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Bladder cancer is one of the leading causes of mortality globally. The

development of bladder cancer is closely associated with alternative splicing,

which regulates human gene expression and enhances the diversity of functional

proteins. Alternative splicing is a distinctive feature of bladder cancer, and as

such, it may hold promise as a therapeutic target. This review aims to

comprehensively discuss the current knowledge of alternative splicing in the

context of bladder cancer. We review the process of alternative splicing and its

regulation in bladder cancer. Moreover, we emphasize the significance of

abnormal alternative splicing and splicing factor irregularities during bladder

cancer progression. Finally, we explore the impact of alternative splicing on

bladder cancer drug resistance and the potential of alternative splicing as a

therapeutic target.
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Introduction

Bladder cancer is a prevalent form of cancer worldwide, and it ranks among the top 10

most commonly observed types of cancer (1). Due to the high recurrence rate of bladder

cancer, it has a strong tendency to metastasize and has limited treatment options. As such,

patients with bladder cancer suffer from a short survival time and a poor quality of life.

Moreover, bladder cancer is often diagnosed in the advanced stages because of its insidious

onset. For these reasons, bladder cancer is a significant healthcare burden.

Chemotherapy remains the primary treatment option for recurrent and metastatic

urothelial carcinoma; however, the efficacy of chemotherapy is limited. In recent years, the

advent of immunotherapy, particularly programmed cell death protein 1 (PD-1) and

programmed-death ligand 1 (PD-L1) inhibitors, has presented new therapeutic

opportunities for patients with bladder cancer (2). Consequently, identifying biomarkers

that can assist in the diagnosis and treatment of bladder cancer is of critical importance.
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Alternative splicing involves the conversion of pre-mRNA into

mature mRNA. Through different splicing methods, a single gene

can produce multiple distinct mature mRNAs, resulting in the

production of distinct proteins (3, 4). Alternative splicing

significantly contributes to the genetic and proteomic diversity of

eukaryotes (5, 6) and is mainly catalyzed by spliceosomes (7). After

identifying splicing signals (8) within pre-mRNA, spliceosomes

engage with more than 300 proteins, referred to as splicing

factors. Splicing factors bind to specific motifs or elements in the

pre-mRNA, named splicing regulatory elements (SREs). Depending

on their roles in splicing and their locations within the pre-mRNA,

SREs can be divided into four subtypes: exonic splicing enhancers

(ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers

(ISEs), and intronic splicing silencers (ISSs) (8–10) (Figure 1).

These splicing complexes mediate the formation of multiple splice

variants during different splicing events, such as exon skipping (SE),

mutually exclusive exons (MXE), alternative 5′ splice sites (A5SS),
alternative 3’ splice sites (A3SS), and intron retention (RI) (11)

(Figure 2). Alternative splicing events occur in more than 90% of

human genes and are precisely regulated within cells.

Alternative splicing frequently occurs in various disease states,

including tumors, and it is thought to be involved in tumor

progression. In fact, recent studies have revealed that alternative

splicing plays a pivotal role in tumorigenesis, progression, invasion,
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metastasis, angiogenesis, and drug resistance (12–15). Multiple

computational methods have been used to predict the roles of

alternative splicing in tumors (16). Notably, several tumor-

associated alternative splicing events have been identified in

bladder cancer (17–19), indicating that a correlation may exist

between alternative splicing and bladder cancer deterioration.

This review discusses the expression and function of splicing

factors and the alternative splicing events in bladder cancer at cell

lines, human or animal model level, and recent advancements in the

therapeutic approaches targeting alternative splicing.
Dysregulation of splicing-related
proteins in bladder cancer

Alternative splicing is a remarkably intricate biological process

that is meticulously regulated by the interplay between cis-elements

(splicing signals and SREs) and trans-elements (spliceosomes and

splicing factors) (Figure 1). These components give rise to a

sophisticated regulatory network that operates in a coordinated

and context-dependent manner.

Trans-elements are splicing-associated proteins that bind to

specific RNA sequences or motifs. Splicing factors are a group of

RNA binding factors that participate in the splicing of RNA
A

B

FIGURE 1

Alternative splicing. (A) Schematic representation of the stepwise assembly of the spliceosome from its small nuclear ribonucleoprotein (snRNP)
components. U1 snRNP recognizes and binds to the 5′ splicing site, U2 small nuclear RNA auxiliary factor 2 (U2AF2) binds to the polypyrimidine poly
(Y) tract, U2AF1 binds to the 3′ splicing site, and splicing factor 1 binds to the branch point, forming the pre-spliceosome complex E. Next, U2 snRNP
replaces splicing factor 1 on the branch point to form pre-spliceosome complex (A) The tri-snRNP, consisting of U5, U4, and U6 snRNPs, joins
complex A to form the pre-catalytic spliceosome complex (B) Thereafter, the U1 and U4 snRNPs leave, the U6 snRNP binds to the 5′ splicing site,
and NTC is recruited so that the U6 snRNP and the U2 snRNP can pair, thereby generating the catalytic spliceosome complex C. Two subsequent
transesterification reactions result in the creation of a post-splicing complex with intron exclusion and the formation of mature mRNA with
interconnected exons. (B) Roles of cis-acting sequences and trans-acting factors in determining the splicing code for splice site selection. RNA-
binding motif proteins, serine/arginine-rich family proteins (including SRSF2), and heterogeneous nuclear ribonucleoproteins bound to exonic or
intronic regulatory elements can promote (+) or prevent (−) the recognition of the 5′ splicing site by the U1 snRNP or the 3′ splicing site by splicing
factor 1, U2AF2, U2AF1, or U2 snRNP, thus affecting splice site choices and therefore alternative splicing decisions.
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precursors (20). Based on their functions, splicing factors are

