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Background: Accurate preoperative prediction of glioma is crucial for

developing individualized treatment decisions and assessing prognosis. In this

study, we aimed to establish and evaluate the value of integrated models by

incorporating the intratumoral and peritumoral features from conventional MRI

and clinical characteristics in the prediction of glioma grade.

Methods: A total of 213 glioma patients from two centers were included in the

retrospective analysis, among which, 132 patients were classified as the training

cohort and internal validation set, and the remaining 81 patients were zoned as

the independent external testing cohort. A total of 7728 features were extracted

from MRI sequences and various volumes of interest (VOIs). After feature

selection, 30 radiomic models depended on five sets of machine learning

classifiers, different MRI sequences, and four different combinations of

predictive feature sources, including features from the intratumoral region

only, features from the peritumoral edema region only, features from the

fusion area including intratumoral and peritumoral edema region (VOI-fusion),

and features from the intratumoral region with the addition of features from

peritumoral edema region (feature-fusion), were established to select the

optimal model. A nomogram based on the clinical parameter and optimal

radiomic model was constructed for predicting glioma grade in clinical practice.

Results: The intratumoral radiomic models based on contrast-enhanced T1-

weighted and T2-flair sequences outperformed those based on a single MRI

sequence. Moreover, the internal validation and independent external test

underscored that the XGBoost machine learning classifier, incorporating

features extracted from VOI-fusion, showed superior predictive efficiency in

differentiating between low-grade gliomas (LGG) and high-grade gliomas (HGG),

with an AUC of 0.805 in the external test. The radiomic models of VOI-fusion

yielded higher prediction efficiency than those of feature-fusion. Additionally, the

developed nomogram presented an optimal predictive efficacy with an AUC of

0.825 in the testing cohort.
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Conclusion: This study systematically investigated the effect of intratumoral and

peritumoral radiomics to predict glioma grading with conventional MRI. The

optimal model was the XGBoost classifier coupled radiomic model based on

VOI-fusion. The radiomic models that depended on VOI-fusion outperformed

those that depended on feature-fusion, suggesting that peritumoral features

should be rationally utilized in radiomic studies.
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1 Introduction

Glioma is a highly fatal disease that represents the most

frequent form of primary cancer in the central nervous system

(CNS), accounting for about 80% of all malignant tumors in the

brain (1–3). Due to the same standardized treatment that can result

in varying prognoses for different patients, it may be necessary to

make specialized treatment decisions based on the tumor grade in

clinical practice (4–6). Gliomas are categorized into grades I-IV in

the Central Nervous System Midstream Classification of the World

Health Organization (WHO) of 2021, with grades I-II being low-

grade gliomas (LGG) and grades III-IV being high-grade gliomas

(HGG) (7, 8). Accurate preoperative grading of gliomas is essential

for assessing prognosis and developing individualized treatment

plans, such as the extent of surgical resection, and the decision of

postoperative chemoradiotherapy (9).

In contemporary clinical practice, gliomas are graded based on

surgical or puncture histopathologic investigation (10). This

diagnostic method is intrusive and slow, though. Furthermore,

tissue biopsies from one area of the tumor might not be

indicative of the histology of the entire tumor due to the

recognized heterogeneity of gliomas and sampling error (11–13).

High-precision noninvasive solutions that can offer preoperative

grading information are therefore gaining popularity. Over the past

decades, magnetic resonance imaging (MRI) has emerged as a

crucial non-invasive diagnostic and assistant therapeutic

technique for brain tumors, which is used to aid in differential

diagnosis, guide treatment planning, and monitor therapy response

(14–17). Nevertheless, competent radiologists may easily spot

tumors from MRI sequences with the naked eye, gliomas are

difficult to discriminate based on grade because of the variability

and diversity of the tumors, which is undoubtedly a great challenge

for imaging technology (18–20).

