
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Alfredo Conti,
University of Bologna, Italy

REVIEWED BY

Xin Ge,
Lanzhou University, China
Martin Kocher,
University of Cologne, Germany

*CORRESPONDENCE

Xiaoxue Xu

nclittlesnownc@163.com

RECEIVED 15 March 2024
ACCEPTED 23 September 2024

PUBLISHED 14 October 2024

CITATION

He L, Chen M, Li H, Shi X, Qiu Z and
Xu X (2024) Differentiation between
high-grade gliomas and solitary brain
metastases based on multidiffusion
MRI model quantitative analysis.
Front. Oncol. 14:1401748.
doi: 10.3389/fonc.2024.1401748

COPYRIGHT

© 2024 He, Chen, Li, Shi, Qiu and Xu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 14 October 2024

DOI 10.3389/fonc.2024.1401748
Differentiation between high-
grade gliomas and solitary
brain metastases based on
multidiffusion MRI model
quantitative analysis
Libing He1, Meining Chen2, Hongjian Li3, Xiran Shi3,
Zhiqiang Qiu3 and Xiaoxue Xu3*

1Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China,
2MRI Research Institute, Huaxi MR Research Center (HMRRC), Chengdu, Sichuan, China, 3Department
of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
Background and purpose: Differentiating high-grade gliomas (HGGs) from

solitary brain metastases (SBMs) using conventional magnetic resonance

imaging (MRI) remains challenging due to their similar imaging features. This

study aimed to evaluate the diagnostic performance of advanced diffusion

models, such as neurite orientation dispersion and density imaging (NODDI)

and mean apparent propagator magnetic resonance imaging (MAP-MRI),

incomparison to traditional techniques like diffusion-weighted imaging (DWI),

diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) for

distinguishing HGGs from SBMs.

Methods: In total, 17 patients with HGGs and 26 patients with SBMs were

prospectively recruited based on the established inclusion and exclusion

criteria. Structural MRI sequences and diffusion spectrum imaging (DSI) were

utilized to assess quantitative parameter models, including NODDI, MAP-MRI,

DWI, DTI, and DKI. Quantitative parameters were measured for both the tumor

parenchymal area and the peritumoral edema area. The quantitative parameters

of the two patient groups were compared using either the independent Student’s

t-test or the Mann–Whitney U test. The effectiveness of each model was

evaluated using receiver operating characteristic (ROC) curves and calculating

the area under the curve (AUC). Finally, the DeLong test was employed to

compare the diagnostic performance of each model through pairwise

comparisons of ROC curves.

Results: Isotropic volume fraction (Viso) based on NODDI; mean squared

displacement (MSD) and the return to plane probabilities (RTPP) based on

MAP-MRI; radial diffusivity (RDk) and mean diffusivity (MDk) based on DKI; and

axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) based on DTI

of the peritumoral edema tumor were significantly different between HGGs and

SBMs (p < 0.05). The optimal single discriminant parameters for each model are

NODDI_Viso, MAP-MRI_MSD, DKI_MDk, and DTI_AD. Among these, the AUC of

Viso (0.809) exceeds that of MSD (0.733), MDk (0.718), and AD (0.779). The

combined model, which incorporates DTI_AD, DKI_RD, and NODDI_Viso,

demonstrated superior diagnostic performance (0.897).
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Conclusions: Advanced diffusion MRI quantitative parameters derived from

NODDI, such as Viso, have the potential to enhance the differentiation between

HGGs and SBMs. The integrated utilization of these models is anticipated to

enhance diagnostic accuracy and refine MRI protocols for brain

tumor assessment.
KEYWORDS

glioma, brain metastasis, magnetic resonance imaging, neurite orientation dispersion
and density imaging (NODDI), mean apparent propagator magnetic resonance imaging
(MAP-MRI), diffusion magnetic resonance imaging (dMRI)
Introduction

Gliomas, the most malignant subtype of neuroepithelial tumors,

represent the predominant incidence of primary brain tumors (1).