divided into two categories: small nuclear ribonucleoproteins

(snRNPs) and non-snRNPs (21). After binding to pre-mRNAs,

splicing factors either facilitate or hamper the interaction between

spliceosomes and pre-mRNAs, suggesting their duality to either

activate or inhibit alternative splicing. The evidence pertaining to

protein changes associated with bladder cancer during RNA

splicing is discussed herein.
Serine/arginine-rich family

The serine/arginine-rich (SR) proteins, which include 12

evolutionarily conserved members (SRSF1–SRSF12), play a crucial

role in protein synthesis. These proteins are characterized by an N-

terminal RNA recognition motif and a C-terminal SR domain. SR

proteins are involved in mRNA trafficking, peptide synthesis, and

translation initiation complex formation (22) as well as pre-mRNA

splicing and alternative splicing (23).

A previous study showed that the SR proteins are among the

most dysregulated splicing factors in pan-cancers (24). Another

study demonstrated that SRSF9 is upregulated in several cancers,

including bladder cancer (25). Interestingly, patients with higher

SRSF9 expression tended to have better outcomes after

immunotherapy for bladder cancer (25). Furthermore, it has

been shown that SRSF7 and SRSF10 expressions were associated

with G3 tumors in non-muscle-invasive bladder cancer (26).

More recently, Zeng et al. reported that SRSF1 promoted bladder

cancer cell growth and migration by inducing exon 13 skipping of
Frontiers in Oncology 03
CD46 (27). Another study reported that SRSF3 expression was

significantly elevated in bladder cancer tissues. Moreover, SRSF3

knockdown or removal of the SRSF3-binding motifs suppressed

tumor cell growth by triggering A3SS activation within exon 18 of

ILF3 and promoting the skipping of exons 18 and 19, resulting in

the production of interleukin enhancer-binding factor 3 (ILF3)

isoforms 5 and 7 (28).

Taken together, this evidence demonstrates the potential of SR

proteins as promoters in bladder cancer. However, the

understanding of their role is still limited, and more in-depth

research is needed.
Heterogeneous nuclear
ribonucleoprotein family

The heterogeneous nuclear ribonucleoprotein (hnRNP) family

comprises a minimum of 20 members. These proteins possess

common domains that bind to splicing silencers, in turn affecting

splicing events, including constitutive splicing and alternative

splicing, across the entire human genome (29, 30). In bladder

cancer, hnRNPs participate in proliferation, apoptosis,

angiogenesis, and invasion, contributing to cancer development

and progression.

Protein hnRNP-A1 functions as an RNA-binding protein in

mRNA splicing to regulate intron removal, exon joining, and

mature mRNA formation. The multifaceted function of hnRNP-

A1 in regulating the alternative splicing of numerous gene variants

underscores its significance in bladder cancer—for instance,
FIGURE 2

Summary of constitutive and alternative splicing events. The boxes represent exons, and the gray regions represent introns. The basic patterns of
alternative splicing include exon skipping, alternative 5′ and 3′ splice sites, mutually exclusive exons, and intron retention.
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hnRNP-A1 mediates the c-Myc-enhanced pyruvate kinase (PK)

M2/PKM1 isoform switch by selectively including exon 10 and

excluding exon 9 during the alternative splicing of PKM pre-mRNA

(31). Meanwhile, hnRNP-A1 interacts with the ESE element of

CD46 mRNA, leading to exon 13 exclusion during splicing (32).

hnRNP-F is an RNA-binding protein that participates in

various biological processes, including alternative splicing (33)

and post-transcriptional modification (33, 34). Elevated hnRNP-F

has been observed in bladder cancer, suggesting that it may play a

role in tumorigenesis—for instance, Li et al. found that hnRNP-F

was required for tumor growth and induced metastasis in bladder

cancer. Specifically, hnRNP-F was significantly upregulated in

bladder cancer tissues and was correlated with a poor prognosis

in 103 patients with bladder cancer. When hnRNP-F was silenced

or enhanced, Snail1 expression changed at both the mRNA and

protein levels, implying that Snail1 may be a downstream target of

hnRNP-F (35). Recent studies have also indicated a connection

between hnRNP-F and phosphoinositide 3-kinase (PI3K)/protein

kinase B (Akt) signaling. Inhibition of the PI3K/Akt pathway using

the specific inhibitor LY294002 led to a significant decrease in

hnRNP-F expression (36).

Epithelial splicing regulatory protein (ESRP)1 and ESRP2 are

two RNA-binding proteins that belong to the hnRNP family. They

have been shown to regulate the alternative splicing of fibroblast

growth factor receptor 2 (FGFR2) pre-mRNA in epithelial tissues

(37). The role of ESRP1 and ESRP2 in promoting splicing is reliant

on the presence of ISE/ISS elements or the UGCAUG motif, which

enhance FGFR2 transcripts from exon IIIc to exon IIIb splicing

(38). Zhao et al. suggested that a decrease in ESRP1 or ESRP2

expression is related to lung metastasis in bladder cancer as it affects

the splicing of FGFR2 and macrophage polarization (39). The

hnRNP-F, hnRNP-H, and hnRNP-M proteins, which are closely

related to ESRPs, also contribute to FGFR2 splicing regulation.

