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Levels of the Wnt pathway components are abnormally altered in gastric cancer

cells, leading to malignant cell proliferation, invasion and metastasis, poor

prognosis and chemoresistance. Therefore, it is important to understand the

mechanism of Wnt signaling pathway in gastric cancer. We systematically

reviewed the molecular mechanisms of the Wnt pathway in gastric cancer

development; and summarize the progression and the challenges of research

on molecular agents of the Wnt pathway.
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1 Introduction

Gastric cancer(GC) has the fifth highest incidence and fourth highest mortality rate in the

worldwide (1). Activation ofWnt1 was first identifiedmore than 40 years ago as causing breast

hyperplasia and breast tumors, thus linking the Wnt pathway to cancer (2). Recent studies

have identified frequent dysregulation ofWnt pathway activity in GC, and the phenomenon is

associated with proliferation and metastasis, tumor microenvironment regulation, stemness

maintenance, treatment resistance, and prognosis of gastric cancer (3–6). Inhibitors acting on

different components of the Wnt pathway have been continuously developed, and some of

them have shown good anticancer potential (7).
2 The Wnt signaling pathway

Wnt signaling pathways include the classical Wnt/b-catenin pathway, the non-classical

Wnt/PCP pathway and the Wnt/Ca2+ pathway (Figure 1). Wnt ligands bind to the

transmembrane receptor Frizzled (Fzd) to activate the Wnt pathway (8). The classical

Wnt pathway is mainly involved in cell proliferation, while nonclassical Wnt pathways

participate in cell polarity and migration (9).
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3 Altered Wnt signaling in GC Cells

Wnt ligand expression levels, b-catenin cytoplasmic and

nuclear content, and intracellular cytoplasmic Ca2+ concentration

were all altered. More than half of all gastric cancer patients have

significant dysregulation of the Wnt/b-catenin pathway (5). The

number of patients with gastric carcinogenesis with only

nonclassical Wnt pathway activation is much higher than that of

patients with only classical Wnt pathway activation (10).
3.1 Wnt ligand

Wnt ligands constitute of 19 members with functions that are

largely dependent on posttranscriptional modifications, including

glycosylation, palmitoylation and acylation. Among these

modifications, acylation is necessary for extracellular transport of

Wnt ligands and receptor/coreceptor recognition and binding (11),

and Wnt ligands are essential for activating the Wnt pathway

signaling cascade, making these ligands attractive therapeutic

targets in gastric cancer. The vast majority of Wnt ligands show

altered expression levels in gastric cancer cells, which affects the

growth phenotype these cells and the efficacy of chemotherapy (11).

3.1.1 WNT1
In 2022, Zheng et al. found that high expression of WNT1

ligands in GC not only lead to malignant proliferation, invasion,

and migration of gastric cancer cells but also accelerates the self-

renewal and proliferation of GC stem cells (GCSCs) (12).
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LINC00665 activates WNT1 by binding to the WNT1 promoter,

leading to M2 polarization of tumor-associated macrophages and

promoting GC progression. It has been suggested that WNT1 is

involved in gastric cancer progression and the induction of immune

tolerance (13).

3.1.2 WNT2
Immunohistochemistry assays have confirmed that WNT2 was

positively expressed only in gastric cancer tissues (14). The high

expression ofWNT2 was related to b- Catenin entering the nucleus.

Collagen type X alpha 1 (COL10A1) activates the WNT2-mediated

Wnt pathway and promotes the development of gastric cancer (15),

and the vast majority of patients with high expression of WNT2

have cancer in TNM Stage III or IV with lymph node metastasis, it

may be a marker for patients with advanced GC (14). WNT2B is a

paralog of WNT2 (16). In 2022, Zhang et al. found that WNT2B is

an oncogene in GC and upregulated in both GC tissues and GC cell

lines (17). The mRNA of WNT2B carries a binding site for

microRNA- 376c-3p and that overexpression of microRNA-376c-

3p reduces the expression of WNT2B, inhibiting the growth and

promoting the apoptosis of gastric cancer cells (17).

