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MicroRNA dysregulation in
myelodysplastic syndromes:
implications for diagnosis,
prognosis, and
therapeutic response
Ilina Dimitrova Micheva1,2 and Svilena Angelova Atanasova1,2*
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Medical University of Varna, Varna, Bulgaria
Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological

disorders with heterogeneous clinical course and risk of transformation to acute

myeloid leukemia. Genetic and epigenetic dysregulation, including alterations in

microRNA (miRNA) expression, plays a pivotal role in MDS pathogenesis influencing

disease development and progression. MiRNAs, known for their regulatory roles in

gene expression, have emerged as promising biomarkers in various malignant

diseases. This review aims to explore the diagnostic and prognostic roles of

miRNAs in MDS. We discuss research efforts aimed at understanding the clinical

utility of miRNAs in MDS management. MiRNA dysregulation is linked to specific

chromosomal abnormalities in MDS, providing insights into themolecular landscape

of the disease. Circulating miRNAs in plasma offer a less invasive avenue for

diagnostic and prognostic assessment, with distinct miRNA profiles identified in

MDS patients. Additionally, we discuss investigations concerning the role of miRNAs

as markers for treatment response to hypomethylating and immunomodulating

agents, which could lead to improved treatment decision-making and monitoring.

Despite significant progress, further research in larger patient cohorts is needed to

fully elucidate the role of miRNAs in MDS pathogenesis and refine personalized

approaches to patient care.
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Introduction

Myelodysplastic syndromes are a heterogenic group of clonal

disorders of the hematopoietic stem cell, characterized by ineffective

hematopoiesis, morphological manifestations of dysplasia and high

risk of transformation into acute leukemia (1). Numerous genetic

and epigenetic factors are involved in the development, course and

progression of the disease.

Epigenetics is all the information that is passed on during cell

division but is not encoded in the DNA sequence. It refers to the

modification of DNA and histone proteins to alter chromatin

configuration and gene expression, influencing the regeneration,

differentiation and development of hematopoietic progenitor cells.

Epigenetic mechanisms include DNA methylation, post-

translational modification of histone proteins and chromatin

remodeling and synthesis of non-coding RNAs. Disturbances of

epigenetic modifications have a key role in the maintenance of

regenerative hematopoietic stem cells and leukemic stem cells (2).

MicroRNAs are short non-coding RNAs and changes in their

expression levels can contribute to hematological tumor

development. MiRNAs have a key role in the regulation of

hematopoiesis (3), and their differential expression in MDS is

associated with the clinical course of the disease (4–6), and its

transformation in AML (7). However, the exact role of miRNAs in

the pathogenesis of MDS is still unclear. They participate in the

process of oncogenesis through multiple processes leading to the

avoidance of angiogenesis, cell differentiation, apoptosis and

proliferation of tumor cells (8). In addition, microRNAs also

exert epigenetic control by influencing other epigenetic

mechanisms - such as DNA methyltransferases, leading to global

hypomethylation, or by overexpression of some enzymes of the PcG

complex such as EZH2, and thus can function as oncogenes and

tumor suppressor genes. Significant levels of microRNAs have been

found in a number of body fluids such as plasma, serum, urine,

breast milk and saliva. Specific panels of microRNAs have been

identified as being associated with the diagnosis and outcome of a

number of diseases and especially malignant ones. The role of

microRNAs as diagnostic, prognostic and predictive markers in

myelodysplastic syndromes is a subject in our analysis.
Biosynthesis of microRNAs

MicroRNAs are non-coding endogenous RNAs with a length of

19-25 nucleotides that are complementary to the 3’ untranslated

region of the target genes. The main enzyme responsible for their

transcription is RNA polymerase II, but this process is influenced by

numerous other genetic and epigenetic factors such as the tumor

suppressor gene p53 and CpG methylation (8). RNA polymerase II

leads to the synthesis of a primary miRNA (pri-miRNA), which has

a 5’ cap and a 3’ poly(A) tail. It is further processed by a

microprocessor complex composed of ribonuclease III, Drosha

and DGCR8 (DiGeorge syndrome critical region 8), forming

precursor miRNA (pre-miRNA), which is exported from the

nucleus to the cell cytoplasm by exportin 5. There it is recognized
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by Dicer, which cuts the pre-miRNA to a fixed length, usually 21-25