Previous studies have shown that hnRNP-F, in association with

hnRNP-M and hnRNP-H, suppresses FGFR2 exon IIIc, but it does

not directly influence exon IIIb splicing (40, 41). However, no

studies have addressed the FGFR2 splicing regulation of hnRNP-F,

hnRNP-H, and hnRNP-M in bladder cancer.

According to previous studies, the complicated mechanisms

underlying hnRNP-L alternative splicing regulation have been well

studied in pan-cancers (42–45). Lv et al. (46) found that hnRNP-L

expression was negatively correlated with the overall survival rate of

155 patients with bladder cancer. HNRNPL knockdown

significantly inhibited cell proliferation and suppressed tumor

development by promoting cell cycle arrest and apoptosis and

inhibiting epithelial–mesenchymal transition. Moreover, it has

been shown that hnRNP-L inhibits mitogen-activated protein

kinase (MAPK) signaling. Therefore, the high expression of

hnRNP-L in bladder cancer may lead to a poor prognosis and

cancer development by suppressing intrinsic apoptotic signaling

and promoting MAPK signaling (47).

In terms of cancer diagnosis and treatment, several studies have

suggested that hnRNP-U may serve as a diagnostic marker for

various cancers (48–51). An analysis of The Cancer Genome Atlas

(TCGA) bladder cancer cohort also revealed a negative correlation

between high hnRNP-U expression and patient survival,
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highlighting its detrimental impact—for instance, Shi et al.

reported that hnRNP-U is highly expressed in bladder cancer,

and inhibited hnRNP-U may improve chemotherapy sensitivity

by enhancing cisplatin-induced apoptosis of bladder cancer cells

(52). Similarly, hnRNP-K has been identified as a key factor

associated with a poor prognosis in bladder cancer by influencing

the proliferation and chemoresistance of bladder cancer cells (53).

Polypyrimidine tract-binding protein 1 (PTBP1) plays an

essential role in splicing. It has demonstrated a positive

association with tumor growth and is associated with a poor

prognosis in various types of cancer (54–56). In bladder cancer,

PTBP1 expression was found to be positively related to lymphatic

metastasis, tumor stage, histological grade, and a poor patient

prognosis in 104 patients with bladder cancer (57). Moreover,

mechanistic studies have revealed that PTBP1 regulates massive

splicing events in bladder cancer. Georgilis et al. found that PTBP1

regulates the development of inflammation-driven cancers by

controlling exon 7 skipping of EXOC7 (58, 59). Xie reported that

PTBP1 promotes bladder cancer proliferation and metastasis by

modulating the alternative mRNA splicing of MEIS2-L and PKM2

(57). Moreover, PTBP1 regulates the corresponding splicing events

of numerous genes that are involved in tumor cell proliferation,

growth, and metastasis, such as TPM1, FAS,NUMB,MACF1, CD44,

CTNND1, and ACTN1 (60).
Spliceosome components

The spliceosome is a dynamic macromolecular complex that is

responsible for pre-mRNA splicing, including internal intron

removal and orderly exon connections (61–63). It is composed of

five snRNPs (U1, U2, U4, U5, and U6) and a group of spliceosome-

associated proteins. An snRNP comprises a small nuclear RNA

(snRNA) molecule and a specific group of SNRP proteins (64). The

SNRP proteins collectively form a structure that envelops the RNA

molecule. The SNRP proteins share a conserved SNRP domain that

regulates the step-by-step assembly of the snRNA (65, 66).

Mutations in SNRP proteins can affect splicing patterns,

potentially contributing to tumor development (67, 68).

The Sm proteins (B/B’, D1, D2, D3, E, F, and G) include seven

members that form a ring-like structure that encloses the RNA

molecule (64). Leili et al. (69) found that, of the 33 genes analyzed

using the elastic net method, eight had an impact on the survival of

1,381 patients with bladder cancer. Among these, the expression of

SNRPE was negatively correlated with survival time. However, to

date, there are no new findings detailing the potential functional

role of SNRP-E in bladder cancer.

Splicing factor 3A subunit 3 (SF3A3), which is encoded by

SF3A3, is correlated with tumor stage and the prognosis of 49

patients with bladder cancer (70). Mechanistically, the transcription

factor E2F6 interacts with KDM5C and binds to the promoter of

SF3A3, leading to the demethylation of the GpC island associated

with H3K4me2 and high SF3A3 expression.

Splicing factor 3B subunit 1 (SF3B1) is encoded by SF3B1 and is

a component of the U2 complex. It binds to the branch point

nucleotide along with SF3B3 and PHF5A in the pre-catalytic
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spliceosome (71). Somatic mutations in SF3B1 were initially

identified by whole-exome sequencing in myelodysplastic

syndrome (72), and they have since been identified in other

hematological malignancies and solid tumors (73–79). Notably,

Seiler et al. identified a specific SF3B1 mutation (p.E902K), which

was associated with A3SS events in bladder cancer samples (80).

However, no subsequent studies have analyzed the aberrant splicing

events caused by SF3B1 mutations in bladder cancer.
RNA-binding motif proteins

RNA-binding motif (RBM) proteins are a diverse family of

proteins that contain an RNA recognition motif (RRM) domain

that is involved in RNA binding. Several RBM proteins have been

studied in the context of bladder cancer, including RBM3, RBM10,

RBM24, RBM5, and RBMX. Among them, RBM3 has been

identified as a marker of a poor prognosis in urothelial carcinoma

(81, 82). Moreover, Seiler et al. reported a loss-of-function mutation

in RBM10, which led to the induction of exon inclusion events (80).