3.1.3 WNT3
An immunohistochemical positive assay indicated that the

expression of WNT3 reached 87.50% of the cells in the poorly

differentiated carcinoma group, which was higher than that in the

precancerous lesion group (61.11%) and the chronic superficial

gastritis group (20%) (18). Interference with WNT3 expression

suppresses the malignant phenotype and promotes apoptosis in
FIGURE 1

Wnt signaling pathway in gastric cancer (A) Wnt/b-catenin signaling pathway: in the absence of a Wnt ligand, b-catenin is degraded by the
destruction complex; in the presence of a Wnt ligand, Wnt ligand binds to the receptor, and b-catenin separates from the destruction complex and
is transported to the nucleus, resulting in the expression of target genes. (B) Wnt/PCP pathway: Wnt ligand binds to the Fzd receptor and
phosphorylates Dvl. Phosphorylated Dvl activates RHOA and Rac1, causing downstream cascade reactions. (C) Wnt/Ca2+ pathway: Increased
intracytoplasmic Ca2+ activates the protein phosphatase Cn, PKC, and CAMKII. CaMKII and PKC activate NF-kB and CREB. Cn activates nuclear
factor of T cells (NFAT).
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gastric cancer cells (19). WNT3A is a homolog of WNT3, with an

amino acid homology as high as 84.2% (20). As a procarcinogenic

gene in gastric cancer tissues, WNT3A expression is nearly twice

that in adjacent noncancerous tissues (21), not only promoting

malignant proliferation of gastric cancer cells and inhibiting

apoptosis but is also patient chemoresistance and gastric cancer

neuroinvasion (21, 22). It promotes gastric cancer cell proliferation

by activating the downstream target high mobility Group A type 1

protein (HMGA1) (23). High expression of WNT3A is closely

associated with neural infiltration in gastric cancer patients and

may be caused by activation of matrix metalloproteinases (MMPs)

downstream of the Wnt/b-catenin pathway (21). Therefore,

WNT3A may be a potential prognostic indicator, although a large

amount of clinical data are needed to validate its usefulness as

a biomarker.

3.1.4 WNT4
Using a database for gene expression analysis of gastric cancer, in

2013, Volkomorov et al. (24) found that one-half of gastric cancer

patients presented with a greater than twofold reduction in WNT4

expression compared to the level in normal gastric epithelial tissues.

The main active metabolite, indole-3-methanol, 3,3′-diindolylmethane

(DIM), prevents and treats cancers by inhibiting cell proliferation and

inducing apoptosis; however, low-dose DIM inducedWNT4 secretion

and promoted gastric cancer progression (25).

3.1.5 WNT5A
The immunohistochemical assay showed that the WNT5A

expression was evident in approximately 77.6% of gastric cancer

tissues, and WNT5A-positive gastric cancer patients showed a

higher infiltration of late tumor cells and more lymph node

metastases than patients who did not express WNT5A. These

differences might be related to the epithelial-mesenchymal

transformation(EMT) of gastric cancer cells induced by WNT5A.

Notably, the five-year survival rate was lower for WNT5A-positive

patients in WNT5A-negative patients (26). WNT5A activates the

nonclassical Wnt/Ca2+ pathway by binding to the FZD2 and

promotes the invasion and migration of gastric cancer cells (27).

In 2019, Xu et al. (28) reported that inhibition of zinc-finger

transcription factor 1 (ZEB1) reduced the level of WNT5A in GC,

induced apoptosis and inhibited the proliferation and migration of

GC cells. Current research on WNT5B is not very clear, although it

can predict the sensitivity of the epigenetic regulator BET inhibitor

iBET-151 to inhibit the growth of gastric cancer, especially when

combined with paclitaxel (29). Therefore, it may be possible to

predict the effect of chemotherapy in gastric cancer by WNT5B.

3.1.6 WNT7、WNT8
The expression of WNT7A in gastric cancer is controversial. One

study showed that its expression was decreased in gastric cancer tissues

and gastric cancer cell lines, and the immunohistochemistry positivity

rate of gastric cancer tissues was only 51.3%, whereas the positivity rate

of normal gastric mucosal tissues was as high as 86.7% (30), and its low

expression often suggests that the prognosis of gastric cancer patients is
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poor; another study showed that WNT7A elevated expression, which

promotes migration and invasion of gastric cancer cells. miRNA-127

can target the 3′-UTR region ofWNT7AmRNA, reduce its expression,

and inhibit the invasion and migration of gastric cancer cells (31).

WNT7B shares 77.1% amino acid homology with WNT7A (32).

