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Liver cancer is one of the most prevalent forms of cancer worldwide. A significant

proportion of patients with hepatocellular carcinoma (HCC) are diagnosed at

advanced stages, leading to unfavorable treatment outcomes. Generally, the

development of HCC occurs in distinct stages. However, the diagnostic and

intervention markers for each stage remain unclear. Therefore, there is an

urgent need to explore precise grading methods for HCC. Machine learning has

emerged as an effective technique for studying precise tumor diagnosis. In this

research, we employed random forest and LightGBMmachine learning algorithms

for the first time to construct diagnostic models for HCC at various stages of

progression. We categorized 118 samples from GSE114564 into three groups:

normal liver, precancerous lesion (including chronic hepatitis, liver cirrhosis,

dysplastic nodule), and HCC (including early stage HCC and advanced HCC).

The LightGBM model exhibited outstanding performance (accuracy = 0.96,

precision = 0.96, recall = 0.96, F1-score = 0.95). Similarly, the random forest

model also demonstrated good performance (accuracy = 0.83, precision = 0.83,

recall = 0.83, F1-score = 0.83). When the progression of HCCwas categorized into

the most refined six stages: normal liver, chronic hepatitis, liver cirrhosis, dysplastic

nodule, early stage HCC, and advanced HCC, the diagnostic model still exhibited

high efficacy. Among them, the LightGBM model exhibited good performance

(accuracy = 0.71, precision = 0.71, recall = 0.71, F1-score = 0.72). Also,

performance of the LightGBM model was superior to that of the random forest

model. Overall, we have constructed a diagnostic model for the progression of

HCC and identified potential diagnostic characteristic gene for the progression

of HCC.
KEYWORDS

liver cancer, machine learning, random forest model, LightGBM model, the progression
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Introduction

According to the recent data on global cancer burden in 2020, liver

cancer ranked as the sixth most common cancer in terms of incidence

rate and the third highest in terms of mortality (1). A considerable

percentage of patients diagnosed with hepatocellular carcinoma (HCC)

are at an advanced stage. Therefore, the identification of diagnostic

markers is of immense importance (2–4). The development of HCC is

a gradual process. Patients with chronic liver disease experience

persistent liver inflammation, fibrosis, and abnormal regeneration of

liver cells. These abnormalities can lead to cirrhosis and gradually give

rise to dysplastic nodules of precancerous lesions. Finally, the patients

will develop HCC (5). However, the marker gene for HCC progression

remain unclear.

Thus, there is an urgent need to identify markers and develop

precise diagnostic model for progression of HCC. With the

development of artificial intelligence, machine learning has shown

promise in cancer diagnosis and treatment (6, 7). For example, Zhang

(8) developed a machine learning-based model for the early detection

of liver cancer by utilizing low-depth whole genome sequencing

of cell-free DNA. The model achieved an AUC of 0.995, a

sensitivity of 0.968, and a specificity of 0.988 in differentiating

between liver cancer and non-liver cancer. According to feature

selection, Tang (9) used Least Absolute Shrinkage and Selector

Operation (Lasso), Support Vector Machine (SVM), and Random

Forest (RF) to construct HCC classification models for HCC saliva

samples. The diagnostic accuracy of the LASSO-HCC model was

0.706, the diagnostic accuracy of the SVM-HCCmodel was 0.812, and

the diagnostic accuracy of the RF-HCC model was 0.859.

However, these studies exclusively focused on particular stages

in the progression of HCC. In this research, we aim to develop an

accurate diagnostic model for the progression of HCC by utilizing

machine learning algorithms, such as RF and LightGBM. The RF

and LightGBM models are two commonly used machine learning

algorithms known for their strong performance and effectiveness in

dealing with classification and regression problems.

RF is an ensemble learning algorithm that enhances prediction

accuracy by constructing multiple decision trees and taking the

average of the predictions from these trees. RF can reduce

overfitting, is tolerant to missing values, and can assess the

importance of each feature, aiding in data comprehension (10, 11).

LightGBM is a distributed and high-performance algorithm designed

for gradient-boosting decision trees, specifically based on the

Histogram algorithm, characterized by efficiency, speed, and high

accuracy. Principle of LightGBM is to iteratively train multiple

decision trees and train the next tree based on the results of the

previous tree to minimize the loss function (12, 13). Combining the

RF and LightGBM models can yield more comprehensive and

accurate results in research. These two algorithms have outstanding

performance in cancer diagnostics (14).