Other studies have shown that high RBM24 expression is associated

with a poor prognosis in 32 patients with bladder cancer via the

Runx1t1/TCF4/miR-625–5p positive feedback loop (83, 84). RBM5

is downregulated in bladder cancer, and its overexpression

promotes apoptosis and inhibits tumor growth. Mechanistically,

RBM5 is thought to promote tumor growth through a feedback

loop involving miR-432–5p and b-catenin (85). The most

thoroughly researched RBM protein in bladder cancer is RBMX,

which is a ubiquitously expressed nuclear RNA-binding protein.

Truncation mutations in RBMX have been observed in lung cancer

through genome sequencing, suggesting its potential as a tumor

suppressor (86). A previous study showed that RBMX competitively

inhibits the binding of hnRNP-A1 to sequences flanking exon 9 of

PKM through its RGG motif, resulting in a reduction in PKM2

expression and an increase in PKM1 expression. The attenuation of

PKM2 expression suppresses tumorigenicity and bladder cancer

progression. Additionally, RBMX inhibits aerobic glycolysis via

hnRNP-A1-dependent PKM alternative splicing, and it

counteracts the aggressive phenotype induced by PKM2

overexpression in bladder cancer cells (31).
Others

Junction plakoglobin (JUP, g-catenin) is a member of the

Armadillo protein family (87). JUP forms complexes with

adhesins and desmosomal adhesins, key components of the EXM

(88). These desmosomal proteins mediate cell–cell interactions and

signal transduction (89). JUP deletion leads to reduced cell contact,

increased invasion, and bladder cancer cell metastasis (90). In line

with this, the restoration of JUP expression could inhibit bladder

cancer cell migration and tumor progression, and patients with

bladder cancer with low JUP expression consistently exhibit poor

survival rates (91, 92). JUP has also been reported as a key splicing

factor that affects the metastasis and prognosis of other types of

cancer (87). In bladder cancer, Huang et al. (93) showed that JUP is
Frontiers in Oncology 05
one of the splicing factors associated with overall survival-related

alternative splicing events by the TCGA database.

Small nucleolar RNA (snoRNA) is a type of non-coding RNA

that ranges in length from 60 to 300 nt. snoRNAs mainly originate

from the introns of vertebrate host genes (94, 95). Initially

considered to be transcriptional noise, snoRNAs are now known

to regulate various biological processes (96–99). snoRNA

dysregulation has been implicated in the development and

progression of numerous diseases (100–104). Rui (105)

investigated the correlation between five candidate snoRNAs

(U49A, U3, SNORD19B, SNORD114–1, and SNORD113–9) and

alternative splicing. Protein–protein interaction network analysis

revealed that the related alternative splicing mRNAs clustered well.

Moreover, Gene Ontology enrichment analysis revealed a

significant enrichment of these snoRNAs related to EXM and

focal adhesion. These findings suggest that snoRNAs may have an

impact on alternative splicing events and potentially contribute to

bladder cancer progression. In a case–control study involving 580

patients with bladder cancer and 1,101 control subjects, the single-

nucleotide polymorphism rs978416 G>A in RBFOX3 was

potentially associated with bladder cancer predisposition in the

Chinese population (106), indicating its potential as a novel

biomarker of bladder cancer risk.

ALYREF, also known as RNA methyltransferase Aly/REF

export factor, is an important “reader” protein that is located in

the nucleus and that is involved in RNA processing and transport in

cancer biology. It specifically recognizes and binds to m5C

(methylated cytosine) sites within RNA molecules, thereby

facilitating efficient RNA export from the nucleus to the

cytoplasm. Notably, ALYREF interacts with various splicing

factors, including SRSF3, PRPF3, and DHX16, suggesting its

involvement in the intricate regulation of mRNA splicing (107).

The function of ALYREF has been reported in the context of

bladder cancer, where it leads to the occurrence of intron

retention events in RABL6 and TK1. Furthermore, an intriguing

observation has been made regarding the m5C-dependent interplay

between ALYREF and NOP2 Sun methyltransferase 2. Their cross-

regulation promotes malignancy in urothelial bladder cancer,

primarily by facilitating mRNA splicing and stabilization (108).

These findings provide valuable insights into the underlying

molecular mechanisms governing bladder cancer malignancy.

NONO, which is a member of the Drosophila behavior human

splicing (DBHS) family, is an RNA-binding protein that is involved

in diverse gene expression processes. Alongside its paralogs splicing

factor proline and glutamine rich (SFPQ) and paraspeckle

component 1 (PSPC1), NONO is predominantly localized to the

nucleus and possesses two RRMs. These multifunctional proteins

exert their regulatory roles by impacting various aspects of gene

expression, such as transcriptional activation, inhibition, RNA

splicing, stabilization, and export (109). NONO modulates the

splicing events of SETMAR in bladder cancer by directly binding

to its specific motifs, primarily through the RRM2 domain.

Meanwhile, NONO interacts with the splicing factor SFPQ to

further influence SETMAR alternative splicing. The activity of

NONO is also associated with the suppression of bladder cancer

cell metastasis (110). These findings illustrate the importance of
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NONO in bladder cancer progression and metastasis, shedding

light on its potential as a therapeutic target in combating

this disease.

