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Background: There is still a lack of clinically validated biomarkers to screen lung

cancer patients suitable for programmed dead cell-1 (PD-1)/programmed dead

cell receptor-1 (PD-L1) immunotherapy. Detection of PD-L1 expression is

invasively operated, and some PD-L1-negative patients can also benefit from

immunotherapy; thus, the joint modeling of both deep learning images and

clinical features was used to improve the prediction performance of PD-L1

expression in non-small cell lung cancer (NSCLC).

Methods: Retrospective collection of 101 patients diagnosedwith pathology in our

hospital who underwent 18F FDG PET/CT scans, with lung cancer tissue Tumor

Propulsion Score (TPS) ≥1% as a positive expression. Lesions were extracted after

preprocessing PET/CT images, and using deep learning 3D DenseNet121 to learn

lesions in PET, CT, and PET/CT images, 1,024 fully connected features were

extracted; clinical features (age, gender, smoking/no smoking history, lesion

diameter, lesion volume, maximum standard uptake value of lesions [SUVmax],

mean standard uptake value of lesions [SUVmean], total lesion glycolysis [TLG])

were combined for joint modeling based on the structured data Category

Embedding Model.

Results: Area under a receiver operating characteristic (ROC) curve (AUC) and

accuracy of predicting PD-L1 positive for PET, CT, and PET/CT test groups were

0.814 ± 0.0152, 0.7212 ± 0.0861, and 0.90 ± 0.0605, 0.806 ± 0.023, 0.70 ±

0.074, and 0.950 ± 0.0250, respectively. After joint clinical feature modeling, the

AUC and accuracy of predicting PD-L1 positive for PET/CT were 0.96 ± 0.00905

and 0.950 ± 0.0250, respectively.

Conclusion: This study combines the features of 18F-FDG PET/CT images with

clinical features using deep learning to predict the expression of PD-L1 in NSCLC,

suggesting that 18F-FDG PET/CT images can be conducted as biomarkers for

PD-L1 expression.
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1 Introduction

Lung cancer is the leading cause of cancer-related deaths and

the second most commonly diagnosed cancer around the world,

with around 1.8 million deaths and 2.2 million new cancer cases in

2020 (1). Non-small-cell lung cancer (NSCLC) is the most common

subtype of lung cancer, and the 5-year survival rate is less than 20%.

Recently, molecular targeted therapies have dramatically improved

the prognosis of selected advanced-stage NSCLC patients with

driver mutations (e.g., epidermal growth factor receptor [EGFR]-

mutant, anaplastic lymphoma kinase [ALK]-rearranged NSCLC).

However, these therapies are ineffective in the majority of patients

whose tumors lack genetic alterations (2). Immune checkpoint

inhibitors (ICIs), such as programmed cell death protein 1 (PD-1)

or programmed cell death ligand 1 (PD-L1), have become one of the

most promising approaches in the treatment of advanced NSCLC

patients whose tumor does not contain a driver mutation (3). Even

though ICIs have dramatically changed the clinical outcomes of

advanced NSCLC, only a subset of patients with NSCLC respond to

ICIs. Thus, substantial efforts are ongoing to identify a biomarker of

response to anti–PD-1/PD-L1 immunotherapy. Although as a

predictive biomarker PD-L1 expression in NSCLC has limitations,

PD-L1 expression in NSCLC is the only FDA-approved biomarker

linked to specific PD-1/PD-L1 pathway blockade and is expected to

predict a response to anti-PD-1/PD-L1 antibodies (4).

Immunohistochemistry (IHC) is a useful predictive biomarker

to detect PD-L1 expression, but obtaining adequate tumor tissue

for PD-L1 staining is not available in some patients and tumor

tissue varies regarding time and space. Therefore, a non-invasive,

convenient, and efficient method to predict genetic status is of

imminent need. Recently, scholars have reported using 18F-

fluorodeoxyglucose positron emission tomography/computed

tomography (18F-FDG PET/CT) deep learning to predict PD-L1

expression and have made some progress. Tian et al. provided a

deep-learning model to predict high PD-L1 expression of NSCLC

and to infer clinical outcomes in response to immunotherapy (5).

Lim et al. used radiomics to predict PD-L1 expression (6).

However, these reports directly used CT value images and

18F-FDG PET images to predict PD-L1 expression, and CT

images did not contain complete CT image information. After

obtaining deep learning features, machine learning radiomics

modeling was used (7). Previous reports have argued that FDG

PET/CT is controversial in predicting PD-L1 expression. The

summary receiver operating characteristic (ROC) curve

indicated that the area under the curve was 0.74 (95% CI: 0.70–

0.78), but there are also reports supporting the use of 18F-FDG

PET/CT to predict PD-L1 expression (8).

This study used CT image attenuation coefficient images and
18F-FDG PET images based on deep learning modeling. The image

features were obtained from the fully connected layers of deep

learning and then combined clinical features with clinical features

using structured data and deep learning joint modeling to improve

the accuracy of PD-L1 expression prediction.
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2 Materials and methods

2.1 Participation

This retrospective analysis was approved by the Hebei

Cangzhou Central Hospital institutional review board. Written

informed consent for PET/CT imaging was obtained from all

study patients. We reviewed images of 125 patients with lung

cancer who underwent an 18F-FDG PET/CT examination from

January 2020 to December 2023 in the Hebei Cangzhou Central

Hospital. The criteria for inclusion were as follows: (1) no history

of other tumor malignancies; (2) pathologically diagnosed with

primary NSCLC; (3) tested PD-L1 expression status and IHC

analysis, detected PD-L1 with SP263 antibodies on lung lesion

specimens obtained from surgery; and (4) available 18F-FDG PET/

CT images within 1 month before pathological diagnosis.

Exclusion criteria included the following: (1) patients combined

with other malignancies; (2) poor image quality assessed on a 5-

point Likert-scale (quality score 1 or 2), and (3) accepted

antitumor treatment before 18F-FDG PET/CT scan and IHC

analysis. Finally, a total of 101 non-small cell lung cancer

patients enrolled in the study.

For each one, PET/CT examination was generally performed

within 1 month before surgery or biopsy, and we only collected the

most recent PET/CT images. A nuclear medicine physician with

more than 5 years of experience evaluated image quality. The

clinical information and pathological results of all patients were

obtained through the electronic medical record system.
2.2 PET/CT examination

All patients received PET/CT scanning on GE Discovery DMI

(General Electric Medical Systems, Waukesha, WI, USA) in the

nuclear medical Department. The patients fasted at least 4 h

before the injection of 18F-FDG (3.7 MBq/kg–5.55 MBq/kg),

and PET/CT acquisition was performed 60 ± 5 min afterward.

PET images were attenuated using CT data. Using GE Discovery

DMI, the matrix size was 144 × 144 with 4-mm slice thickness on

PET images, which was reconstructed by ordered subset

expectation maximization (OSEM) with iteration of 3 and batch

size of 8. The 64-slice CT scan parameters were matrix of 768 ×

768, 0.2-mm resolution, tube voltage of 120 kVp, and tube current

of 160 mA.
2.3 Segmentation and masking process of
lung nodules

The segmentation and masking process of all pulmonary

nodules was conducted using the open-source platform on 3D

SLICER (version 5.2.2, www.slicer.com). First, we fixed CT images

and moved PET images to register both loaded images using the
frontiersin.org
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rigid transformations method on Elastix package offered by 3D

SLICER. Second, a semiautomatic PET lesion volume segmentation

method (PET Tumor) based on graphics principles is utilized

to segment lung nodules, which could automatically segment the

volumes of interest (VOI) by specifying the center position of the

lesions (9). The VOI contour of the lesions segmented from PET is

copied to CT images to extract the lesions. Manual modifications

are performed for certain lesions with visual segmentation errors.

The lesion from which the image features were extracted was

matched to the lesion from which the pathological tissue was

obtained. In addition, a small subset of FDG lesions with low

FDG uptake or without uptake were manually delineated based on

CT images, which were subsequently registered to PET images. Last,

we set the lung tissue outside the lesion to 0 in the PET and CT

images using the 3D SLICER lesion mask technique. Due to the

presence of negative numbers in the CT value in HU, the CT image

was converted into an X-ray tissue attenuation coefficient map.

After that, the minimum value of X-ray attenuation coefficient is 0,

and accuracy can be increased by applying automatic lung nodule

clipping (10). The preprocessing procedure of lung cancer is shown

in Figure 1.
2.4 Data augmentation

Because of the limited number of cases of benign lesions and

imbalanced data, we use some data augmentation approaches to

double the benign lesion group image data size, including randomly

rotating 90° and flipping. In this study, all cases included in the study

were divided into train set, validation set, and test set in a 6:2:2 ratio.
2.5 Deep learning model training

In this study, through the MONAI deep learning framework

(core 1.1.0, http://monai.io), we chose the optimal one to train by

comparing the classification performance of three different

depths of the neural network with 3D DenseNet121. The

schematic diagram of the neural network structure is shown in

Figure 1. It is efficient to remove the underlying tissue outside the

lesion by foreground cropping based on abovementioned

preprocessing and receive accurate segmentation maps with

distinct matrices, thereby as inputs in the classification model.

In addition, batch normalization was also performed to make the

distribution of input data in each layer relatively stable and

simplify the parameter tuning process, accelerating model

learning speed.

The training set was preprocessed by uniformly adjusting the

image matrix to 64 × 64 × 64. Three training sessions were

conducted, using PET, CT, and PET+CT as input images,

respectively. The number of network output channels was two

(malignant or benign). CrossEntropyLoss was selected as the loss

function. The learning rate was 0.0001. In this study, batch and

epoch were 4 and 500, respectively.
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2.6 Joint clinical feature modeling

After extracting 1,024 features from DenseNet121 fully

connected layers and combining them with clinical features (age,

gender, smoking, lesion diameter, lesion volume, SUVmax,

SUVmean, TLG), a deep learning structured data deep learning

neural network is used to establish a model. A history of smoking

will be represented as (+), and a history of no smoking will be

represented as (−).

Structured Data Deep Learning Training Network

CategoryEmbedingModel, Auto_Learning rate, Optimizer: Adam,

MaxEpochs: 200, BatchSize: 128,ModelLayers: 128-64-32, Activation: ReLU.
2.7 Performance evaluation

Due to the limited dataset, five-folder cross-validation was applied

to choose and assess the best model during training, which also

prevented overfitting caused by irrational dataset partitioning. To

evaluate classification performance, accuracy, sensitivity, specificity,

and the area under a receiver operating characteristic (ROC) curve

(AUC) were calculated and analyzed. Higher AUC values suggested

that the model is performing significantly. For the training and

validation sets, we compared the above metrics to select the greatest

one in DenseNet121 with different neural depths. In addition, we

constructed three sessions based on CT, PET, and PET/CT images and

then compared their performance.
2.8 Statistical analysis

All programs and statistical analyses were implemented on

Python 3.9 and R software 4.2 in a computer with Intel Core i7-

8700 CPU 3.2 GHz × 2, 16 GB RAM, and NVIDIA GeForce GTX

3080. Continuous variables were presented as mean ± SD. The T-

test method was used for the continuous variable and Mann–

Whitney U test was utilized for the continuous variable with

abnormal distribution. The nominal variables, shown as

percentages, were analyzed by (corrected) chi-square test. A two-

tailed p-value <0.05 indicated statistical significance.
3 Result

A total of 101 non-small cell lung cancer patients enrolled in the

study, including age 64.61 ± 9.64 years, 57 men and 44 women, 65

with smoking history and 36 without smoking history. The

maximum diameter of the lung cancer lesion was 34.74 ± 18.91

mm, the lesion volume was 44.16 ± 69.63 ml, the maximum SUV

value of the lesion was 12.61 ± 7.62, the average value was 3.97 ±

1.89, and the lesion TLG was 225.79 ± 407.97 g. According to

Tumor Proportion Score (TPS) ≥1% as a positive expression

(11, 12), PD-L1 was positive in 65 cases and negative in 36 cases.

The flowchart of patient inclusion is shown in Figure 2.
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Table 1 shows the clinical information of patients with positive

and negative PD-L1 expression according to TPS in lung cancer

lesions. It can be seen that there is no significant difference in age,

gender, smoking history, lesion diameter, lesion volume,

SUVmax, SUVmean, and TLG values between the two groups

of patients.

In Table 2, CT, PET, PET/CT, and PET/CT combined clinical

information modeling predicts the efficacy of PD-L1 expression. It

can be seen that CT alone has the worst prediction effect, and PET
Frontiers in Oncology 04
combined with CT (PET/CT) has a significantly better prediction

effect than CT and also better than PET. Combined with clinical

information, the predictive efficiency has been improved.

Figure 3 shows the ROC curves of PET/CT image deep learning

fully connected features (1,024) and clinical features (8) in the joint

modeling training and testing groups. It can be seen that the joint

modeling improves the performance of PD-L1 expression prediction.
4 Discussion

Our research results indicate that FDG PET/CT can effectively predict

the expression of PD-L1. Among them, ACC, AUC, sensitivity, and

specificity are above 0.9, and combined with clinical data, they are above

0.95. This study achieved good prediction results in terms of methods (1)

using deep learning to extract PET/CT image features in the fully connected

layer, and then combining clinical information to further model using

structured data deep learning models; (2) using lesion contour extraction

features to overcome the limitation of directly using the BOX method to

incorporate normal tissue information into the lesion tissue; (3) by

converting CT images and extracting features using attenuation

coefficient images, the defect of missing information in CT images caused

by directly using a certain segment of CT values is overcome. The joint

modeling combined the imaging features with the clinical features to

significantly improve the prediction accuracy, and the clinical factors

related to PD-L1 expression were added to the model (patient gender,

age, lesion size, smoking, etc.). Therefore, this study achieved significantly

better predictive performance than the reported results.