Moreover, Serum levels of WNT7B are higher in gastric cancer

patients with lymph node metastasis than in gastric cancer patients

without lymph node metastasis (33), and the level of serum WNT7B

was positively correlated with the progression and metastasis of GC. It

has been suggested that the effect of treatment can be observed and the

prognosis of patients can be evaluated by measuring serum

WNT7B levels.

The total amino acid homology of the WNT8A and WNT8B

genes was 60.0%, and human WNT8A mRNA was expressed in

NT2 cells with neural differentiation potential, whereas human

WNT8B mRNA was expressed in diffuse gastric cancer

(34).WNT8B was significantly up-regulated in gastric cancer cell

lines.WNT8B may play a critical role in gastric cancer by activating

the b-catenin-TCF signaling pathway (35).

3.1.7 WNT10
The expression ofWNT10B was up-regulated. Down-regulation

of Wnt10B expression using shRNA inhibited EMT in cancer cells.

stem cell marker Oct4 was positively correlated with the expression

level ofWNT10B in gastric cancer tissues, andWnt10B may also be

involved in the generation and maintenance of gastric cancer stem

cells (36).

3.1.8 WNT11, WNT16
WNT11, an important ligand in the nonclassical Wnt pathway,

can promote tumorigenesis (37). In 2016, Mori et al. (38) found that

hypoxia and hypoxia-inducible Factor 1a inducedWNT11 expression,

increased the activity levels of matrix metalloproteinase (MMP)-2 and

9, and promoted the proliferation, migration and invasion of gastric

cancer cells.

As a Wnt family members, WNT16 can lead to gastric cancer

chemoresistance through paracrine secretion, and the polyphenolic

flavonoid compound quercetin (QC) can decrease the expression of

WNT16. In 2018, Fang et al. (39) developed a hyaluronic acid (HA)-

modified silica nanoparticle (HA-SiLN/QD) that reversed

chemoresistance and remodeled tumor microenvironments by

recognizing the overexpression of CD44 in gastric cancer cells

and specifically targeting the delivery of quercetin and the gastric

cancer chemotherapeutic agent adriamycin (DOX).
3.2 Wnt receptors and coreceptors

Aberrant expression of Wnt family transmembrane receptors

and their coreceptors leads to overactivation of the Wnt pathway

and affects gastric cancer development. In this section, we outline

the roles of the Fzd receptor, coreceptors LRP and ROR1/2 and

related molecules affecting the expression of these receptors and

coreceptors in gastric cancer.
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3.2.1 FZD
FZD proteins are seven-transmembrane coiled-coil receptors

of which 10 (FZD1-FZD10) have been identified in humans. The

cysteine-rich structural domain (CRD) of the extracellular N

segment binds to Wnt ligands, and the intracellular C-terminus

binds to Dvl to activate the downstream cascade reaction. FZD

exerts both tumor-promoting and tumor-suppressing effects on

gastric cancer cells. With the exceptions of FZD3 and FZD6,

which are expressed at low levels in gastric cancer, all FZD

isoforms are highly expressed in gastric cancer cells (40–46).

FZD1 and FZD8 as oncogenes promote the proliferation,

invasion, and migration of gastric cancer cells (40), and high

expression of FZD8 suggests that a patients has a poor prognosis

(41). FZD2 and FZD7 can be used as markers to assess the

treatment and prognosis of gastric cancer patients and guide

individualized treatment of patients with GC. The FZD2 level can

be used to predict median overall survival (OS), the degree of

immune cell infiltration, and the immune response of gastric

cancer patients and to assess the effect of immunotherapy, with

FZD7 expression suggesting a higher gastric cancer incidence and

lymph node metastasis (42, 43). Moreover, knockdown of FZD7

decreased the expression of the stem cell genes Nanog and Oct-4,

the multidrug resistance transporter protein gene ABCG2, and

the tumor stem cell-associated surface antigens CD133, CD44,

and CD24, indicating that FZD7 possibly involved in the

regulation of gastric cancer stem cell function and drug

resistance (46). In contrast to other isoforms, FZD5 and FZD6

play anti-oncogenic roles in gastric cancer. FZD5 maintains the

epithelioid phenotype of gastric cancer cells, inhibits EMT of

gastric cancer, and reduce its metastatic potential (44). FZD6

inhibits the proliferation and migration of gastric cancer

cells (45).