Poly (U) binding specificity factor 60 (PUF60) participates in

transcriptional regulation and splicing through direct binding to

DNA or RNA (111). Although PUF60 is poorly studied in the

context of cancer, its high expression has been detected in bladder

cancer. Moreover, Long et al. identified a direct association between

PUF60 and bladder cancer prognosis and aggressiveness by TCGA

database (112). Mechanistically, this relationship was attributed to

the transcriptional regulation of aurora kinase A (AURKA) by

PUF60 on bladder cancer cell behavior (112). However, further

research is needed to explore the precise mechanisms of PUF60 in

bladder cancer and its potential as a therapeutic target.

Alternative splicing–splicing factor regulatory network analysis

has identified several splicing factors, including pre-mRNA

processing factor 39 (PRPF39), LUC7-like 3 pre-mRNA splicing

factor (LUC7L), heat shock protein family A member 8 (HSPA8),

and DEAD-box helicase 21 (DDX21), as potential biomarkers for

bladder cancer (113). Moreover, eukaryotic translation initiation

factor 3 subunit A (EIF3A), DDX21, SDE2, transportin 1 (TNPO1),

and ring finger protein 40 (RNF40) are thought to mediate multiple

alternative splicing events in bladder cancer, implying their essential

roles in the development and progression of this disease (114). It is

noteworthy that DDX21 has been associated with bladder cancer in

several studies, but there are no mechanistic studies evaluating

its involvement.
Aberrant alternative splicing events of
cancer-related genes associated with
bladder cancer

It has been shown that there is usually a dysregulation of

alternative splicing events in tumor, that is, a gene due to the

occurrence of abnormal splicing leads to the large production of its

pro-cancerous variants, which affects all aspects of the tumor. This

section summarizes the aberrant splicing events that affect the

TIME, prognosis, and disease progression of bladder cancer and

summarizes them in Table 1.
Alternative splicing events associated with
tumor immune microenvironment

The tumor immune microenvironment (TIME) is composed of

tumor cells, stromal cells, micro-vessels, interstitial fluid, and

infiltrating cells, and it plays a crucial role in tumor occurrence,

progression, and treatment (116–118). Evidence has suggested that

the abnormal regulation of alternative splicing events has a

significant impact on the composition and function of the TIME,

ultimately influencing the prognosis of patients with bladder cancer.

In bladder cancer, aberrant alternative splicing events have emerged

as powerful biomarkers for evaluating the immune status,

predicting prognosis, and identifying potential targeted therapies
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specifically in muscle-invasive bladder cancer (18, 85). A few

notable studies have investigated the alternative splicing events of

immune-related genes in bladder cancer—for example, the study of

Li et al. (113) identified significant differences in the alternative

splicing of PTGER3 between bladder cancer tissues and healthy

tissues using gene differential expression analysis (Figure 3).

Patients with higher prostaglandin E receptor 3 (PTGER3)

expression exhibited shorter overall survival but had higher

immune checkpoint-related gene expression, more significant

enrichment of immune signature-related genes, and a greater

number of infiltrating immune cells compared with the low-

expression group. Furthermore, Yu et al. confirmed the

relationship between TRMU expression and immune cells and

checkpoint genes using the TIMER database (18). These studies

have provided insights into the potential roles of alternative splicing

events in immune-related targets and their associations with

immune activation and prognosis in bladder cancer. However,

further research is still needed to explore the full extent of

alternative splicing events in immune-related genes and their

functional consequences in bladder cancer.
Alternative splicing events associated with
bladder cancer proliferation and apoptosis

Splicing defects in many vital genes are associated with tumor

cell proliferation (119–121). The androgen receptor, which is a

member of the steroid receptor family of transcription factors, is

crucial for mediating androgen signaling, specifically testosterone

and dihydrotestosterone signaling (122, 123). The study of

Kimberley et al. (124) found that the majority of bladder cancer

cells expressed different levels of low-molecular-weight (LMW)

androgen receptor isoforms, while a small number expressed the

full-length androgen receptor. Knockdown of total androgen

receptor isoforms using silencing RNA reduced cell survival and

triggered apoptosis, along with increasing the expression of nuclear

androgen receptors. This finding indicates that LMW androgen

receptor isoforms are normally present in bladder cancer cells and

contribute to cell viability.

The C-terminal JmjC domain of UTX (ubiquitously transcribed

tetratricopeptide repeat, X chromosome) is historically recognized

for its histone demethylation function, contributing to its

pathophysiological significance (125). In a previous study,

multiple isoforms of UTX were identified in 5,637 cells. The three

most abundant isoforms were lacking exon 14 (39% of UTX

transcripts), exons 14 and 16 (27% of UTX transcripts), and the

“long” isoform comprising all 30 exons (14% of UTX transcripts).

Other identified isoforms included the isoforms lacking exon 16

(8%), exon 13 (6%), and exons 13 and 16 (4%), and there were

several other isoforms with frequencies below 1%. The isoform

lacking exon 14 exhibited weaker binding to chromatin, potentially

due to its reduced nuclear abundance. The isoforms lacking exon 14

and exon 16 were unable to bind the polycomb repressive–

deubiquitinase complex (PR-DUB) and mitotic deacetylase

complex (MiDAC), which impaired the functional properties of

the encoded protein (126).
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TABLE 1 Summary of splicing signals in bladder cancer (BC).