Radiomics, a burgeoning discipline, employing automated data

mining algorithms to extract characteristics frommedical images in a

high-throughput manner, has been demonstrated notable

advancements in the realm of medical imaging applications (21–

24). These extracted features are then utilized by the machine to train

itself and generate the anticipated desired output (25–27). Notably,
02
recent progress has been achieved in the prediction of grading

gliomas through the utilization of preoperative MRI scans and

various machine learning methods. Gemini et al. evaluated the

capacity of the Visually AcceSAble Rembrandt Images (VASARI)

scoring system in predicting glioma grades and Isocitrate

Dehydrogenase (IDH) status, with a possible application in

machine learning (28). You et al. utilized traditional radiomics and

the VASARI standard to construct a model determining glioma

grade with an Area Under the Curve (AUC) of 0.966 (29). Wang

et al. created and assessed a multiparametric MRI-based radiomics

nomogram for predicting glioma grading (30). In recent years,

deep learning has exhibited excellent performance with broader

application prospects and deeper development in clinical

applications. Voort et al. developed a single multi-task

convolutional neural network that used preoperative MRI scans to

predict the molecular subtype and grade of glioma, and the

independent dataset evaluated that the approach achieved good

performance and generalized well (31). Li et al. compared

predictive models established by traditional radiomics and deep

learning based on multiparametric MRI for grading gliomas and

demonstrated that the latter performed better in most circumstances

(32). While deep learning-based models have very respectable

efficacy, it is commonly recognized as a black box that lacks

satisfactory explanatory power. However, these machine learning

approaches have focused mainly on the intratumoral region and

neglected the role of the peritumoral environment in glioma grade.

The peritumoral environment holds great potential and may

provide insightful information for clinical evaluation of the

aggressive biological behavior of the tumor (33–35). Regarding

intratumoral and peritumoral radiomic analysis, two main research

approaches emerged. The first involved feature-fusion, where features

from both intratumoral and peritumoral volumes of interest (VOIs)

were separately extracted and then integrated. The second method was

VOI-fusion, wherein the tumor region was expanded outward by a

specific range to create a new VOI combining intra- and peri-tumoral

areas. Radiomic features from this newly generated VOI were then

extracted for subsequent analysis. For instance, Li et al. independently

delineated the gross-tumor region and the peritumor region which was

defined as the parenchyma that fell within a 2-cm distance to the tumor
frontiersin.org

https://doi.org/10.3389/fonc.2024.1401977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tan et al. 10.3389/fonc.2024.1401977
boundary (35). The radiomic features extracted from the two regions

were merged and screened to build the radiomic model. Differently, Shi

et al. expanded the originally segmented masks of VOIs by five radial

distances outside the tumor at 1 mm intervals, creating five new VOIs

(34). The findings indicated that the radiomic signature derived from

peritumoral regions, specifically at dilated distances of 1 mm and

3 mm, demonstrated the most effective prediction performance in

different MRI sequences, respectively. To date, although numerous

studies have explored the radiomics of the peritumoral region, there

has been a lack of a definitive study that has determined which among

them is more persuasive and authoritative. The growth and infiltration

of gliomas lead to the disruption of the blood-brain barrier.

Consequently, there is a leakage of water, electrolytes, and proteins

from peritumoral blood vessels, resulting in increased water content

within the brain parenchyma, which contributes to the formation of

peripheral edema (32, 36). Given that the tumor and the surrounding

edematous area were closely interconnected, forming the

microenvironment crucial for tumor cell growth and infiltration, it

would be more reasonable to explore them as an integrated whole.

Drawing on the current state of research, the two methods

were performed and compared in our study. We conducted an

investigation focusing on the intratumor region and its surrounding

peritumoral edema region of preoperative MRI scans to predict the

grade of glioma. A total of 30 radiomic models, which depended on

four different combinations of predictive features source

(intratumoral VOI, peritumoral VOI, VOI-fusion, and feature-

fusion), five different machine learning classifiers, and different

MRI sequences, were established to select the optimal model, which

was used for the construction of the nomogram for accurately

predicting glioma grade, thereby assisting in the development of
Frontiers in Oncology 03
personalized treatment strategies for patients, ensuring they receive

optimal benefits.
2 Materials and methods

2.1 Study population

All procedures involving human participants in this study

adhered to the ethical guidelines outlined in the 1964 Declaration

of Helsinki and its subsequent revisions, as well as other applicable

ethical standards. The study was approved by the Ethics Committee

of Tianjin Medical University General Hospital and Qilu Hospital

of Shandong University Dezhou Hospital. Written informed

consent was waived due to the retrospective nature of the study.