In this research, we classified 118 samples from GSE114564 into

three groups: normal liver, precancerous lesion, and HCC. The RF
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model and LightGBM model showed strong performance and

identified 12 characteristic genes. Additionally, the diagnostic

model still exhibited high efficacy when categorizing the

progression of HCC into six finely stratified stages. To the best of

our knowledge, this research represented the first application

of machine learning to comprehensively cover all stages of

HCC progression.
Materials and methods

Patients

This research employed the RNA-sequencing dataset

GSE114564 (15), retrieved from the GEO database, which

included transcriptome data from 118 tissue samples representing

different stages of HCC. The dataset included 15 normal liver

samples, 20 chronic hepatitis samples, 10 liver cirrhosis samples,

10 dysplastic nodule samples, 18 early stage HCC samples, and 45

advanced HCC samples. This comprehensive dataset covers almost

all stages for progression of HCC.
Data processing

We obtained the file “GSE114564_Liver_Cancer_FPKM.txt.gz”

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE114564). FPKM (fragments per kilobase of exon

model per million mapped fragments) of 118 samples were used as

the input file, which can effectively eliminate the impact of

sequencing depth and gene length on the results. Following that,

we conducted an 8:2 random split (16–18) to partition the 118

available samples into training and validation sets. The 8:2 ratio is

commonly regarded as a reasonable choice, because it ensures an

adequate sample size for the training set, while also providing a

certain number of samples for the validation set to evaluate model

performance. Next, we kept genes that are expressed (FPKM>0) in

at least three samples and these genes are in scanpy (19)

(scanpy.pp.filter_genes). Then, the data matrix is log-transformed

(scanpy.pp.log1p). In the end, we selected the top 1000

genes (20–22) by the ranking variances of all samples

(scanpy.pp.highly_variable_genes), which was performed variance

calculation in Scanpy. More specifically, a normalized variance for

each gene is computed. First, the data are standardized (i.e., z-score

normalization per feature) with a regularized standard deviation.

Next, the normalized variance is computed as the variance of each

gene after the transformation. Genes are ranked by the normalized

variance. Finally, we selected the top 1,000 genes (Supplementary

Table S1) that demonstrated the highest overall variance in FPKM

as the foundation for constructing RF and LightGBM models. The

variance calculation and above data processing steps were all

implemented in scanpy.
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Construction of machine learning

Subsequently, we employed the Python framework sklearn (23)

to construct the RF model using the RF program (sklearn.

ensemble.RandomForestClassifier) and LightGBM program

(Lightgbm.sklearn), with all parameters set to default values. The

framework sklearn available online is: https://scikit-learn.org/stable/

supervised_learning.html. Cross-validation was used in this study to

find the optimal parameters of the classification model and help the

model alleviate overfitting. This study uses fivefold cross-validation

on the training dataset, and uses accuracy, precision, recall, and F1-

score to evaluate the model performance, and the results are in

Supplementary Table S2.
Analysis of characteristic gene

The RF and LightGBM models calculated the gene importance

and identified the top 50 most important genes (24), separately

(Supplementary Table S3). Furthermore, the intersection of these 50

genes was taken to obtain the feature genes. Upon constructing the

aforementioned model, we obtained a set of characteristic genes.

Following that, we generated expression heatmap using TBtools

HeatMap illustrator program. TBtools is an integrative toolkit

developed for interactive analyses of big biological data (25, 26).

Survival analysis was performed using the GEPIA2 database, and

GO pathway enrichment was performed using clusterProfiler R

package (27, 28). Finally, we used the GeneCards database (29) to

identify characteristic genes associated with occurrence of HCC
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(https://www.genecards.org/). The workflow diagram for this

research was depicted in Figure 1.
Result

Constructing machine learning model
based three distinct groups

Based on the transformative process of HCC, the data can be

categorized into three groups: normal liver, precancerous lesion

(including chronic hepatitis, liver cirrhosis, dysplastic nodule), and

HCC (including early stage HCC and advanced HCC). We

employed the RF and LightGBM algorithms of machine learning

to develop a diagnostic model for the progression of HCC.

Performance measure of the RF model was presented in Figure 2

and Table 1, indicating an accuracy of 0.83, precision of 0.83, recall

of 0.83, and F1-score of 0.83. Similarly, performance measure of the

LightGBM model indicated an accuracy of 0.96, precision of 0.96,

recall of 0.96, and F1-score of 0.95.

According to the method, the models above comprised a total of

12 characteristic genes (CLEC3B, RN7SL5P, RP11–977G19.10,

ASPDH, CFP, CDC37L1-AS1, RN7SL752P, U3, IGFALS, MASP2,

RN7SKP255, RP11–162P23.2). Next, we utilized TBtools to generate

expression heatmap for these 12 characterist ic genes

(Supplementary Figure S1). The characteristic genes are primarily

involved in complement activation, activation of immune response,

cytoplasmic vesicle lumen, complement binding, oxidoreductase

activity, and other pathways (q < 0.05; Figure 3).
FIGURE 1

Workflow diagram in this research.
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Among these genes, we found that poor prognosis was

associated with low expression of CLEC3B, CDC37L1-AS1,

IGFALS, and MASP2 (Logrank p < 0.05; Figure 4). Moreover,

both CLEC3B and IGFALS showed a strong association with the

occurrence of HCC (Table 2) (30, 31).
Constructing machine learning model
based four distinct groups

In order to further investigate the effectiveness of machine

learning models in classifying early stage HCC, we categorized

the data into four groups: normal liver, precancerous lesion

(including chronic hepatitis, liver cirrhosis, dysplastic nodule),

early stage HCC, and advanced HCC. Performance measure of

the random forest model was presented in Figure 5, Table 3,

indicating an accuracy of 0.83, precision of 0.83, recall of 0.83,

and F1-score of 0.83. Similarly, performance measure of the

LightGBM model indicated an accuracy of 0.75, precision of 0.75,

recall of 0.75, and F1-score of 0.76.

According to the method, the models above comprised a total of

12 characteristic genes (HBA2, RP11–977G19.10, AC004538.3, INS-

IGF2, RNU2–63P, RN7SL752P, U3, VIPR1, MASP2, TDO2,

RN7SKP255, RP11–162P23.2). Furthermore, we utilized TBtools

to generate expression heatmap for these 12 characteristic genes

(Supplementary Figure S2). The characteristic genes are primarily

enriched in pathways associated with the tryptophan metabolic
Frontiers in Oncology 04
process, hemoglobin complex, oxygen binding, and other pathways

(q < 0.05; Figure 6).

Regarding these genes, low expression of AC004538.3, VIPR1,

andMASP2 was associated with a poor prognosis (Logrank p < 0.05;
A B

FIGURE 2

Confusion matrix of the models. (A) Confusion matrix of the random forest model. (B) Confusion matrix of the LightGBM model.
TABLE 1 Performance measure of machine learning models based three distinct groups.

Model Accuracy Precision Recall F1-score

Random forest 0.83 0.83 0.83 0.83

LightGBM 0.96 0.96 0.96 0.95
FIGURE 3

Go pathway enrichment of characteristic genes.
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Figure 7). Furthermore, VIPR1 exhibited a strong association with

the occurrence of HCC (Table 4) (32).
Constructing machine learning model
based six distinct groups

We further investigated the efficacy of classifying the

progression of HCC across all various stages. To achieve this, we

categorized the data into six groups: normal liver, chronic hepatitis,

liver cirrhosis, dysplastic nodule, early stage HCC, and advanced

HCC. Performance measure of the random forest model was

presented in Figure 8 and Table 5, indicating an accuracy of 0.63,

precision of 0.63, recall of 0.63, and F1-score of 0.59. Similarly,

performance measure of the LightGBM model indicated an
Frontiers in Oncology 05
accuracy of 0.71, precision of 0.71, recall of 0.71, and F1-score

of 0.72.

According to the method, the models above comprised a total of

16 characteristic genes (C1QTNF1, JUNB, CLEC3B, SERPINA11,

RP11–977G19.10, CCNB1, CDC37L1-AS1, CFB, RN7SL752P,

CCL14, U3, F12, ACSL4, MOGAT2, RN7SKP255, and TERC).

Furthermore, we utilized TBtools to generate expression heatmap

for these 16 characteristic genes (Supplementary Figure S3). The

characteristic genes are primarily enriched in pathways associated

with regulation of plasminogen activation, positive regulation of

protein processing, and other pathways (q < 0.05; Figure 9).

Regarding these genes, low expression of CLEC3B, CDC37L1-

AS1, CFB, CCL14, and MOGAT2 was associated with poor

prognosis, while high expression of CCNB1 and ACSL4 was

associated with a poor prognosis (Figure 10). Furthermore,
A B

C D

FIGURE 4

Overall survival of HCC genes in GEPIA2 database. (A) Overall survival of CLEC3B. (B) Overall survival of CDC37L1-AS1. (C) Overall survival of IGFALS.
(D) Overall survival of MASP2.
TABLE 2 CLEC3B and IGFALS reported in HCC from GeneCards database.

GeneName Location Function summaries Related pathways Report

CLEC3B 3p21.31 May be involved in the packaging of molecules destined for exocytosis. Platelet activation, signaling
and aggregation.

(30)

IGFALS 16p13.3 Encoded by this gene is a serum protein that binds insulin-like growth factors,
increasing their half-life and the vascular localization.

1.Regulation of Insulin-like
Growth Factor.
2.Inulin-like growth
factor binding.

(31)
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CLEC3B, CCNB1, CCL14, and ACSL4 exhibited a strong association

with the occurrence of HCC (Table 6) (30, 33–35).
Discussion

In this research, we employed machine learning algorithms,

specifically random forest and LightGBM, to develop accurate

diagnostic models for progression of HCC. After multiple

analyses, we have identified potential diagnostic markers for the

progression of HCC. Interestingly, when we categorized samples

into three groups, the classification accuracy of LightGBM

algorithm exceeded 0.95. Also, performance of the random forest

model was slightly inferior compared to the LightGBM model. The

12 characteristic genes are primarily involved in complement

activat ion, act ivat ion of immune response pathways.

Simultaneously, among the characteristic gene CLEC3B generated

from the model, exosomes derived from HCC with downregulated

CLEC3B were found to promote the migration, invasion, and

epithelial-mesenchymal transition of both tumor cells and

endothelial cells (30). In addition, the IGFALS, a tumor

suppressor gene, undergoes epigenetic silencing, leading to

dysregulation of the IGF-II signaling in HCC (31). Our research

indicated that the CLEC3B and IGFALS may be involved in the

progression from normal liver to precancerous lesions to HCC, but

their functions require further investigation.

Furthermore, we explored whether this model can accurately

distinguish early stage HCC and assessed the potential benefits of
Frontiers in Oncology 06
early stage HCC diagnosis. And when the samples were categorized

into four groups, the random forest model achieved a classification

accuracy exceeding 0.83. Moreover, performance of the LightGBM

model was slightly inferior compared to the random forest model.

The 12 characteristic genes are primarily enriched in pathway

associated with metabolic process. Among the characteristic gene

generated from the model, loss of VIPR1 expression in HCC
A B

FIGURE 5

Confusion matrix of the models. (A) Confusion matrix of the random forest model. (B) Confusion matrix of the LightGBM model.
FIGURE 6

GO pathway enrichment of characteristic genes.
TABLE 3 Performance measure of machine learning models based four distinct groups.

Model Accuracy Precision Recall F1-score

Random forest 0.83 0.83 0.83 0.83

LightGBM 0.75 0.75 0.75 0.76
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A B

C

FIGURE 7

Overall survival of HCC genes in GEPIA2 database. (A) Overall survival of AC004538.3. (B) Overall survival of VIPR1. (C) Overall survival of MASP2..
A B

FIGURE 8

Confusion matrix of the models. (A) Confusion matrix of the random forest model. (B) Confusion matrix of the LightGBM model.
TABLE 4 VIPR1 reported in HCC from GeneCards database.

GeneName Location Function summaries Related pathways Report

VIPR1 3p22.1 This is a receptor for VIP. The activity of this receptor is mediated by G proteins
which activate adenylyl cyclase.

1.Glucocorticoid receptor
regulatory network.
2.GPCR downstream signal.

(32)
F
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facilitated CAD phosphorylation and tumor progression, suggesting

that the restoration of VIPR1 and treatment with the VIPR1 agonist

may represent a promising approach for HCC treatment (32, 36).

Our research suggested that VIPR1 may play a role in the

classification of early stage HCC and advanced HCC, but further

research is needed to determine its specific function.

Moreover, when categorizing the stages of HCC into six distinct

levels, the model still exhibits high diagnostic efficacy. These

findings provide a solid foundation for precise treatment. The 16

characteristic genes are primarily enriched in pathway associated

with positive regulation of protein processing. Among the

characteristic gene generated from the model, CCNB1 may

participate in the cell cycle of HCC by regulating DNA

replication, thus promoting the development of HCC (33). And,

CCL14 was a potential prognostic biomarker for determining HCC

progression and was associated with immune cell infiltration in

HCC (34, 37). ACSL4 promoted the progression of HCC by

stabilizing c-Myc through the ERK/FBW7/c-Myc axis (38). Our

research suggested that these genes may be involved in all stages of

HCC progression and serve as potential biomarkers. However,

further in-depth research is needed.

In the past 20 years, sequencing technologies have continuously

advanced, leading to explosive growth in available data. Artificial

intelligence is often used for the characterization of sequencing

data, which can enhance the ability to detect HCC tumors and

provide information for disease diagnosis and staging (39).

Xie (40) utilized gene expression profiles from peripheral blood

to develop an artificial neural network (ANN) model that could

differentiate HCC patients from the control group with a sensitivity

of 96% and specificity of 86%. Harpreet (41) utilized a large-scale

transcriptomic analysis dataset containing a total of 2,316 HCC

samples and 1,665 non-tumor tissue samples to identify HCC

samples using machine learning, with an accuracy ranging from

93% to 98%. Although these studies have demonstrated good

predictive performance, they did not further differentiate and

study non-tumor tissues (pre-cancerous stages).

In addition, A single-center prospective study in the UK

recruited 331 cases of liver cell carcinoma, with a control group

involving only 339 patients with chronic liver disease. A logistic

regression analysis model was constructed, with an AUROC of 0.97

indicating excellent predictive performance. However, the study

was only validated in a cohort of patients with fatty liver disease

(42). Xing (43) conducted mass spectrometry proteomics

sequencing and built a random forest machine learning model

that clearly distinguished between HCC and healthy individuals

(sensitivity 0.975, specificity 1.000), as well as between HCC and

cirrhosis (sensitivity 0.925, specificity 0.915). However, these studies

did not cover all stages of liver cancer progression.
Frontiers in Oncology 08
In our study, we comprehensively cover all stages of liver cancer

development, including normal liver, chronic hepatitis, liver

cirrhosis, dysplastic nodule, early stage HCC, and advanced HCC.

Furthermore, we conducted detailed classifications into three

categories, four categories, and six categories respectively, in order

to systematically study relevant models of liver cancer progression.

When we categorized three groups: normal liver, precancerous

lesion (including chronic hepatitis, liver cirrhosis, dysplastic

nodule) and HCC (including early stage HCC and advanced

HCC), The LightGBM model exhibited outstanding performance

(accuracy = 0.96, precision = 0.96, recall = 0.96, F1-score = 0.95).

Surprisingly, when the progression of HCC was categorized into the

most refined six stages, the diagnostic model still demonstrated high

performance (accuracy = 0.71, precision = 0.71, recall = 0.71, F1

score = 0.72). In conclusion, we successfully constructed the most

detailed model of HCC progression stages using machine learning

methods, providing a theoretical basis for accurate diagnosis

of HCC.

In summary, this research represented the pioneering

construction of a diagnostic model for HCC progression through

the utilization of machine learning methods. The development of

liver cancer is a gradual process. Liver cancer patients undergo a

process from hepatitis and liver fibrosis to abnormal nodules,

ultimately developing into liver cancer. By subdividing into

different stages, we can more finely assess the disease progression

stage of liver cancer patients and intervene with precision medicine.

We hope that targeted early intervention and treatment can prevent
TABLE 5 Performance measure of machine learning models based six distinct groups.

Model Accuracy Precision Recall F1-score

Random forest 0.63 0.63 0.63 0.59

LightGBM 0.71 0.71 0.71 0.72
FIGURE 9

GO pathway enrichment of characteristic genes.
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the progression of HCC to advanced stage in the future.

Additionally, we have identified key genes associated with the

progression of liver cancer. Further research on these genes will

facilitate the development of effective targets for liver cancer

progression. It is important to note that the HCC progression

characteristic genes identified in our research still lack sufficient

research concerning their impact on progression of HCC, and

further exploration is warranted. Of course, it is crucial to

validate effectiveness of the model using a larger sample size. Due

to the reduced cost of transcriptome sequencing, increasing dataset

will arise in the future. In a word, this research holds potential for

clinical application due to its significance and prospect.
Frontiers in Oncology 09
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