Wnt pathway often engages in crosstalk with other pathways to

affect the development of GC: it engages in crosstalk with the TGF-b
pathway to inhibit the— apoptosis of gastric cancer cells. The

transcription factor Smad family member 4 (SMAD4), a core

factor in the TGF-b signaling pathway, increases the

transcriptional activity of FZD4 and activates the Wnt pathway

(47); FZD10 promotes the proliferation of gastric cancer cells.

Moreover, the expression of FZD10 is increased in plasma

exosomes, FZD10 can be used as a plasma biomarker (48).
3.2.2 LRP5/6, LGR5
LRP5/6 function as important coreceptors in the Wnt pathway.

LRP5 is highly expressed; its high expression suggests late clinical

stage and poor prognosis of patients with gastric cancer (49). In

2022, Zheng et al. (50) found that LRP6 interacted with capillary

morphology genesis gene 2 (CMG2) to maintain the stemness of

gastric cancer stem cells and accelerate gastric cancer progression.

The leucine-rich repeat sequence G protein-coupled receptor 5

(LGR5), a seven times transmembrane receptor. It’s a marker for

gastric cancer stem cells, and its expression is higher in intestinal-

type gastric cancer than in diffuse-type GC. In 2022, Nakazawa et al.

(51) demonstrated that LGR5 expression in intestinal-type gastric

cancer indicated poor overall survival (OS) (52).
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3.3 b-Catenin

b-Catenin is a key component of the Wnt pathway, and

immunohistochemistry assays that showed high b-Catenin levels

in the group with poorly differentiated gastric adenocarcinomas was

as high as 90.63%, which was much higher than that in the chronic

superficial gastritis group and the precancerous group (18). In 2020,

Ye et al. (53) found that the expression of myosin heavy chain 9

(MYH9) was increased in metastatic gastric cancers and was

correlated with a poor prognosis; MYH9 provides gastric cancer

cells with the ability to resist apoptosis and promote metastasis by

inducing the transcription of CTNNB1.The expression of the

destruction complex member APC is downregulated in GC,

leading to lymph node metastasis and distant metastasis of GC

(54). The role of RAS-related C3 botulinum toxin substrate 1 (Rac1)

is mediation of b-catenin nuclear localization, and its activation

promotes the proliferation, invasion, and drug resistance of gastric

cancer cells (55).

Ca2+ is a key component of the nonclassical Wnt/Ca2+ pathway,

and an elevated intracellular Ca2+ concentration can activate or

inhibit b-catenin action through different pathways. Plasma

membrane Na+/Ca2+ exchanger 1 (NCX1) and transient receptor

potential canonical (TRPC1) play a key role in maintaining

cytosolic free Ca2+ homeostasis. Elevation of Ca2+ levels induced

by the coupling of these two proteins increases b-catenin
phosphorylation (Ser675), and phosphorylated b-catenin enters

the nucleus to activate downstream effector molecules and

promote H. pylori-associated GC cell proliferation, migration and

invasion (56). However, in 2016, Wan et al. (57) used nucleotide

UTP to activate the P2Y6 receptor, and the elevation of cytoplasmic

Ca2+ concentration in gastric cancer cells induced by store-operated

calcium entry (SOCE) inhibited b-catenin, thus inhibiting the

proliferation of gastric cancer cells. Moreover, this inhibitory

effect did not alter the proliferation of normal gastric cells,

making it a potential strategy for preventing or treating GC (58).

Wnt ligand, FZD receptor, and b-catenin are core components

of the Wnt pathway, and their expression is altered to varying

degrees in gastric cancer and affects the progression and prognosis

of gastric cancer patients. The development of specific drugs

targeting all three of them may achieve unexpected efficacy in the

treatment of gastric cancer patients.
4 Wnt signaling in the
microenvironment of gastric cancer

For the last few years, the emergence of immune checkpoint

inhibitors (ICIs) has brought new hope to gastric cancer patients.