This study retrospectively analyzed 213 patients with cerebral

gliomas from January 2019 to June 2023, who underwent

preoperative MRI followed by surgery. Among them, 132 patients

with glioma were from the Tianjin Medical University General

Hospital (center 1), which was classified as the training cohort and

internal validation set, and the remaining 81 patients were from the

Qilu Hospital of Shandong University Dezhou Hospital (center 2),

zoned as the independent external testing cohort. The inclusion and

exclusion criteria are shown in Figure 1.
2.2 Pathological assessment

Pathologists with more than 10 years of experience graded the

postoperative specimens, based on the 2021 WHO classification of
FIGURE 1

Flowchart of the incorporation and expulsion of glioma patients from two centers.
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CNS tumors, classifying gliomas into grades I-IV, with grades I-II

being LGG and grades III-IV being HGG (19).
2.3 MRI protocol and image preprocessing

Every patient underwent MRI scans within two weeks before

the surgery. All MRI studies were performed on the same type of

scanners of the two centers, which were acquired using a 3.0 T

scanner Discovery MR750 (GE Healthcare) with a 32-channel head

coil. MRI acquisition parameters are summarized in Supplementary

Table S1. The same MRI protocol was used for training and external

testing sets. Patients were told not to move their heads during the

scan to reduce the possible impact of head motion. The most useful

anatomical multi-contrast MRI sequences included contrast-

enhanced T1-weighted images and T2-weighted fluid-attenuated

inversion recovery (Flair) images that were analyzed for

further study.

For image preprocessing, the preoperative contrast-enhanced

T1 images and T2 flair images were spatially aligned by using the

rigid registration function of the well-validated Ants software from

3D Slicer (version: 5.2.2) software. Moreover, the quality of the

registration was carefully inspected for alignment of the ventricular

structures by a radiation oncologist. Then, the spacing of contrast-

enhanced T1 and T2 flair images was resampled to 1×1×1 mm³.
2.4 Image segmentation and
feature extraction

Manual segmentation of the contrast-enhanced T1 and T2 flair

images of target lesions was performed using 3D Slicer (version:

5.2.2) software by two radiologists who possessed over five years of

experience in a blinded manner to the study outcome, to eliminate

unstable radiomic features and minimize inter-individual

variability. Following clinical studies (8, 33), three VOIs have

been delineated, the intratumoral VOI based on the contrast-

enhanced T1 images, the peritumoral edema VOI including the

intratumor VOI based on the T2 flair images, and the peritumoral

edema VOI only. Given the spatial alignment between the contrast-

enhanced T1 and T2 flair images, the delineated VOIs were shared

across the two sequences.

In this study, the feature extraction was performed utilizing the

Pyradiomics module in Python 3.7.0. A comprehensive set of 1288

quantitative radiomic features was extracted individually from each

VOI for every sequence, obtaining a total of 7728 features. The

available features were categorized as follows: the three-dimensional

shape characteristics (n=14), the first-order statistical distribution

of voxel intensities (n=252), and the texture features, which

comprised gray-level co-occurrence matrix (GLCM) (n=308),

gray-level dependence matrix (GLDM) (n=196), gray-level run

length matrix (GLRLM) (n=224), gray level size zone matrix

(GLSZM) (n=224), and neighborhood gray-tone difference matrix

(NGTDM) (n=70).
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2.5 Feature selection

Six distinct radiomic models were developed independently by

employing extracted conventionally intratumoral radiomic features

from two sequences and three kinds of VOIs. Firstly, the TRT1

model was a radiomic model based on contrast-enhanced T1-

derived radiomic features from the intratumoral VOI. The TRT2

model was constructed by utilizing T2 flair-derived radiomic

features from the intratumoral VOI. The TR model was

established by integrating radiomic features originating from the

intratumoral VOI of both sequences. Then, the PR model was based

on the combined radiomic features from the peritumoral VOI of

both sequences. The TPRVOI-fusion model was constructed by

utilizing the radiomic features from the combining VOI of

intratumoral and peritumoral VOIs of both sequences. The

TPRfeature-fusion model was established by integrating radiomic

features from the intratumoral VOI and peritumoral VOI of both

sequences, separately.

Subsequently, Z-score normalization was applied to standardize

the intensity range of each radiomic feature across various models,

preventing the undue assignment of lower or higher weights to

specific features. In the feature selection process, three steps were

implemented for the training cohort. The ICC test was conducted

between the datasets obtained by the two radiologists. The value

exceeding 0.75 was deemed indicative of robust reproducibility and

reliability, leading to the exclusion of features with ICC<0.75 from

subsequent analysis (37, 38). Furthermore, Pearson’s rank

correlation coefficient was employed to evaluate the correlation

between feature pairs, with one feature randomly excluded from

each pair exhibiting a correlation coefficient > 0.9. Lastly, the least

absolute shrinkage and selection operator (LASSO) regression,

coupled with 10-fold cross-validation, was utilized to identify

informative features with non-zero coefficients and calculate the

corresponding feature weights.