Wang et al. reported that deep learning combined with

radiomics features was used to predict PD-L1 expression based

on diagnostic CT images (13), achieving good results. The main
FIGURE 2

The preprocessing procedure of lung cancer.
FIGURE 1

The flowchart of patient inclusion.
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reason for the poor predictive performance of CT alone in this

article is that the CT used was obtained at low doses and free-

breathing, resulting in inferior image quality compared with

diagnostic CT. Wu and Xu et al. reported that the lesion uptake

parameters (SUVmax, volume, TLG, etc.) in FDG PET images help

predict PD-L1 expression (14, 15). Wu’s results indicate that PD-L1

expression of NSCLC was related to SUVmax, TLG, man, smoking,

and central location. However, only SUVmax was an independent

predictor of PD-L1 positivity, which could help to explore the

existence of immune checkpoints. There is a correlation between

clinical features and PD-L1 expression (14). After incorporating

clinical features, we improved the predictive effect of using

structured data deep learning modeling. Mu et al. developed an
18F-FDG PET/CT-based DL model to evaluate PD-L1 status.

Results showed that the deep learning score (DLS) could

significantly distinguish PD-L1-positive from PD-L1-negative

patients (AUC: 0.82) (6). We adopt a joint model that combines

image features with clinical features and uses structured data to

achieve better predictive performance than reported.

It can be seen that combining imaging features with clinical

features can improve the accuracy of predicting PD-L1 expression,

and using a structured data joint model yields better results than

deep learning-based image prediction models.

Limitations of this study: (1) The number of clinical cases is

relatively small, and the number of cases will be further expanded in

the future. (2) There was no further stratified analysis of PD-L1

expression, which is mainly due to the small number of historical

cases and concerns about obtaining unstable results after stratification.

To sum up, this study combines the features of 18F-FDG PET/CT

images with clinical features using deep learning to predict the expression

of PD-L1 in non-small cell lung cancer, suggesting that 18F-FDG PET/

CT images can serve as biomarkers for PD-L1 expression.
TABLE 2 CT, PET, PET/CT, and PET/CT combined clinical information
modeling for predicting PD-L1 expression performance.

Accuracy AUC Specificity Sensitivity

PET

Train Set 0.8900
±0.0009

0.9195
±0.0353

0.93213±0.033 0.874±0.0195

Validation
Set

0.894±0.042 0.8974
±0.0347

0.872±0.0383 0.89±0.0194

Test Set 0.806±0.023 0.814
±0.0152

0.812±0.0389 0.848±0.0313

CT

Train Set 0.828±0.0887 0.876
±0.01467

0.86±0.055 0.75±0.0953

Validation
Set

0.732±0.0802 0.87±0.0058 0.86±0.0224 0.722±0.07176

Test Set 0.70±0.074 0.7212
±0.0861

0.76±0.0091 0.63±0.00671

PET+CT

Train Set 0.944
±0.02956

0.94±0.0261 0.95±0.0356 0.932±0.0461

Validation
Set

0.926±0.0372 0.918
±0.0449

0.926±0.0472 0.916±0.04615

Test Set 0.910±0.0427 0.90±0.0605 0.922±0.0511 0.908±0.0327

PET+CT+Clinical

Train Set 0.984±0.0193 0.974
±0.01622

0.98±0.01156 0.982±0.01411

Validation
Set

0.976±0.0127 0.968
±0.0149

0.9706
±0.01472

0.9666
±0.01415

Test Set 0.950±0.0250 0.96
±0.00905

0.962±0.02511 0.958±0.0233
TABLE 1 Comparison of clinical data between patient PD-L1 (+) and
PD-L1 (-) groups.

Variable N PD-L1 (+) PD-L1 (-) t/c2 P-
value

Age, year 101 64.41 ± 9.08 64.77 ± 10.13 -0.187 0.852

Female 44 23 (52.27%) 21 (36.84%) 2.405 0.121

Male 57 21 (47.73%) 36 (63.16%)

Smoking (+) 65 29 (65.91%) 36 (63.16%) 0.082 0.775

Smoking (-) 36 15 (34.09%) 21 (36.84%)

Diameter
(mm)

101 36.29 ± 19.58 33.26 ± 18.50 0.793 0.43

Volume (ml) 101 43.71 ± 61.02 45.21 ± 76.66 -0.106 0.916

SUVmax 101 11.82 ± 7.18 13.31 ± 7.99 -0.971 0.334

SUVmean 101 3.79 ± 1.82 4.13 ± 1.95 -0.903 0.369

TLG (g) 101 222.66
± 368.05

231.10
± 442.96

-0.102 0.919

FIGURE 3

ROC curves for joint modeling training and testing sets combined
features from PET/CT and clinical features.
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