According to the latest Fifth edition of the World Health

Organization (WHO) classification of central nervous system

(CNS) tumors, gliomas are stratified into four grades (2). High-

grade gliomas (HGGs), encompassing WHO grades III and IV,

entail a grim prognosis, with a 5-year survival rate ranging from

25.9% to 49.4% for grade III and a mere 4.7% for grade IV (3). Brain

metastases are prevalent malignant neoplasms in adults (4),

occurring 10 times more frequently than primary brain

malignancies (5). In certain instances, patients presenting

multiple cerebral lesions with a history of primary malignancy

may undergo a straightforward diagnosis of brain metastases.

Nonetheless, solitary brain metastases (SBMs) manifest initially in

nearly 30% of patients with systemic malignancies (6), potentially

serving as the inaugural symptom of undiagnosed extracranial

malignant tumors. Additionally, gliomas may manifest in patients

with systemic cancer. Given the differences in medical staging,

clinical management, and prognosis between HGGs and SBMs,

accurately distinguishing these two types of malignant tumors is of

great value for clinical decision-making.

Currently, magnetic resonance imaging (MRI) stands as the

premier noninvasive modality for diagnosing intracranial tumors.

Accurately distinguishing between HGGs and SBMs poses a

challenge when patients present with isolated and markedly

heterogeneously enhanced brain lesions, as both commonly

display akin imaging features and enhancement patterns—

including cysts, necrosis, circular enhancement, and peritumoral

edema—on conventional MRI. This often leads to misdiagnoses in

over 40% of cases (7). In such scenarios, while postoperative

histopathological biopsy remains the gold standard for

differentiation, it is associated with certain limitations, including

surgical complications or infeasibility due to patients’ poor physical

condition, tumor invasiveness, or proximity to critical brain

regions. Consequently, resorting to noninvasive techniques

becomes imperative for distinguishing between HGGs and SBMs

(8, 9).
02
Many previous studies have explored various methodologies to

tackle this issue, including MR perfusion-weighted imaging (PWI)

(10–12), magnetic resonance spectroscopy (MRS) (10, 12),

diffusion-weighted imaging (DWI) (13, 14), and diffusion tensor

imaging (DTI) (10, 15). Notably, among these techniques, the DWI-

based apparent diffusion coefficient (ADC) and DTI-based

fractional anisotropy (FA) values are the most widely utilized

metrics. However, there are controversial results regarding the

ability of ADC and FA to distinguish between HGGs and SBMs.

In recent years, traditional MRI technology has increasingly

struggled to meet the practical needs of clinical work. However,

innovative diffusion MRI techniques, such as neurite orientation

dispersion and density imaging (NODDI) (16) and the diffusion

spectrum imaging (DSI)-based mean apparent propagator (MAP)-

MRI (17), have demonstrated enhanced sensitivity in detecting

changes in the microstructure of brain tissue. Promising results

have been obtained using NODDI and MAP-MRI in multiple

sclerosis (18), glioma grading (19), and Alzheimer’s disease (20).

However, it remains uncertain whether these techniques

outperform the more commonly used non-Gaussian-based

diffusion kurtosis imaging (DKI) and Gaussian diffusion models

such as DTI and DWI in differentiation between HGGs and SBMs.

Therefore, this study aims to evaluate the effectiveness of NODDI,

MAP-MRI, DKI, DTI, and DWI in distinguishing HGGs

from SBMs.
Materials and methods

Study design and participants

This study adhered to the principles outlined in the Helsinki

Declaration and received approval from the ethics review

committee of our institution. All participants provided written

informed consent prior to undergoing MRI examinations. From

December 2022 to November 2023, we recruited 76 patients

suspected of having brain tumors based on MRI findings or other

clinical assessments. The inclusion criteria were as follows: (1)

patients with isolated brain lesions exhibiting significant, uneven
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enhancement on structural MRI; (2) patients diagnosed with HGGs

or SBMs via postoperative pathological biopsy or stereotactic

biopsy, in accordance with the 2016 WHO classification criteria

for brain tumors; and (3) some SBM patients who were not

subjected to surgical or pathological biopsy were clinically

confirmed through follow-up (confirmation criteria included:

histopathologically confirmed malignant tumors elsewhere in the

body, with or without metastasis, and a significant reduction in

intracranial lesions following radiotherapy and chemotherapy). The

exclusion criteria were as follows: (1) patients with other brain

tumors confirmed via histopathology that were not HGGs or SBMs;