Understanding the mechanism of tumor microenvironment

(TME)-induced immune tolerance in gastric cancer will help to

overcome the therapeutic inefficacy for patients with advanced

gastric cancer. Gastric cancer cells establish a complex TME, in

which immune cells, the extracellular matrix (ECM), and cell-

secreted cytokines are important components (59). The Wnt/b-
catenin pathway can inhibit T-cell infiltration and reduce the
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sensitivity of gastric cancer cells to anti-PD-1 antibodies (60). In

2020, CCL28, a mucosal-associated epithelial chemokine, is the key

factor in the activation of b-catenin/TCF directly targeted genes,

which can increase the infiltration of regulatory T (Treg) cells and

lead to immunosuppression in the gastric cancer microenvironment

(61). During the progression of gastric cancer, increased ECM

deposition disrupts the interaction between E-cadherin and b-
catenin and promotes gastric cancer cell proliferation, invasion

and metastasis (62). WNT ligands (e.g., WNT2, WNT5A) from

tumor cells and cancer-associated fibroblasts (CAFs) in the TME

activate the Wnt pathway through the proliferation of CSCs and

resurrection of dormant CSCs, causing treatment resistance and

cancer recurrence (63). In 2020, Maeda et al. (64) found that

H3K27me3 deletion in CAFs promoted the secretion of WNT5A,

which may have enhanced the invasiveness of GCSCs. In 2016,

Tumor-associated macrophages (TAMs) in TMEs secrete the

proinflammatory factor TNF-a to activate the Wnt pathway and

thus promote gastric cancer development (57). In 2016, Bone

marrow-derived mesenchymal stem cells (BM-MSCs), important

components of the TME, have been shown to promote the

proliferation of gastric cancer cells through Wnt5a-Ror2 pathway

(65). The evidence presented suggests that the Wnt pathway is

related to immunosuppression in GC, and combining Wnt

inhibitors and immunotherapy may lead to increased therapeutic

effects (3).
5 Wnt signaling regulates stemness
and drug resistance in gastric
cancer cells

GCSCs, key players in gastric cancer with self-renewal and

tumorigenic potential, are involved in both chemoresistance and

cancer metastasis and gastric cancer recurrence. WNT1 is

involved in the maintenance and proliferation of GCSCs

through the classical Wnt pathway (66), and WNT5A is

involved in the initiation of the EMT and gastric cancer stem

cell proliferation through the nonclassical Wnt pathway (67, 68).

Overexpression of human epidermal growth factor receptor-2

(HER2) in GC activates Wnt/b-catenin pathway in GCSCs,

leading to enhanced invasiveness and treatment resistance of

gastric cancer cells (69). In 2021, Wen et al.found that The

retinoic acid-associated orphan receptor b (RORb) reduces the

activity of the Wnt/b-catenin pathway in GCSCs to inhibit their

tumor-forming ability (70). The homology cassette transcription

factor NANOG is essential for embryonic stem cell renewal, and

the related pseudogene NANOGP8 is a major contributor to

NANOG-induced effects on gastric cancer. NANOGP8 has been

associated with almost all malignant phenotypes of GC: it has been

associated with the upregulation of GCSC markers and EMT-

related genes, accumulation of b-catenin in the nucleus,

enhancement of Wnt signaling, and increased gastric cancer cell

drug resistance; NANOGP8 is a potential therapeutic target for

gastric cancer (71).
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Aberrant activation of glutathione peroxidase 4 (GPX4), a key

antioxidant enzyme, confers resistance to radiation and

chemotherapy-induced iron death to cancer cells (72). The b-
catenin/TCF4 transcriptional complex in the Wnt pathway

directly binds to and induces the expression of GPX4, which

attenuates the production of cytosolic lipid ROS, leading to iron

death resistance (29). H. pylori infection upregulates GPX4

expression and activity through TCF4, leading to a high

antioxidant state of cancer cells and inhibition of iron-induced

death; thus, GPX4 may be a potential target to enhance

chemosensitivity in patients with advanced GC (29).

Both multidrug resistance (MDR)-related proteins and Wnt/

b-catenin pathway markers were upregulated in gastric cancer

drug-resistant cells, overexpression of the novel tumor suppressor

basic leucine zipper ATF-like transcription factor 2 (BATF2)

inhibited the Wnt/b-catenin pathway to improve drug

sensitivity and attenuate gastric cancer drug resistance (73).