SF gene Splicing
event

Functional
role

Molecular mechanism RNA motif Cell Reference

hnRNP
A1

PKM Exon 10
inclusion and
exon 9 exclusion

Inducing
aggressive
phenotype of the
BC cells

PKM2 can increase glucose uptake
and lactate production

Intronic UAGGGC
sequences flanking
exon 9

5637;T24 (31)

RBMX Exon 10
inclusion and
exon 9 exclusion

Attenuating the
tumorigenicity
and progression
of BC

PKM1 can inhibit glucose uptake
and lactate production

RBMX competitively
inhibited the
combination of the
RGG motif in hnRNP
A1 and the sequences
flanking PKM exon 9

5637;T24

NONO SETMAR Exon2 inclusion Promoting
metastasis

SETMAR-L mediated
H3K27 trimethylation

CAGGCAGG sequence UM-UC-
3;T24

(110)

ESRP1 FGFR2 Shift splice form
of FGFR2 IIIb to
FGFR2 IIIc

Promoting
proliferation,
migration,
and invasion

Affecting macrophage polarization Binding to GU-rich
sequences in ISE/ISS-3

T24; RT4 (39)

ESRP2

PTBP1 MEIS2 MEIS2 exon
2 inclusion

Promoting
migration
and invasion

MEIS2-L
overexpression rescued
MMP9 expression

Binding
sequence (UCUUC)

UM-UC-
3;T24

(26, 57)

PKM PKM exon 10
inclusion and
exon 9 exclusion

Promoting
proliferation

PKM2 overexpression abolished
downregulation of CCND1
expression

Not given UM-UC-3;
T24; RT4;
RT112; EJ

EXOC7 Exon 7 skipping Proto-
cancer action

EXOC7 can regulate the pro-
tumorigenic effects of the SASP

Binding PTBP1 RNA
binding motifs on the
upstream of exon 7

Senescent
cells

(59)

TPM1 Exon 6a
inclusion and
exon
6b exclusion

Cytoskeleton
organization

Not given Promoting exon
inclusion when it binds
in the downstream
intron and exon
skipping when it binds
in the upstream intron

RT4,
RT112; EJ

(26)

FAS Exon 6 skipping Related to
cell survival

Not given RT4,
RT112; EJ

NUMB Exon
12 inclusion

Promoting
proliferation

Not given RT4,
RT112; EJ

MACF1 Exon
99 inclusion

cytoskeleton
organization

RT112

CD44 Inclusion of
variable exons
between v2
and v7

Interact with the
extracellular
matrix

Regulation of EMT markers RT112

CTNND1 Exon 2 exclusion Involved in
cytoskeleton
organization

Not given RT4,
RT112; EJ

ACTN1 Exon 19b
inclusion and
exon
19a exclusion

Involved in
cytoskeleton
organization

Not given RT4; EJ

SRSF1 CD46 Exon
13 exclusion

Promoting cell
growth,
migration,
and
tumorigenicity

CD46 regulate mRNA translation
through an interaction with the
translation machinery

Not given EJ-1 (27, 32)

hnRNPA1 hnRNPA1 interacts with
the ESE of CD46
exon 13

PTBP1 Not given

TIA1 Exon
13 inclusion

TIAL1

(Continued)
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Granzyme A, which is produced by killer lymphocytes, cleaves

gasdermin B (GSDMB) and induces pyroptosis in tumor cells, leading

to antitumor immune responses (Figure 3). Kong et al. discovered that

different GSDMB isoforms have distinct functional properties. In their

study, the N-terminal fragments of GSDMB isoforms 3 and 4, which are

generated through cleavage, triggered pyroptosis. In contrast, isoforms

1, 2, and 5 failed to induce pyroptosis. The non-functional isoforms

lacked a stable belt motif, which was either deleted or modified at exon

6. The belt motif facilitated the insertion of oligomeric GSDMB N-

termini into the cell membrane. The expression of GSDMB3/4 isoforms,

rather than GSDMB1/2, was commonly found to be upregulated in

bladder cancers with better outcomes, indicating a protective role

mediated by GSDMB3/4 in those tumors (127).

Alternative splicing events associated with
bladder cancer recurrence and metastasis

Patients with non-muscle invasive bladder cancer exhibit a high

recurrence rate (60%) (128), with approximately 20% progressing to
Frontiers in Oncology 08
muscle-invasive bladder cancer (129). Recurrence or metastasis

occurs in about half of patients with muscle-invasive bladder

cancer who undergo radical cystectomy, leading to a low 5-year

mortality rate of 50% (130). Prognosis is particularly poor in

patients with locally progressive or recurrent muscle-invasive

bladder cancer (131), highlighting the importance of predicting

bladder cancer recurrence for effective management and treatment.

Abnormal alternative splicing has been extensively studied in

relation to bladder cancer recurrence, and the findings of these

studies are summarized below.

Huang et al. (93) identified significant associations between

specific alternative splicing events (SMOX-58,619-AP, INO80C-

45,170-AP, and ITGB4–43,489-ES) and bone metastasis, splicing

factors, and survival (Figure 3). In normal epithelial cells, integrin

subunit b4 (ITGB4) binds to hemidesmosomes and promotes

epithelial cell anchoring to the basement membrane. However, in

tumors, ITGB4 is located at the front of the cell, which is rich in

lamellae and filopodia, thereby enhancing tumor migration and

invasion (132, 133). Another study showed that ITGB4
TABLE 1 Continued

SF gene Splicing
event

Functional
role

Molecular mechanism RNA motif Cell Reference

ZEB1 NIPBL Facilitate back-
splicing to
promote the
biogenesis
of circNIPBL

Promoting
migration
and invasion

circNIPBL overexpression
upregulates Wnt5a by targeting
miR-16–2-3p

intron 145999–46005nt
and intron 9618–624nt
of NIPBL pre-mRNA

UM-UC-3 (115)