In addition to radiomic features, machine learning models

based on predictive clinical parameters were also constructed,

which was referred to as the Clinical model in the study. For the

feature selection of clinical features, a two-step procedure was

performed. First, univariate analysis was used to identify

significant features with a p-value < 0.05. Then, the stepwise

multivariate analysis was employed to determine the independent

indicator with a p-value < 0.05, which was utilized as the predictive

clinical parameters for the prediction of glioma grade.
2.6 Model construction

Then, classifiers including Logistic Regression (LR), Support

Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost),

Decision Tree (DT), and Multilayer Perceptron (MLP), employed

the features filtrated by Lasso feature screening. In total, 30 machine

learning models were formulated by integrating the six distinct

radiomic models derived from various sequences and VOIs with the

five machine learning classifiers for predicting glioma grade.
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To ensure the stability of the prediction models, we randomly

divided 30% of the training cohort as an internal validation set, then

repeated the steps 100 times and averaged the results as the final

prediction result under the model. The performance of the model

was then evaluated on the independent external testing cohort,

which was not used during the development of the model.

To evaluate the effectiveness of these models, several

indicators, such as the AUC, accuracy, sensitivity, specificity,

Positive Predictive Value (PPV), and Negative Predictive Value

(NPV), were computed to evaluate the performance of the models.

Additionally, to demonstrate the precision and net benefit, both the

calibration curve and the decision curve analysis were employed.

Additionally, a nomogram using a logistic regression

algorithm involving the optimal radiomic model and significant

clinical features was developed to provide a straightforward visual

representation in clinical practice. The receiver operating

characteristic (ROC) curve, calibration curve, and decision curve

analysis were employed correspondingly.
2.7 Statistical analysis

Software version 3.7.0 of Python was used for statistical analysis.

The p-value for statistical significance was fixed at 0.05, and all

statistical tests were two-sided. For continuous variables, mean ± SD

was applied to communicate data that followed a normal distribution;
Frontiers in Oncology 05
and counts and percentages (n, %) were utilized to convey data for

categorical variables. To compare continuous and categorical variables,

t-tests and Chi-square were wielded. The prediction result of each

model was displayed on an ROC curve, and the prediction

performance was evaluated by calculating the AUC, accuracy,

sensitivity, specificity, PPV, and NPV. The Delong test was utilized

to verify the significance of the AUC from different ROC curves. The

Hosmer-Lemeshow test was employed to evaluate the fitting ability of

the model. The entire workflow of this study is illustrated in Figure 2.
3 Results

3.1 Patient characteristics

A total of 213 glioma patients fulfilled the requirements for

admission from the two centers, 132 patients from center 1 were

classified as the training cohort and internal validation set (84HGGs,

48LGGs, mean age 52 years), and the remaining 81 patients from

center 2 were zoned as the independent external testing cohort

(50HGGs, 31LGGs, mean age 52 years). Table 1 displays the

variations in the clinical features of the two groups from different

centers. It can be shown that the only factor that significantly

distinguished HGG from LGG was age (p<0.001). The gender and

tumor location were not proposed as potential predictors of

glioma grade.
FIGURE 2

The workflow of intratumoral and peritumoral radiomics and clinical analysis for image acquisition, segmentation, feature extraction and selection,
model comparison, and nomogram construction in our study.
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3.2 Machine learning models based on
intratumoral radiomics

For intratumoral radiomics, a total of 2576 (1288 contrast-

enhanced T1-based and 1288 T2 flair-based radiomic features)

features were extracted from each tumor region, containing

shape, first-order, and texture features. Hence the TRT1, TRT2,

and TR models included 1288, 1288, and 2576 radiomic features

respectively. The feature statistics of categories and distribution are

presented in Supplementary Figure S1. After feature filtration of the

ICC test and Pearson’s rank correlation coefficient, the LASSO with
Frontiers in Oncology 06
10-fold cross-validation was employed to select significant features

for building radiomic signatures. At last, 7 features were selected for

the TRT1 model (Supplementary Figure S2A), 7 features were

selected for the TRT2 model (Supplementary Figure S2B), and 6

features were selected for the TR model (Supplementary Figure

S2C), with weighting coefficient severally. The coefficients and mean

standard error (MSE) of the 10-fold validation are also exhibited in

Supplementary Figure S2.