TRIM14 is a member of the triple structural domain protein

(TRIM) family and plays an E3 ubiquitinating enzyme role. In

2023, Chen et al. (74) demonstrated in vitro and in vivo that

circ_0091741 increased the expression of TRIM14 by blocking the

binding of miR-330–3p to TRIM14, which activated Wnt/b-
catenin by stabilizing the Dvl2 pathway to promote chemoresistance

in gastric cancer cells.

The above evidence suggests that targeting the Wnt pathway

may be one of the breakthroughs in alleviating drug resistance in

gastric cancer patients.
6 Wnt signaling regulates EMT and
metastasis in gastric cancer

The EMT is a reversible biological process that plays a crucial

role in cancer cell metastasis. Ligands such as Wnt2, WNT5A, and

WNT10B are involved in the EMT in gastric cancer (36, 75, 76).

Chaperonin-containing T-complex protein 1ϵ subunit (CCT5)

binds to E-cadherin and abrogates the interaction between E-

cadherin and b-catenin, releasing b-catenin into the nucleus,

leading to the EMT in gastric cancer cells and facilitating gastric

cancer progression and lymphatic metastasis (77). Hsp90ab1, an

isoform of heat shock protein 90, inhibits ubiquitin-mediated

degradation of LRP5, leading to the upregulation of multiple

targets of Wnt/b-catenin, activation of the Wnt pathway, and

promotion of the EMT in gastric cancer cells (78). High mobility

histone A2 (HMGA2) promotes the EMT, exacerbating GC

metastasis through the Wnt/b-catenin pathway (79).

Procalcitonin GA9 (PCDHGA9) may be a potential novel

biomarker in GC and is closely related to the prognosis of GC

patients. PCDHGA9 directly interacts with b-catenin and prevents

the dissociation of b-catenin, thereby antagonizing the Wnt/b-
catenin pathway and inhibiting EMT, which in turn inhibits

invasive metastasis (9).The above evidence proves that it is

feasible to delay the disease progression and improve the survival

of gastric cancer patients by targeting the Wnt pathway.
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7 Molecular agents targeting the
Wnt pathway

In recent years, numerous inhibitors against the Wnt pathway

have been developed, including small-molecule inhibitors (SMIs),

monoclonal antibodies (mAbs), and peptide mimics, which can

target Wnt ligands/receptors, b-catenin, and downstream target

genes, respectively.
7.1 Targeting Wnt ligands/receptors

Hanaki et al. (80) showed that the anti-WNT5A polyclonal

antibody pAb5a-5 prevented metastasis of gastric cancer cells by

targeting WNT5A to inhibit the activation of Rac1 and the

expression of laminin g2. Dickkopf proteins (DKKs), which are

endogenous Wnt ligand antagonists, showed hypermethylation and

loss of inhibitory effects on Wnt proteins in gastric cancer. In 2021,

Yang et al. (81) developed a chimeric 5/35 adenovirus-delivered

Dickkopf-1 (Ad5/35-DKK1), which introduced DKK1 into CD44+

gastric cancer cells to promote the infection of GCSCs with the virus

vector and the reduction in GCSC tumorigenicity. Porcupine

(PORCN), for example, is a key molecule in inducing Wnt ligand

secretion, and its inhibitors show great anticancer potential. The

porcupine inhibitors (PORCNis) CGX1321 (NCT: 03507998),

CGX1321 (with pembrolizumab) (NCT. 03507998) are all

currently being evaluated in gastric cancer clinical trials to

determine the maximum tolerated dose in patients with advanced

gastrointestinal tumors (82). IWP (inhibitor of Wnt production) is

a PORCNi that inhibits the growth of gastric cancer cells by

downregulating the Wnt/b-catenin pathway (83). R-Spondin

(RSPO) scavenges membrane Znrf3/Rnf43 and promotes

activation of the Wnt pathway. The monoclonal antibody

OMP131-R10 (rosmantuzumab) exhibits excellent safety and

efficacy in patients with advanced solid tumor cancers (84).

Hence, RSPO may be a potential therapeutic target. A recent

study showed that PORCNi and anti-RSPO antibodies showed

great potential as therapeutic targets for gastric cancer (85). Foxy-

5, a peptide mimic of WNT5A, increases the expression level of

WNT5A and prevents tumor metastasis in the breast and prostate

cancer contexts (38).

MicroRNAs (miRNAs), as noncoding RNAs, can inhibit gene

expression by binding to complementary mRNAs; thus,

microRNAs are effective inhibitors. miRNAs targeting Wnt

ligands are constantly being discovered. miR-132–3p and miR-

140–5p can reduce the expression of WNT1 and inhibit gastric

cancer cell proliferation and invasion (86, 87); miR-491–5p can

target and silence Wnt3a, inhibit the proliferation of gastric cancer

cells and induce apoptosis (21). miR-876–5p and miR-26a-5p can

reduce the expression of WNT5A, inhibit the proliferation and

migration of gastric cancer cells and induce apoptosis (15).

FZD proteins, as receptors of Wnt ligands, are essential for the

activation of the Wnt pathway. Therefore, researchers have

inhibited the activated Wnt pathway in gastric cancer by FZD

inhibitors. Fz7–21, an inhibitor of FZD7, inhibits the growth of
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gastric adenomas and is currently being evaluated in preclinical

trials for patients with gastrointestinal tumors (88). In addition,

knockdown of FZD7 or treatment with vantictumab inhibited the

growth of gastric adenomas. Vantictumab has been used in phase Ib

clinical trials for advanced pancreatic, lung and breast cancers, a

finding that demonstrates that it will be effective in treating patients

with gastric cancer (89). The recombinant fusion protein ipafricept

(OMP-54F28) mainly inhibits the binding of FZD8 to the Wnt

ligand and has been evaluated for its ability to inhibit tumor growth

in Phase I clinical trials for patients with advanced solid tumors

(90). The monoclonal antibody OMP-18R5 (Vantictumab)

(NCT:01345201) targets the FZD receptor and reduces the clone-

forming ability of gastric cancer cells (88). Salinomycin, an inhibitor

of LRP5/6, inhibits the growth of GC by inhibiting Wnt signaling in

CSCs, and salinomycin targeting Wnt/b-catenin pathway may have

important clinical therapeutic value in gastric cancer (69). As an

FDA-approved drug with relatively low toxicity, clonidine can

simultaneously target multiple Wnt pathway targets, namely

FZD1, Dvl2, and LRP6, and it has demonstrated greater inhibition

of colorectal and breast cancers; studies with clonidine have also

provided insights for research on the application of Wnt inhibitors

in the treatment of gastric cancer (9).
7.2 Targeting beta-catenin and the beta-
catenin/TCF transcription complex

M435–1279 is a novel ubiquitin-conjugating enzyme E2T

(UBE2T) inhibitor that inhibits UBE2T-induced b-catenin
accumulation in the nucleus, blocks the overactivation of the Wnt

signaling pathway and effectively inhibits GC progression. More

importantly, M435–1279 induces low cytotoxicity in normal gastric

mucosal cells at a concentration that is effective against gastric cancer

cells. Although the mechanism underlying M435–1279 action is clear,

the results of clinical trials have not validated its effects (91). b-Catenin
responsive transcription inhibitor 3/5 (iCRT3/5), which mainly blocks

b-catenin-TCF4 interactions, is in the preclinical stage of gastric cancer
treatment, and it can kill gastric cancer malignant cells and inhibit

gastric cancer development (88). LF3 is a 4-thioureido-

benzenesulfonamide derivative that profoundly inhibits the

interaction between b-catenin and TCF4 and reduces the expression

of GPX4, inducing iron-induced death in gastric cancer cells (29). In

2018, Wang et al. Found that XAV939, a small-molecule inhibitor

(SMI), increases degradation of b-catenin by stabilizing Axin and

inhibits gastric cancer invasion and metastasis (92).
7.3 Targeting b-catenin downstream
target genes

In 2020, Chang et al. found that 2,4-Diaminoquinazoline (2,4-

DAQ), a selective inhibitor of LEF1, inhibits the expression of

AXIN2, MYC and LGR5 and suppresses the proliferation,

migration and invasion of gastric cancer cells (93). The oral

Compound E7386 selectively inhibited the interaction of b-
catenin with the b-catenin transcriptional coactivator CREB-
frontiersin.org

https://doi.org/10.3389/fonc.2024.1410513
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Han et al. 10.3389/fonc.2024.1410513
binding protein (CBP) and exerted high antitumor activity in a

human gastric cancer xenograft tumor model (94).

In 2016, Feng et al. found that Pantoprazole, a proton pump

inhibitor, inhibited the proliferation of gastric cancer cells and

increased the therapeutic sensitivity of GC to 5-FU by inhibiting

the EMT/b-catenin pathway (95). Ibuprofen, a commonly used

antipyretic and analgesic, inhibited the Wnt/b-catenin pathway in

gastric cancer stem cells to reduce their proliferation (96). Fiber-

modified hexose chimeric recombinant lysosomal adenovirus

targeting CAFs in TAMs specifically killed CAFs and inhibited the

growth of gastric cancer cells (97). In summary, various molecular

agents target the Wnt pathway, and monoclonal antibodies have

received much attention from researchers because of their high

specificity, which is in line with a precision therapy strategy (98).

Many molecular agents have been developed to target the Wnt

pathway, but none of the FDA-approved drugs have been used in the

clinical treatment of GC to date; the primary reason for this is the side-

effects they produce, as they are, mainly toxic to bone. PORCN

inhibitors cause loss of bone density and volume (99), and OMPs

targeting FZD cause even more severe bone damage, which was the

main reason that clinical trials to evaluate OMPs were discontinued.

Monoclonal antibodies targeting FZD cause abdominal pain, diarrhea,

and constipation (100), limiting their clinical applications. Second, the

molecular structures of SMIs, mAbs and peptide mimics can mitigate

the therapeutic effect. SMI show higher permeability and are suitable

for oral administration, but they show low targeting specificity. mAbs

have large molecular weights and a long half-life; however, they burden
Frontiers in Oncology 07
a patient’s liver and kidneys and are poorly tolerated. Although the

emergence of peptide mimics solved the problems of permeability and

tolerance of SMIs and mABs, due to their short half-life, larger doses

are required to maintain therapeutic concentrations (38). In 2023,

isoproterenol (2,6-diisopropylphenol), a commonly used intravenous

anesthetic in clinical practice, significantly reduced the likelihood of

cancer recurrence when used as an anesthetic for breast cancer surgery.

Kaishuai Zhan et al. demonstrated that it can activate the Wnt/b-
catenin pathway and inhibit the proliferation of gastric cancer

cells (101).

Due to the complexity of the Wnt pathway, it is difficult to find

targets that can be reached with high specificity and efficacy. The

nonclassical Wnt pathway has been increasingly studied, but there

are few drugs targeting the nonclassical Wnt pathway. Therefore,

development of drugs targeting the nonclassical Wnt pathway is an

emerging research direction.
8 Discussion

Abnormal activation of Wnt signaling plays important roles in

the occurrence, development and chemotherapy resistance of

gastric cancer. Targeting the Wnt pathway is a great strategy for

the treatment of GC (Figure 2). An increasing number of small

molecules and biological agents targeting the Wnt pathway have

been entered into clinical trials for patients with GC. In view of the

unique role of the non-classical Wnt pathway in gastric cancer,
FIGURE 2

The roles of Wnt pathway members and Wnt-targeted agents in gastric cancer. Wnt ligands and FZD receptors are altered in gastric cancer. The
background colors of the following various Wnt-targeted agents are shown in light blue boxes. DKKs and PORCNi are Wnt ligand antagonists,
pAb5a-5 targets and inhibits WNT5A, Ad5/35-DKK1 delivers DKK1, miR-132–3p and miR-140–5p inhibit WNT1, miR-491–5p inhibits Wnt3a, and miR-
876–5p and mi-26a-5p inhibit WNT5A. OMP-18R5 targets and inhibits the FZD receptor, Fz7–21 inhibits FZD7. OMP-54F28 inhibits FZD8. CCT5
inhibits b-catenin adhesion to E-cadherin, salinomycin inhibits LRP5/6, and OMP131-R10 inhibits the Znrf3-/Rnf43-scavenging effect of RSPO.
M435–1279 inhibits UBT2T-induces b-catenin accumulation in the nucleus. XAV939 promotes b-catenin degradation. iCRT3/5 and LF3 inhibit the
interaction of b-catenin and TCF4. 2,4-DAQ inhibits LEF1, and E7386 inhibits the interaction between b-catenin and CBP.
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more specific inhibitors can be developed. Whether Wnt pathway

inhibitors can be used in the clinical treatment of GC in the future

depends on how the problems with targeting, efficacy and patient

tolerance by Wnt pathway inhibitors are solved.
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