SRSF3 IL3 Exclusion/
inclusion exon
18a/18b

Promoting
proliferation

Enhancing cell cycle progression to
the S and G2/M phase

AC-rich sequences in
the ILF3 exon 18 in a
size of 1,351 nt and
exon 19 in a size of
362 nt

U2OS (28)

ALYREF RABL6 Intron retention Promoting
proliferation
and migration

ALYREF and NSUN2 activate
hypermethylated m5C oncogenic
RNA through promoting splicing
and maintaining stabilization

Binding to
hypermethylated
m5C site

T24 (108)

TK1 Intron retention

JUP ITGB4 ITGB4–
43,489-ES

Promoting bone
metastasis
and prognosis

Involving in the “glycosphingolipid
biosynthesis ganglio
series” pathway

Unknown BLCA tissues (93)
FIGURE 3

Effects of alternative splicing dysregulation on cancer progression. High prostaglandin E receptor 3 (PTGER3) expression may be associated with the
immune response and the overall survival of patients with bladder cancer. Integrin subunit b4 (ITGB4) and CD44 are redistributed in bladder cancer
tissues, impacting tumor migration and invasion. There is a higher proportion of shorter MDM2 alternative isoforms in bladder cancer patients with
recurrence compared to patients without recurrence. ALCAM-Iso2 contributes to metastasis by increasing shedding and reducing cellular cohesion.
The androgen receptor, UTX, and GSDMB isoforms play important roles in bladder cancer, including cell proliferation, viability, and cell death
mechanisms. The expression of tenascin-C(L) variants is significantly increased in higher-stage and higher-grade tumors.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1402350
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1402350
redistribution facilitated tumor migration and invasion, making it a

valuable prognostic marker for bladder cancer (134). Moreover,

JUP has been found to downregulate ITGB4–43,489-ES through the

glycosphingolipid biosynthetic pathway, which is also associated

with prognosis of bladder cancer (93).

CD44, a cell surface glycoprotein, has been extensively studied

as a marker of bladder cancer aggressiveness and stemness.

Alternative splicing and glycosylation generate multiple CD44

isoforms with distinct functional roles. Transcriptomics analysis

has revealed significant heterogeneity among CD44 isoforms in 75

patients with bladder cancer, which is thought to be associated with

tumor invasion and poor prognosis (135). Moreover, another study

showed that a reduction in ESRP1 or ESRP2 promoted bladder

cancer cell growth and lung metastasis by altering FGFR2 splicing

and macrophage polarization (39).

MDM2, which is involved in the regulation of tumor suppressor

p53, exhibits differential alternative splicing in patients with bladder

cancer with or without recurrence. The expression of specific

MDM2 exons is higher in patients with recurrence, indicating a

higher proportion of shorter MDM2 alternative isoforms

(136) (Figure 3).

Spliced variants of periostin, an EXM protein, have been

detected in bladder cancer tissues and cell lines. In one study,

wild-type periostin was reduced by downregulation or alternative

splicing, particularly in isoforms lacking exon 18, and was strongly

associated with bladder cancer progression. However, the lack of

exon 18 did not suppress cancer cell invasiveness and metastasis

(137). This indicates that the pro-metastatic function is achieved by

aberrant alternative splicing to downregulate wild-type

periostin expression.

ALCAM-Iso2, a splice variant of ALCAM, has been identified as

a driver of metastasis. In one study, loss of the membrane-proximal

region of ALCAM (exon 13) mediated by a novel matrix

metallopeptidase 14-dependent membrane distal cleavage site

increased shedding and decreased cellular cohesion, contributing

to bladder tumor metastasis (138) (Figure 3).

Most studies have shown that the splicing abnormalities of

some EXM-related proteins are closely associated with bladder

cancer recurrence, providing valuable insights for mechanistic

studies on relapse and metastasis.
Alternative splicing events associated with
tumor stage and progression

The primary transcript of the EXM protein, namely, tenascin-C

(Tn-C), undergoes alternative splicing, resulting in the inclusion or

omission of nine type III homology repeats. In bladder cancer, there

is a significant increase in the expression of Tn-C(L) variants with a

higher tumor stage and grade. Furthermore, the expression of Tn-C

splicing variants differs depending on the tumor type, indicating

differential regulation of Tn-C splicing in bladder cancer, which

may contribute to its pathogenesis (139) (Figure 3).
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Circ_0006332, which is derived from the splicing of MYBL2

exons 8 and 9, has been implicated in bladder cancer progression. In

a previous study, circ_0006332 knockdown inhibited the

proliferation, colony formation, and invasiveness of bladder

cancer cells. Moreover, E-cadherin was upregulated, while

vimentin, cyclin B1, and P21 were downregulated, indicating

Circ_0006332’s role in promoting epithelial–mesenchymal

transition and cell cycle progression in bladder cancer (140).
Targeted therapy of bladder cancer
based on alternative splicing

Alternative splicing has emerged as a hallmark of cancer, and

the development of therapeutic approaches targeting splicing holds

great promise. Various tools have been developed to manipulate

splicing, facilitating the identification of significant differential

alternative splicing events associated with bladder cancer. These

differential alternative splicing events, along with splicing factors,

are thought to impact patients’ overall survival and chemotherapy

drug sensitivity (141). Additionally, the prognostic signature based

on alternative splicing is correlated with the response to common

chemotherapeutic agents, indicating its potential as an indicator for

treatment selection (140). Inhibitors of FGFR rearrangement, such

as erdafitinib, infigratinib, and pemigatinib, have shown promise as

targeted therapies against bladder cancer. Clinical trials are

currently underway to explore the efficacy and safety profiles of

these compounds in patients with bladder cancer with FGFR3

alterations (142). Perhaps increasing the sensitivity of

chemotherapy drugs through targeted splicing is a relatively good

way to achieve this.