(2) insufficient peritumoral edema for further analysis; (3) any

pretreatment of brain lesions prior to the MRI examination; and (4)

poor MRI image quality due to motion artifacts. Ultimately, our

study included 43 patients (27 men and 16 women, with an average

age of 57.64 years and an age range of 17– 84 years). The selection

process for research subjects is depicted in Figure 1.
MRI protocols

In this study, all participants underwent MRI using a 3-T

scanner (MAGNETOM Skyra, Siemens Healthineers, Erlangen,

Germany) with a 32-channel head coil. Patients were positioned

in a standard supine orientation for structural and diffusion-

weighted MRI scans. The structural MRI protocol comprised axial

T1-weighted images (T1WI), axial T2-weighted images (T2WI),

axial DWI images, and axial contrast-enhanced 3D T1WI. The

diffusion-weighted imaging protocol involved axial DSI conducted

prior to the injection of the contrast agent, capturing 99 diffusion

directions and 11 b-values (specifically, 0 s/mm2, 350 s/mm2, 650 s/

mm2, 950 s/mm2, 1,000 s/mm2, 1,350 s/mm2, 1,650 s/mm2, 1,700 s/
Frontiers in Oncology 03
mm2, 2,000 s/mm2, 2,700 s/mm2, and 3,000 s/mm2) over a duration

of 12 min. Table 1 provides details on the specific parameters for

each MRI sequence. The imaging coverage was designed to

encompass the entire brain comprehensively, maintaining

consistency across all axial sequences. The orientation of the

scanning plane was aligned parallel to the anterior commissure–

posterior commissure (AC-PC) line.
Reconstruction and segmentation

All DSI data, initially stored in DICOM format, were converted

to NIfTI format utilizing the DCM2NII tool. Subsequently,

diffusion parameter models of DTI, DKI, MAP-MRI, and NODDI

were reconstructed using in-house postprocessing software

(NeuDiLab), which is based on the Diffusion Imaging in Python

(DIPY) framework (https://dipy.org). The Elastix software (http://

Elastix.isi.uu.nl/) was used to register all diffusion parameter models

with axial contrast-enhanced T1W images, ensuring alignment

within the same imaging space. For the registration of diffusion

images, baseline data with contrast-enhanced T1W images were

used. The quantitative analysis was conducted by a radiologist with

3 years of experience in neuroradiology, under the mentorship of a

senior radiologist with 10 years of clinical neuroradiology

experience in MRI, for the delineation of the regions of interest

(ROIs Both radiologists were blind to the histological findings.

Discrepancies were resolved through consensus. The ITK-SNAP

(www.itk-snap.org) was used for the manual delineation of ROIs on

contrast-enhanced T1WI and T2WI images. In identifying the

ROIs, the area of significant enhancement within the maximum

cross-sectional area of the tumor parenchyma was marked as the

contrast-enhancing tumor ROIs, while the high-signal area on
FIGURE 1

Flowchart illustrating the selection of the study population. HGGs, high-grade gliomas; SBMs, solitary brain metastases.
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T2WI without enhancement was designated as the peritumoral

edema ROIs. Regions suspected of containing necrotic, calcified, or

cystic components were manually excluded. Ultimately, the

delineated ROIs were transferred to the corresponding registered

diffusion parameter model diagrams for the same patient using

ITK-SNAP software, facilitating the calculation of average

quantitative parameters for both the contrast-enhancing tumor

area and peritumoral edema areas.
Statistical analysis

The diffusion parameters of contrast-enhancing tumors and

peritumoral edema were quantified. The Shapiro–Wilk test and the

Levene F-test were used to assess normality and homogeneity of

variance across all diffusion metrics. To evaluate differences in

individual diffusion parameters, either an independent Student’s

t-test or the Mann–Whitney U test was utilized. Furthermore,

quantitative indicators showing significant statistical differences

between HGGs and SBMs were integrated and analyzed using

multiple logistic regression to develop a combined model. The

performance of each parameter and the combined models was

evaluated using the receiver operating characteristic (ROC) and the

corresponding area under the ROC curve (AUC). Statistical metrics,

including the calculation of the best threshold, specificity,

sensitivity, AUC, and the 95% confidence interval (CI), were

conducted using SPSS software (version 26.0, IBM, Armonk, NY,

USA) to determine their efficacy in distinguishing between HGGs

and SBMs. Pairwise comparisons of the ROC curves were also

executed using the DeLong test. A two-tailed p < 0.05 was

considered statistically significant.
Results

Characteristics of the study participants

Among the 43 enrolled patients, 17 (10 men and seven women;

mean age, 58.11 years; age, 17–84 years) were confirmed to have

HGGs, while 26 (17 men and nine women; mean age, 57.07 years;
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age, 26–73 years) were diagnosed with SBM based on

histopathological examination or clinical follow-up. The primary

sites of SBMs included 15 patients with lung carcinoma, three with

breast cancer, two with ovarian cancer, one with esophageal cancer,

one with gastric cancer, one with colon cancer, one with renal

cancer, one with nasopharyngeal carcinoma, and one with

atrial lymphoma.
Comparison of diffusion parameters
between HGGs and SBMs groups

The mappings of diffusion parameters, including DWI_ADC,

DTI_AD, DTI_RD, DTI_MD, DTI_FA, DKI_AK, DKI_RK,

DKI_MK, DKI_AD, DKI_RD, DKI_MD, DKI_FA, MAP_NG,

MAP_NGax , MAP_NGrad , MAP_MSD, MAP_QIV ,

MAP_RTOP, MAP_RTAP, MAP_RTPP, NODDI_Vic ,

NODDI_Viso, and NODDI_ODI, from one patient with HGG

and one with SBM are shown in Table 2. As shown in Table 2,

DTI_AD, DTI_RD, DTI_MD, DKI_RD, DKI_MD, MAP_MSD,

and NODDI_Viso of the peritumoral edema were significantly lower

in the HGGs compared to SBMs (p = 0.004, p = 0.030, p = 0.026,

p = 0.044, p = 0.026, p = 0.017, and p = 0.001, respectively). In

contrast, MAP_RTPP of the peritumoral edema was significantly

higher in the HGGs than in the SBMs (p = 0.039). No obvious

differences were found among all other diffusion parameters in the

contrast-enhancing tumors or peritumoral edema between the two

groups (p > 0.05). Figure 2 shows the violin diagram of the

significant diffusion parameters in peritumoral edema.
Distinguishing performance of diffusion
parameters between HGGs and
SBMs groups

ROC curve analyses of the significant diffusion parameters of

the peritumoral edema are shown in Table 3 and Figure 3. The best

individual metrics for DTI, DKI, MAP-MRI, and NODDI were

DTI_AD, DKI_MD, MAP_MSD, and NODDI_Viso, respectively

(AUC = 0.779, 0.718, 0.733, and 0.809, respectively). Among these
TABLE 1 Imaging sequences and acquisition parameters of structural and diffusion MRI.

Parameters T1WI T2WI DWI 3D T1WI DSI

TR (ms) 2,020 9,000 5,160 2,300 6,700

TE (ms) 17 93 61 2.34 108

TA 1 min 33 s 2 min 24 s 1 min 59 s 3 min 05 s 12 min

FOV (mm2) 220 × 220 220 × 220 220 × 220 220 × 220 250 × 250

Thickness (mm) 5 5 5 3 2

Slices 26 26 26 48 68

b-value (s/mm2) – – 0–1,000 – 0–3,000
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion weighted imaging; DSI, diffusion spectrum imaging; TR, time of repeatation; TE, time of echo; TA, scan time; FOV,
field of view.
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metrics, NODDI_Viso had the highest AUC of 0.809, achieving

93.3% sensitivity and 59.9% specificity, with a 95% CI of 0.671 to

0.947, and the best cut-off value of 0.302 for distinguishing HGGs.

The DeLong test was used for pairwise comparison of the ROC

curves, revealing no significant differences between the parameters

(all p > 0.05). When combined to create a multiple logistic

regression analysis model, the combined model of DTI_AD,

DKI_RD, and NODDI_Viso showed better diagnostic efficacy

(AUC: 0.897, 95% CI: 0.799 to 0.995, sensitivity: 86.7%,

specificity: 77.3%) compared to any single parameter models,
Frontiers in Oncology 05
although this difference was not statistically significant. The

typical cases of HGGs and SBMs are shown in Figures 4, 5.
Discussion

This study used a 12-min diffusion sequence to investigate the

ability of NODDI, MAP, DKI, DTI, and DWI to distinguish

between GBM and SBM. All parameters of NODDI, MAP, DKI,

DTI, and DWI were reconstructed using specialized postprocessing
TABLE 2 All diffusion parameters in the contrast-enhancing tumor or peritumoral edema between HGGs and SBMs.

Parameters Contrast-enhancing tumor
p-value

Peritumoral edema
p-value

HGGs (n = 17) SBMs (n = 26) HGGs (n = 17) SBMs (n = 26)

DWI

ADC 1.168 ± 0.037 1.188 ± 0.052 0.951 1.430 ± 0.032 1.493 ± 0.021 0.095

DTI

AD 1.183 ± 0.058 1.368 ± 0.069 0.477 1.631 ± 0.066 1.841 ± 0.025 0.004**

RD 1.162 ± 0.054 1.182 ± 0.056 0.806 1.364 ± 0.056 1.523 ± 0.030 0.030*

MD 1.236 ± 0.054 1.256 ± 0.067 0.688 1.045 ± 0.059 1.638 ± 0.031 0.026*

FA 0.125 ± 0.015 0.104 ± 0.008 0.293 0.140 ± 0.007 0.133 ± 0.007 0.531

DKI

AK 0.620 ± 0.046 0.672 ± 0.044 0.386 0.453 ± 0.031 0.409 ± 0.010 0.338

RK 0.673 ± 0.042 0.708 ± 0.043 0.571 0.571 ± 0.028 0.520 ± 0.014 0.421

MK 0.647 ± 0.043 0.688 ± 0.044 0.599 0.506 ± 0.028 0.467 ± 0.012 0.496

ADk 1.565 ± 0.066 1.568 ± 0.083 0.734 1.857 ± 0.063 1.936 ± 0.086 0.101

RDk 1.313 ± 0.062 1.334 ± 0.065 0.821 1.536 ± 0.062 1.705 ± 0.032 0.044*

MDk 1.397 ± 0.062 1.411 ± 0.070 0.891 1.622 ± 0.063 1.822 ± 0.029 0.026*

FAk 0.183 ± 0.013 0.160 ± 0.007 0.089 0.192 ± 0.008 0.178 ± 0.006 0.164

MAP-MRI

NG 0.157 ± 0.013 0.169 ± 0.012 0.536 0.118 ± 0.008 0.106 ± 0.004 0.404

NGAx 0.132 ± 0.010 0.145 ± 0.009 0.347 0.101 ± 0.007 0.090 ± 0.003 0.421

NGRad 0.084 ± 0.008 0.094 ± 0.007 0.386 0.059 ± 0.005 0.052 ± 0.002 0.370

MSD 22.214 ± 0.957 22.267 ± 1.063 0.972 25.684 ± 0.966 28.710 ± 0.506 0.017*

QIV 62.694 ± 5.931 60.510 ± 8.418 0.353 110.440 ± 9.572 128.436 ± 7.234 0.136

RTOP 2.268 ± 0.318 2.547 ± 0.359 0.496 1.476 ± 0.202 1.149 ± 0.042 0.122

RTAP 3.565 ± 0.290 3.659 ± 0.313 0.710 2.784 ± 0.212 2.422 ± 0.064 0.164

RTPP 5.074 ± 0.193 5.188 ± 0.228 0.421 4.428 ± 0.132 4.183 ± 0.031 0.039*

NODDI

Vic 0.294 ± 0.034 0.343 ± 0.036 0.421 0.177 ± 0.023 0.151 ± 0.008 0.421

Viso 0.187 ± 0.022 0.239 ± 0.027 0.164 0.236 ± 0.019 0.343 ± 0.020 0.001**

ODI 0.456 ± 0.042 0.551 ± 0.039 0.111 0.246 ± 0.025 0.214 ± 0.015 0.155
All data are represented as mean ± standard deviation. *p < 0.05; **p < 0.01. FA, AK, RK, MK, FAk, NG, NGAx, NGRad, Vic, Viso, and ODI are dimensionless. The units of ADC, AD, RD, MD,
ADk, RDk, and MDk are 10{sp}−3{/sp} mm2/s; MSD (× 10−5 mm2), QIV (× 10−10 mm5), RTOP (× 105 mm−3), RTAP (× 103 mm−2), and RTPP (× 101 mm−1).
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tools. Our results confirmed that HGGs and SBMs showed

distinctive NODDI, MAP-MRI, DKI, and DTI-based diffusion

parameters in the peritumoral edema region, while no differences

were observed for any of the diffusion parameters in the contrast-

enhancing tumor region. NODDI-based peritumoral Viso is useful

for distinguishing GBM and SBM, and the combination of

DTI_AD, DKI_RD, and NODDI_Viso further enhances

classification accuracy.

Patients diagnosed with HGG or SBM exhibit divergent

treatment pathways and survival rates, underscoring the critical

importance of noninvasive and accurate differential diagnoses (21).

Relying solely on conventional MRI techniques to differentiate

between these malignancies poses considerable difficulties (7).

Recent advancements in diffusion-weighted MRI technology have

significantly enhanced our capability to detect microstructural

alterations within brain tissue. Traditional Gaussian probability

distribution models inadequately capture the intricate

microanatomy of complex brain tissues. In contrast, non-
Frontiers in Oncology 06
Gaussian diffusion models, such as NODDI, MAP-MRI, and DKI

offer a more accurate representation of water molecule dispersion,

thereby more effectively reflecting the heterogeneity and complexity

of the tissue microenvironment (22).

NODDI is an increasingly popular DWI technique with

significant potential for clinical studies (23), as it provides a

three-compartment microstructure model (intracellular,

extracellular, and cerebrospinal fluid (CSF)) for each voxel. This

approach can simultaneously describe the microstructural

characteristics of dendrites and axons in both gray and white

matter, providing more specific neuronal change data than

standard DTI analysis (16). In our study, we demonstrated that

NODDI-based Viso probably outperformed other non-Gaussian or

Gaussian diffusion metrics in differentiating between HGGs and

SBMs. Although no single diffusion parameter can completely

capture the complexity of neural tissue, our results suggest that

Viso may serve as a sensitive imaging biomarker in neurooncology

research and warrants further investigation (8).
TABLE 3 Diagnostic performance for different MRI diffusion parameters.

Parameters Cutoff value AUC Sensitivity Specificity 95% CI

DTI_AD 1.713 0.779 46.7 95.5 0.629–0.929

DTI_RD 1.405 0.712 53.3 86.4 0.538–0.886

DTI_MD 1.658 0.718 66.7 36.4 0.547–0.890

DKI_RD 1.518 0.697 40.0 95.5 0.518–0.876

DKI_MD 1.731 0.718 60.0 77.3 0.546–0.891

MAP_MSD 26.104 0.733 46.7 95.5 0.566–0.901

MAP_RTPP 4.348 0.652 40.0 90.9 0.467–0.836

NODDI_Viso 0.302 0.809 93.3 59.1 0.671–0.947

The combined model 0.633 0.897 86.7 77.3 0.799–0.995
95% CI, 95% confidence interval.
FIGURE 2

Violin diagram of significant diffusion parameters in peritumoral edema. *p < 0.05; **p < 0.01.
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FIGURE 4

A 41-year-old man histopathologically confirmed to have isolated brain metastases from lung carcinoma. (A) Postcontrast T1W images and (B) T2W
images represent an isolated contrast-enhancing tumor with peritumoral edema in the right frontal lobe. The red area represents the ROI of
peritumoral edema. Pseudocolorful maps show the lesion AD (C), MDk (D), MSD (E), and Viso (F) having a slight increase compared to the
contralateral normal white matter.
FIGURE 3

ROC curves of DTI_AD, DTI_RD, DTI_MD, DKI_RD, DKI_MD, MAP_MSD, MAP_RTPP, NODDI_Viso, and the combined model of the
peritumoral edema.
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NODDI-Viso represents isotropic Gaussian diffusion within the

tissue. Caverzasi et al. (24) applied the NODDI model to evaluate

various brain lesions. Unlike tumor-infiltrated edema, they found

that qualitative results of NODDI color images can be used to

distinguish vascular edema (e.g., brain metastases, lymphoma, and

toxoplasmosis), which is characterized by a significant increase in

Viso. Their findings are consistent with our results. Yoshihito et al.

(25) applied the NODDI model to distinguish glioblastoma from

brain metastases and found that the Viso of the peritumoral edema

was significantly lower in glioblastoma than in brain metastases.

They suggested that the increased signal on the Viso map is related

to vascular edema. This result can be explained by the degradation

of the extracellular matrix by acetyl heparanase and matrix

metalloproteinases, which allows metastatic brain tumors to grow

into the brain parenchyma in a dilated and noninfiltrating manner,

resulting in a high degree of isotropy (26). Our data support their

discovery and align with the hypotheses regarding vascular edema

and invasive edema (27).

MAP-MRI is a novel magnetic resonance diffusionmodel based on

DSI that more accurately reflects changes in the structure of white

matter fiber bundles in the brain. Our study found that HGGs showed

lower mean-squared displacement (MSD) and higher return-to-plane

probabilities (RTPP) values than SBMs. MSD is a second-order

displacement indicator of molecular diffusion distance and is more

sensitive than the mean diffusivity (MD) in DTI (28). RTPP represents
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the probability of water molecules returning to the radial direction of

the main diffusion direction (29). This phenomenon may occur

because GBM tumor cells produce a large amount of specific

extracellular matrix, mainly tenascin (30), which accumulates in the

extracellular matrix and acts as a component of cell adhesion and

migration (31). As a result, water molecules are more likely to return to

their starting positions, leading to more restricted diffusion.

For DTI, we found that SBMs showed higher peritumoral axial

diffusivity (AD), radial diffusivity (RD), and MD values than SBMs.

MD reveals the rate of diffusion motion of water molecules, while

AD and RD reflect the diffusion rates of water vertical and parallel

scalars along the white matter tracts, respectively (32). MD, AD, and

RD are all negatively correlated with the number of tumor cells (33,

34), which helps explain why metastatic lesions often form simple

vascular edema around the tumor, resulting in lower cell density. As

an extension of DTI, DKI-based RD and MD in our study showed

similar change patterns with DTI-based RD and MD.

Prior research has used various diffusion metrics in efforts to

distinguish tumor parenchymal areas between HGGs and SBMs;

however, the findings remain controversial (8, 25, 35, 36). In the

current study, despite utilizing five different diffusion models, no

significant differences were observed in the diffusion parameters

among the contrast-enhancing tumors of HGG and SBM. These

results imply that diffusion metrics may not effectively discern the

heterogeneity inherent to these distinct types of malignant tumors.
FIGURE 5

A 48-year-old woman histopathologically confirmed to have glioblastoma (WHO grade IV). (A) Postcontrast T1W images and (B) T2W images
represent contrast-enhancing tumors with peritumoral edema in the right parietal occipital lobe. The red area represents the ROI of peritumoral
edema. Pseudocolorful maps show the lesion AD (C), MDk (D), MSD (E), and Viso (F) having a slight increase compared to the contralateral normal
white matter.
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Our study encountered several limitations. Firstly, it was

constrained by a relatively small sample size. Secondly, the

majority of SBMs analyzed originated from lung cancer,

suggesting potential deviations in results when assessing SBMs

from other primary sites. Thirdly, the analysis was limited to

mean diffusion metrics within ROIs, and it was noted that the

tumor volume in HGG patients exceeded that in SBM patients.

Lastly, this research did not incorporate other functional MR

techniques, such as perfusion imaging and MR spectroscopy,

which are essential for comprehensive comparative studies.
Conclusions

Advanced diffusion MRI quantitative parameters derived from

NODDI, such as Viso, have the potential to enhance the capability to

differentiate between HGGs and SBMs. The integrated utilization of

these models is anticipated to enhance diagnostic accuracy and

refine MRI protocols for brain tumor assessment.
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