Then, 15 machine learning models were constructed based on

the various radiomic models above-mentioned and machine

learning classifiers (LR, SVM, XGBoost, DT, and MLP) to
A B

D E F

C

FIGURE 3

The performance of intratumoral radiomic models based on the different MRI sequences. The performance of the internal validation employed 30%
of the training cohort randomly, and repeated the steps 100 times of TRT1 (A), TRT2 (B), and TR (C) models respectively. Comparison of ROC curves
for the external test of TRT1 (D), TRT2 (E), and TR (F) models of five machine learning models. The models that the mean AUC of the internal
validation throughout the 100 repetitions reached more than 0.7, were considered to be relatively stable and efficient. Comprehensively, the MLP-
based TR model (AUC = 0.734 in external test) based on the two MRI sequences was considered the optimal model and selected for further analysis.
TABLE 1 Demographic information and clinical characteristics of glioma patients.

Characteristics Center 1
LGG (n=48)

Center 1
HGG (n=84)

P value Center 2
LGG (n=31)

Center 2
HGG (n=50)

P value

Gender 0.493 0.21

Male 26 (54.17%) 52 (61.90%) 14 (45.16%) 31 (62.00%)

Female 22 (45.83%) 32 (38.10%) 17 (54.84%) 19 (38.00%)

Age 44.81±14.73 56.31±14.24 <0.001* 44.00±11.57 56.26±13.11 <0.001*

Tumor location 0.755 0.876

Right brain 25 (52.08%) 40 (47.62%) 16 (51.61%) 28 (56.00%)

Left brain 23 (47.92%) 44 (52.38%) 15 (48.39%) 22 (44.00%)
A t-test was used for age. A c2 test was used for the rest. *p<0.05
LGG, low-grade glioma; HGG, high-grade glioma.
Significant p values (p< 0.05) are indicated in bold.
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determine which model was optimal for glioma grade prediction.

The results of internal validation with randomized division repeated

100 times are shown in Figures 3A–C for the TRT1, TRT2, and TR

models in sequence. Among these five categories of machine

learning models, the MLP-based TRT1 model, LR-based TRT2

model, and MLP-based TR model, which had the highest mean

values of 0.76, 0.73, and 0.77, respectively, were considered the most

stable models. In the external testing set, the performance of each

category classifier on the TRT1 and TR model outperformed that of

the TRT2 model respectively (Figure 3E, Supplementary Table S2).

Ultimately, the MLP-based TR model (Figure 3F) with an AUC of

0.734 and MLP-based TRT1 model (Figure 3D) with an AUC of

0.733, were considered the optimal model in intratumoral

radiomics. Although the Delong test showed a non-significantly

statistic (p = 0.966) between these two models, the accuracy,

sensitivity, and specificity of the MLP-based TR model were

higher than the MLP-based TRT1 model. Hence, the TR model

based on double-sequence MRI was chosen for further research and

evaluation. The decision curves and calibration curves are also

depicted in Supplementary Figure S4.
3.3 Machine learning models based on
peritumoral radiomics

For peritumoral radiomics, the PR models contained 2576

radiomic features (Supplementary Figure S1). After feature

selection, 8 features were finally selected for the PR model
Frontiers in Oncology 07
(Supplementary Figure S3A). Figure 4A shows the performance of

100-repetition randomized division internal validation. In the

external testing cohort, only the AUC of the MLP-based PR

model exceeded 0.7, indicating a lower predictive performance

compared to the intratumoral radiomics (Figure 4D).
3.4 Machine learning models based on
intra- and peri-tumoral fusion radiomics

For intra- and peri-tumoral fusion radiomics, the TPRVOI-fusion

models contained 2576 radiomic features, while the TPRfeature-fusion

model included 5152 (Supplementary Figure S1), due to the

different combinations of feature sources. After radiomic features

dimensionality reduction, the LASSO regression finally selected 6

features for the TPRVOI-fusion model (Supplementary Figure S3B),

and 9 features for the TPRfeature-fusion model (Supplementary Figure

S3C). Analogically, the two radiomic models were combined with 5

kinds of classifiers previously mentioned to develop machine-

learning models for predicting glioma grade. The 100-repetition

randomized division internal validation was conducted to evaluate

the model’s performance stability. Except for the DT model, the

mean AUC of the other four machine learning models reached

more than 0.7 in internal validation, which were considered to be

relatively stable and efficient predicting models (Figures 4B, C). In

the external testing, each categorical classifier on the TPRVOI-fusion

model outperformed that of the TPRfeature-fusion model respectively

(Table 2, Figures 4E, F). The XGBoost-based TPRVOI-fusion model
A B

D E F

C

FIGURE 4

The performance of intratumoral and peritumoral radiomic models based on the two MRI sequences. The performance of the internal validation
employed 30% of the training cohort randomly, and repeated the steps 100 times of PR (A), TPRVOI-fusion (B), and TPRfeature-fusion (C) models
respectively. Comparison of ROC curves for the external test of PR (D), TPRVOI-fusion (E), and TPRfeature-fusion (F) models of five machine learning
models. Ultimately, the XGBoost-based TPRVOI-fusion model (AUC = 0.805 in the external test) was identified as the best model to develop
a nomogram.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1401977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tan et al. 10.3389/fonc.2024.1401977
with an AUC of 0.805 was considered the optimal model

(Figure 4E) in all intratumoral and/or peritumoral radiomic

models. Supplementary Figure S5 exhibits the decision curves and

calibration curves of corresponding models.
3.5 Nomogram construction

The predictive clinical parameters were chosen based on

univariate and multivariate analyses. As shown in Table 3, age

was found to be an independent predictor (OR 1.013; 95% CI 1.009-

1.016; p<0.001) for glioma grade prediction. Then, the Clinical

models were built based on the selected independent predictor and

5 kinds of classifiers.

Subsequently, in exploring the potential utility of the developed

MRI-based intratumoral and peritumoral radiomic models for

preoperative prediction of glioma grade, a nomogram was

constructed by combining the clinical independent predictor with

the optimal TPRVOI-fusion machine learning model (Figure 5A).
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The individual risk of being predicted as an HGG glioma was

derived from the cumulative total points obtained, which allowed

for the representation of the prediction model in a more simplified

and comprehensive manner. Figure 5B illustrates the superior

performance of the nomogram with an AUC of 0.825 (testing

cohort), in comparison to both the Clinical model and TPRVOI-fusion

radiomic model. After the Delong test, the nomogram was proved

to significantly outperform both of the models (Figure 5C), and the

net benefit in the DCA curve of the nomogram was higher than that

of the two models at threshold probabilities in the testing cohort

(Figure 5D). The Hosmer-Lemeshow test revealed favorable

calibration of the nomogram (p = 0.089), suggesting alignment

with an ideal fit without significant deviation (Figure 5E).
4 Discussion

In this study, we developed variously dependable models to

preoperatively predict grade glioma by using MRI images, which
TABLE 3 Univariate analysis and multivariate analysis of clinical characteristics in all patients.

Characteristics Univariate analysis multivariate analysis

OR 95%CI P value OR 95%CI P value

Gender 1.114 0.998-1.245 0.108

Age 1.013 1.009-1.016 <0.001* 1.013 1.009-1.016 <0.001*

Tumor location 1.011 0.906-1.129 0.872
OR, odds ratio; CI, confidence interval.
*p<0.05.
Significant p values (p< 0.05) are indicated in bold.
TABLE 2 Each evaluation index of PR, TPRVOI-fusion, and TPRfeature-fusion models of five machine learning classifiers in the external test.

Model Classifier AUC 95%CI Accuracy Sensitivity Specificity PPV NPV

PR LR 0.687 0.5689-0.8053 0.667 0.760 0.516 0.717 0.571

SVM 0.677 0.5570-0.7978 0.654 0.820 0.387 0.683 0.571

DT 0.541 0.4037-0.6776 0.556 0.540 0.581 0.675 0.439

XGBoost 0.628 0.5038-0.7529 0.630 0.680 0.548 0.708 0.515

MLP 0.703 0.5867-0.8197 0.667 0.840 0.387 0.689 0.600

TPR

VOI-fusion

LR 0.695 0.5718-0.8178 0.654 0.820 0.387 0.683 0.571

SVM 0.726 0.6147-0.8370 0.654 0.840 0.355 0.677 0.579

DT 0.741 0.6352-0.8474 0.704 0.800 0.548 0.741 0.630

XGBoost 0.805 0.7069-0.9034 0.691 0.820 0.484 0.719 0.625

MLP 0.719 0.6002-0.8385 0.667 0.840 0.387 0.689 0.600

TPR

feature-fusion

LR 0.675 0.5516-0.7993 0.704 0.800 0.548 0.741 0.630

SVM 0.684 0.5634-0.8044 0.691 0.800 0.516 0.727 0.615

DT 0.636 0.5181-0.7536 0.654 0.780 0.452 0.696 0.560

XGBoost 0.658 0.5293-0.7868 0.667 0.800 0.452 0.702 0.583

MLP 0.705 0.5880-0.8224 0.667 0.840 0.387 0.689 0.600
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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were constructed by radiomic features extracted from the

intratumoral region and peritumoral edema region. The XGBoost

machine learning classifier, incorporating features extracted from

the combination of intratumoral and peritumoral VOIs of MRI,

exhibited superior performance in distinguishing between LGG and

HGG. The internal validation and independent external test

underscored the robustness and generalizability of the model.

Additionally, the radiomic models derived from VOI-fusion

outperformed those derived from feature-fusion in our study,

suggesting more extensive investigations into peritumoral

radiomics were necessary to determine a more standardized

research method and provide more theoretical support for

radiomic studies. Finally, a nomogram based on the optimal

machine learning model and clinical parameter was established to

detect potential applications for predicting glioma grade in

clinical practice.

MRI serves as a routine tool for preliminary diagnosing,

treatment planning, and monitoring the treatment response of

patients with glioma (39, 40). Recent studies have consistently

demonstrated a robust association between radiomic features

extracted from multiparametric MRI scans and various

applications related to gliomas (2, 41). Kim et al. distinguished

between glioblastoma and primary CNS lymphoma using

multiparametric MRI sequences that included contrast-enhanced

T1-weighted, T2-weighted, and diffusion-weighted imaging (42).

Fifteen features were chosen from all imaging modalities, and the

model rendered an AUC of 0.979, demonstrating the potent

prediction potential of multi-parameter MRI. Nevertheless, the
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prediction of models based on a single MRI sequence was not

performed and compared. In our study, we constructed and

compared various radiomic models based on the intratumoral

region of the single contrast-enhanced T1 sequence, the single T2

flair sequence, and the combination of two sequences. As expected,

the radiomic models derived from dual-sequence MR imaging

outperformed those solely based on single contrast-enhanced T1

or single T2 flair sequence. Hence, multicontrast MRI-based

radiomics was poised to enhance the predictive capability for

glioma grading compared to that of single MRI sequence.

Previous studies have demonstrated that the heterogeneity of

gliomas extended beyond the tumor interior to include the

peritumoral region, where approximately 90% of gliomas recurred

(43, 44). Glioma cells interacted with molecules in the peritumoral

area to cause hypoxia, angiogenesis, and tumor infiltration, which

would ultimately accelerate the growth of gliomas (45).

Consequently, the significant potential existed in the peritumoral

environment, which could provide important information for

evaluating the aggressive biological behavior of the tumor

clinically (46, 47). In studies of other cancers, Ding et al.

investigated the effect of peritumoral features for predicting

sentinel lymph node metastasis in breast cancer (48). They

created peritumoral regions by expanding tumor regions of

interest at thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm. By

incorporating peritumoral features, the accuracy in the validation

set increased from 0.704 to 0.796. Shan et al. developed a prediction

model using peritumoral radiomic signatures extracted from a 2 cm

peritumoral area, assessing its effectiveness in predicting the early
A B

D EC

FIGURE 5

Clinical application of the nomogram constructed by radiomic model and clinical parameter in predicting the probability of being HGG for glioma
patients (A). The total point was obtained by adding the scores located on the TPRVOI-fusion and age coordinate axis together, and the vertically
corresponding value on the bottom line was the probability of being HGG. (B) Comparison of ROC curves of the Clinical model, TPRVOI-fusion

radiomic model, and nomogram. (C) The Delong test among the three models. The nomogram with an AUC of 0.825 in the test cohort, significantly
outperformed the other two models. The DCA (D) and calibration curves (E) of the three models. The nomogram had a higher net benefit in
predicting glioma grade and represented an ideal fit.
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recurrence of hepatocellular carcinoma post-curative treatment

(49). In the validation cohort, ROC curves and decision curves

revealed superior prediction efficiency and greater clinical benefits

with the peritumoral model. Consequently, the extraction and

integration of peritumoral and intratumoral features present a

promising avenue. However, existing radiomic-based techniques

for grading gliomas focused primarily on the interior of the tumor

and less on the peritumoral environment.

Peripheral edema and peritumor in gliomas are two distinct

concepts, the peritumor is typically an area within a specified radius

around the tumor, whereas the peripheral edema around a glioma is

irregular and frequently dispersed along the cerebral gyrus.

Previous research has shown that the degree of peritumoral

edema increases with the pathological grade and aggressiveness of

glioma (14). It was demonstrated that individuals with severe edema

(>10 mm) had mean or overall survival rates that were more than

50% lower than those with mild edema (8, 9, 44). Cheng et al.

compared the predictive power of the peritumor and peripheral

edema region for grading gliomas and found the most predictive

features were extracted from the peritumor region within an

immediate distance of 1 mm from the tumor core based on MRI

scans (8). Notably, the study did not explore a predictive model

based on the peripheral edema region in combination with the

intratumoral region. Considering that the prognosis of gliomas was

strongly correlated with the occurrence of peritumoral edema, we

attempted to investigate the radiomic models based on peripheral

edema for glioma grade.

Concerning the two main research approaches in intratumoral

and peritumoral radiomic analysis, which was simplified as feature-

fusion and VOI-fusion, definitive studies remained absent

establishing a persuasive conclusion about which approach made

more sense and produced more predictive features. Our study filled

this gap by conducting a comparative analysis of the two

methodologies for the first time. In the internal validation, the

AUC of models based on both two methods showed no obvious

differences, the difference in AUC was consistent across classifiers.

In the external test, each categorical classifier on the VOI-fusion

model outperformed that of the feature-fusion model respectively,

which indicated that the model constructed by extracting

features from the intratumoral and peritumoral regions as a

whole yielded higher prediction efficiency. Regarding VOI fusion,

the radiomic features, such as shape, first-order, and texture,

extracted comprehensive information taking into account both

intratumoral and peripheral edema region. Regarding feature

fusion, individual peritumoral features exhibited minimal

statistical variance in effectively distinguishing HGG from LGG,

rendering them prone to elimination during screening. In our

study, the constructed model just by feature fusion performed

poorly in external tests, indicating unstable performance. This

highlighted the need for further studies to unravel the intricacies

of intratumoral and peritumoral radiomics.

We assessed 1288 radiomics features for every MRI sequence,

and 7728 features in total, which was distinctly more than most

recent findings and included all significant variables for radiomic

analysis (30, 45). To identify the most optimal model for our

dataset, we applied the six previously discussed categories of
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radiomic models across five classifiers: LR, SVM, XGBoost, DT,

and MLP. This meticulous process ensured the exploration of fully

optimized models best suited for our data. Meanwhile, previous

studies have identified several clinical parameters crucial in

distinguishing between LGG and HGG. Wang et al. selected

clinical factors including age and sex as well as radiomic signature

to develop a nomogram to predict glioma grading (30). It is well-

recognized that HGG tends to be diagnosed in the elderly (31, 50).

Consistently, we found that only the age parameter was statistically

significant in predicting glioma grading, using the uni-multivariate

analyses. Despite the lower predictive capacity of clinical model

based solely on age feature compared to radiomic models, the

nomogram amalgamating clinical parameter and radiomic models

surpassed the predictive efficacy of either model in isolation. In

terms of the predictive efficiency of various machine learning

methods, Voort et al. utilized a deep learning model to predict

the grade of glioma, achieving an AUC of 0.81 in the external testing

cohort of 240 patients from 13 different institutes (31). Similarly, Li

et al. distinguished LGG from HGG by developing deep

convolutional neural network models, achieving an AUC of 0.89.

In comparison, the nomogram in our study showed great

performance with an AUC of 0.825 in the independent external

testing cohort, which was equivalent to the state-of-the-art

research aforementioned.

For all this, there were limitations in this study. First, our study

required a larger sample size from more centers to make the

findings more convincing. Second, only two MRI sequences were

employed in this study. Some advanced parametric MRI scans, such

as DWI and DTI, have shown powerful potential in tumor research,

and new scanning techniques should be explored (7, 18, 36). Third,

the VOIs in our study were manually annotated, which was time-

consuming and laborious, and even prone to inaccurate annotation.

Deep learning-based tumor segmentation methods are expected to

be employed to improve the accuracy and reliability of image

segmentation. Finally, our study lacked molecular subtyping of

the samples, which was critical for the prognosis of gliomas, and

planned to integrate such information in future studies.
5 Conclusion

In this work, we assessed the function of radiomic models of

intratumoral and peripheral edema regions in MRI scans for

predicting glioma grade and validated the methodology on an

independent external test dataset, which provided a fresh

viewpoint on the disease. The nomogram combined clinical

parameter and the optimal radiomic model was efficient in

glioma grade, and this non-invasive approach was expected to

promote clinical research and guide the management of

individualized glioma treatment.
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