Some drugs that may act by targeting alternative splicing are

available. Enzalutamide, a second-generation therapeutic drug

targeting the androgen receptor ligand-binding domain, has

demonstrated effectiveness in inhibiting bladder cancer cells

expressing the full-length androgen receptor (143, 144). However,

the response to enzalutamide treatment appears to depend on the

presence and localization of the full-length androgen receptor in the

nuclear compartment rather than the absolute level of the full-

length androgen receptor (124).

Targeted immunotherapy, particularly immune checkpoint

inhibitor therapy, such as PD-1, PD-L1, and cytotoxic T-

lymphocyte-associated protein 4 inhibitors, has demonstrated

positive therapeutic effects in advanced bladder cancer (145–147).

However, the effectiveness of immunotherapy varies among

patients due to the heterogeneity of bladder cancer (148).

Alternative splicing events not only regulate organ development,

tissue identity acquisition, and tissue homeostasis but also play a

significant role in tumor occurrence and development (149, 150).

Furthermore, mutations that are tumor-specific to splicing factors

have been identified as risk factors for tumor progression and

maintenance (151), further emphasizing the potential of

alternative splicing in immunotherapy (152).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1402350
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1402350
Further research is warranted to unravel the complex

mechanisms underlying splicing dysregulation in bladder cancer

as well as to explore its therapeutic implications and advance

precision medicine for this disease.
Conclusions

RNA splicing is a crucial process that regulates gene expression

and contributes to proteome diversity. Abnormal alternative splicing

has been implicated in tumorigenesis in various cancers, including

bladder cancer. This review summarizes splicing dysregulation in

bladder cancer, particularly in terms of specific splicing variants and

splicing factors, which have potential clinical value as diagnostic/

prognostic biomarkers or therapeutic targets. Meanwhile, the impact

of splicing dysregulation on TIME, disease progression, recurrence,

and therapy resistance are emphasized. The review collates the

findings of studies investigating splicing-related factors associated

with bladder cancer, with a focus on splicing factors, particularly the

hnRNP family of proteins. These factors are aberrantly expressed in

bladder cancer and are associated with specific splicing events and

clinical outcomes (Table 1). However, the underlying mechanisms

remain largely unknown, necessitating further research to elucidate

the oncogenic and tumor-suppressing functions of alternative

splicing events and splicing factors in bladder cancer. Pre-clinical

studies have illustrated the contribution of splicing events to

treatment resistance and disease progression in bladder cancer,

illustrating that these events could serve as therapeutic targets.

Nonetheless, due to the lack of clinical implementation in patients

with bladder cancer, the development of drugs targeting spliceosomes

remains challenging. Future investigations should focus on

unraveling the mechanisms underlying splicing abnormalities and

the consequences of inhibiting these factors, thereby enabling the full

potential of splicing-based therapies in bladder cancer to

be recognized.
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Glossary

PD-1 programmed cell death protein 1

PD-L1 programmed-death ligand 1

SREs splicing regulatory elements

ESE exonic splicing enhancer

ESS exonic splicing silencer

ISE intronic splicing enhancer

ISS intronic splicing silencer

SE exon skipping

MXE mutually exclusive exons

A5SS alternative 5′ splice sites

A3SS alternative 3′ splice sites

RI intron retention

snRNP small nuclear ribonucleoprotein particle

SR serine/arginine-rich

hnRNPs heterogeneous nuclear ribonucleoproteins

hnRNP
A1

heterogeneous nuclear ribonucleoprotein A1

hnRNPF heterogeneous nuclear ribonucleoprotein F

PI3K phosphoinositide 3-kinase

AKT protein kinase B

FOXO1 Forkhead box O1

ESRP1 epithelial splicing-regulatory protein 1

ESRP2 epithelial splicing-regulatory protein 2

hnRNP-
L

heterogeneous nuclear ribonucleoprotein L

LSCC lung squamous cell carcinoma

PTBP1 polypyrimidine tract-binding protein 1

snRNA small nuclear RNA

RBM RNA-binding motif

RRM RNA recognition motif

PKM pyruvate kinase

JUP junction plakoglobin

snoRNA small nucleolar RNA

DBHS Drosophila behavior human splicing

PUF60 poly (U) binding specificity factor 60

TIME tumor immune microenvironment

UTX ubiquitously transcribed tetratricopeptide repeat

GSDMB gasdermin B

Tn-C tenascin-C
F
rontiers in
 Oncology frontiersin.org14

https://doi.org/10.3389/fonc.2024.1402350
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Alternative splicing regulation and its therapeutic potential in bladder cancer
	Introduction
	Dysregulation of splicing-related proteins in bladder cancer
	Serine/arginine-rich family
	Heterogeneous nuclear ribonucleoprotein family
	Spliceosome components
	RNA-binding motif proteins
	Others

	Aberrant alternative splicing events of cancer-related genes associated with bladder cancer
	Alternative splicing events associated with tumor immune microenvironment
	Alternative splicing events associated with bladder cancer proliferation and apoptosis
	Alternative splicing events associated with bladder cancer recurrence and metastasis
	Alternative splicing events associated with tumor stage and progression

	Targeted therapy of bladder cancer based on alternative splicing
	Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary


