclassification rates, particularly noticeable in glioma and

meningioma classes. The superior performance of B16 (FTVT-
A B

D

E F

G H

C

FIGURE 15

Shows values of evaluation metrics (accuracy, F1 Score, precision, recall) and confusion matrix for fine-tuned vision transformer models for multi-
class brain tumor classification task using MRI scan imagery: (A, B) confusion matrix and evaluation metrics of FTVT-l16; (C, D) confusion matrix and
evaluation metrics of FTVT-b32; (E, F) confusion matrix and evaluation metrics of FTVT-l16; (G, H) confusion matrix and evaluation metrics of
FTVT-l32.
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b16) and L16(FTVT-l16) models can also be attributed to their finer

granularity in feature extraction and representation due to the

smaller patch size utilized in these models compared to B32

(FTVT-b32) and L32(FTVT-l32), that is, B16 is less than B32 and

L16 is less than L32. This finer granularity allows B16 and L16

models to capture more intricate details in the medical images,

leading to improved classification accuracy and lower

misclassification rates.

The evaluation measures show that the FTVT models have

distinct strengths when it comes to tumor type classification

Supplementary Figure 3. For pituitary tumors and gliomas,

FTVT-b16 shows excellent accuracy; however, for meningiomas,

its accuracy is marginally lower. While FTVT-b32 performs better

than FTVT-b16 in terms of overall accuracy, especially for no

tumors, it exhibits greater misclassifications for gliomas and

meningiomas. With balanced precision and recall across all

classes, FTVT-l32 demonstrates remarkable accuracy for gliomas

and no tumors, leading to fewer misclassifications. Likewise, FTVT-

l16 attains exceptional precision for every class with negligible

misclassifications, establishing it as a formidable candidate for

precise tumor classification across the board. Overall, FTVT-l32

and FTVT-l16 stand out for their balanced performance and high

accuracy, while the choice between models may depend on specific

tumor classification priorities. When comparing all the model we

observer L (L16, L32) variants are performing better than B(B16,
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B32) variants this because the variance in patch size between B and

L types significantly impacts model performance. Smaller patch

sizes in L models, like FTVT-l32 and FTVT-l16, capture finer details

in medical images, potentially enhancing accuracy and reducing

misclassifications. Consequently, this distinction likely contributes

to the superior performance of L type models over their B

type counterparts.

The remarkable ability of the FTVT models to correctly identify

different kinds of brain tumors highlights their potential for use in

clinical applications. The meticulous fine-tuning of these models,

coupled with the incorporation of additional layers, has significantly

enhanced their precision and recall values, crucial for reliable

diagnosis and treatment planning. Despite slight variations in

performance across different models, all FTVT variants

demonstrated exceptional accuracy, precision, recall, and F1-score

values, highlighting their robustness in tumor classification. Moving

forward, further research into refining these models and addressing

any remaining limitations could bolster their real-world

applicability in medical settings. Overall, the findings of this study

contribute to the growing body of evidence supporting the utility of

machine learning models, particularly FTVT architectures, in

enhancing medical image analysis and diagnostic capabilities.

In Table 4, various algorithms were employed to classify brain

tumors, each exhibiting different performance measures. The FTVT

models proposed in this study outperform all the exiting methodologies.
TABLE 3 Provides an in-depth analysis of performance of the four classes, namely, glioma, meningioma, pituitary, and no tumor for the FTVT models
for multi-class brain tumor classification task using MRI scan imagery.

Model Class

Evaluation metrics

Accuracy (%) Precision
(%)

Recall
(%)

F1 score
(%)

Images
misclassified

FTVT-b16 Glioma 98.85 98.63 96.33 97.47 11

Meningioma 98.32 95.51 97.39 96.44 8

Pituitary 99.31 98.34 98.67 98.50 4

No tumor 99.69 99.51 99.51 99.51 2

FTVT-b32 Glioma 98.09 98.93 92.67 95.70 22

Meningioma 96.94 91.05 96.41 93.65 11

Pituitary 99.00 97.99 97.67 97.83 7

No tumor 99.69 99.26 99.75 99.51 1

FTVT-l16 Glioma 99.38 98.99 98.33 98.66 5

Meningioma 98.77 97.70 97.06 97.38 9

Pituitary 98.03 99.67 98.67 98.84 2

No tumor 99.77 99.75 99.51 99.63 1

FTVT-l32 Glioma 99.16 98.98 97.33 98.15 8

Meningioma 98.70 96.46 98.04 97.24 6

Pituitary 99.54 98.43 98.67 98.50 3

No tumor 99.84 99.51 99.51 99.51 1
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5 Conclusion

This study presents a simple and detailed comparative analysis

of various deep learning models (ResNet-50, EfficientNet-b0, and

MobileNet-V2) and FTVT (FTVT-b16, FTVT-b32, FTVT-l16, and

FTVT-l32). This work also differentiates the architecture of the

models, which helps to provide a broader view. Introduction of new

layers for optimization and hyperparameter tuning to prevent

overfitting is an added advantage which provided high accuracy

for both deep learning and FTVT models than previous studies

Table 4, which shows the significance of the fine tuning performed

in this study. A dataset containing a large number (7,053) of brain

MRI scans, diverse preprocessing techniques such as data

augmentation, normalization, and rigorous training are used for

training the models. This study has achieved outstanding accuracies

for brain tumor classification which helps professionals to detect

and classify tumors in the early stages. The models are assessed with

various evaluation metrics for better analysis and comparison

individually and across each tumor class. The FTVT models

achieved accuracies greater than other deep learning models

ResNet-50, EfficientNet-b0, and MobileNet-V2. Also, FTVT

models individually and across tumor classes outperformed these

deep learning models. We see a trend of L variant performing better

than B variant, a general trend observed in pretrained ViTs, (22).

And also FTVT-l16, FTVT-b16 performed better than FTVT-l32,

FTVT-b 32, which suggest that “16” models are more effective at
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capturing fine details. The decision of using L or B variant depends

upon the computational resources available; B variant uses

comparatively less resources than the L variant. With the

observed results and thorough analysis, it is evident that the

FTVT are robust and accurate proving their incredible role in

medical image analysis.
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TABLE 4 The models and performance measures of the relevant work for brain tumor classification task.

S NO. ALGORITHM USED PERFORMANCE MEASURES

1 Custom CNN model (24) accuracy-91.9%, recall-95.07%, precision- 94.81%, and F1-score:94.94%

2 Multi-stream 2D-CNN model (25) mean-accuracy:88.82%, mean-specificity:92.17%, and
mean-sensitivity:81.81%

3 Convolutional Neural Network based on Complex Networks (16) accuracy 95.49%

4 DNN(Deep Neural Networks) (27) accuracy 96.15%, precision 94.12%, F1-score 96.97%, and recall 100%

5 VGG16 (28) accuracy 89%, sensitivity 87%, specificity 92%

6 CNN,VGG16,ResNet-50, and Inception V3 (14) (%) Accuracy Recall Loss
CNN 93.3 91.13 0.25
ResNet-50 81.10 81.04 0.85
VGG16 71.60 70.03 1.18
Inception V3 80.00 79.81 0.25

7 Fine tuned and pre trained ViTs and convolutional neural network
models (23)

Accuracy Validation Loss Loss
Accuracy (train) (test)

R50-ViT-l16 0.98 0.90 0.03 0.0.05
ViT-l32 1.00 0.94 0.04 0.12
ViT-b16 0.99 0.97 0.01 0.10
ViT-b32 0.98 0.98 0.04 0.12
ViT-l16 0.98 0.97 0.08 0.15

8 ViT models (B-16, B-32, L-16, and L-32), (22) All ViT models
Accuracy Sensitivity Specificity
97.71 96.87 99.10

9 The proposed Approach (%) Accuracy F1 Precision Recall
FTVT-b16 98.1 98.1 98.1 98.1
FTVT-l16 96.9 96.9 97.0 96.9
FTVT-l32 98.7 98.7 98.7 98.7
FTVT-b32 98.6 98.6 98.6 98.6
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