nucleotides. The final product is a mature miRNA that is bound to a

specific protein Argonaute (AGO) and thus an RNA induced

silencing complex (RISC) is formed. Four AGO proteins are

found in humans. The miRNA in the RISC complex binds to

messenger RNA and this leads to translational repression. In

addition, RISC also acts directly on ribosomal subunits by

preventing the 60S from joining the translation complex or by

inhibiting the formation of the 80S complex. There is another

mechanism for mRNA repression by miRNAs through

deadenylation of mRNAs by RISC. A small fraction of miRNAs

can also be synthesized independently of Drosha and Dicer. A

Drosha-independent pathway is enabled by the synthesis of

mirtrons (9). Mirtrons are encoded in an intronic region and thus

precursors are generated by mRNA splicing mechanism that does not

require Drosha. The mirtrons are then post-processed by Dicer. A

Dicer-independent pathway in the synthesis of miRNA-451 (10, 11),

has also been described. After Drosha-dependent processing, a

structure containing 18 nucleotides is generated, which is too short

for Dicer-dependent processing. Instead, pre-miRNA-451 directly

binds to RISC, where AGO2-dependent cleavage generates ac-pre-

miR-451 (AGO-cleaved pre-miR-451). This structure is further

processed by a specific ribonuclease and thus mature miRNA-451

is synthesized (12).
MicroRNAs in myelodysplastic
syndrome as diagnostic and
prognostic biomarkers

The field of microRNAs in MDS is rapidly evolving, revealing

their dysregulation as a hallmark feature of this disease. These small

non-coding RNAs exhibit differential expression patterns in MDS,

reflecting the underlying molecular mechanisms driving disease

pathogenesis. As such, miRNAs hold immense potential and offer

insights into disease subtype classification and patient outcome

prediction. There is an increasing number of studies focusing on

different microRNAs, highlighting a growing interest in their

potential as diagnostic and prognostic biomarkers in MDS (Table 1).
MicroRNA-16

A recent study revealed lower levels of miR-16 in bone marrow

CD34+ cells obtained from patients diagnosed with high-risk MDS,

coinciding with upregulated levels of vascular endothelial growth

factor (VEGF) (13). VEGF, a critical angiogenic factor, plays a

pivotal role in hematopoietic stem cell regulation (24), and its

dysregulation is associated with tumor proliferation and

angiogenesis, affecting both endothelial and leukemic cells (25).

Consistent findings across several studies have demonstrated the

role of VEGF in the pathogenesis of MDS and high expression of

VEGF was correlated with increased transfusion needs, overall

survival, and leukemia-free survival (26–28). These observations

support the hypothesis that apoptosis dysregulation characterizes
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MDS pathogenesis, with low-risk disease showing heightened

apoptosis, while disease progression is marked by acquired

apoptosis resistance and aberrant VEGF expression. Xiong et al.

further corroborated these findings by verifying miR-16’s direct

binding to the VEGF 3’-UTR, suggesting a tumor-suppressive role

for miR-16 in MDS development by targeting VEGF (13).
MicroRNA-22

MiR-22 is another miR upregulated in MDS and plays a role in

hematopoiesis and hematopoietic stem cell renewal by negatively

regulating TET2 protein levels (Figure 1) (14). TET2, belonging to

the TET methylcytosine dioxygenase family, is crucial for the

conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine

(5-hmC) (29), andmutations in TET2 are frequently observed inMDS.

Notably, Song et al. demonstrated a direct correlation between elevated

miR-22 levels and poor survival rates in MDS patients, independent of

factors such as blast count and cytogenetic karyotype. They proved

that, by repressing TET2 expression, miR-22 can remodel the

epigenetic landscape, resulting in global changes in 5-hmC levels and

alterations in the expression of TET2 target genes like AIM2 and

SP140. Additionally, miR-22 emerges as a potential therapeutic target

in MDS, as inhibition of miR-22 in cell cultures lead to a reduction in

their colony forming capability (14). Further studies have highlighted

the concordance between miR-22 expression levels in bone marrow

CD34+ cells and plasma of MDS patients, with higher expression

observed in high-risk disease (30). Interestingly, expression levels of

miR-22 tend to increase with disease progression from lower to higher
Frontiers in Oncology 03
risk stages but decline upon transformation to overt AML, although

this trend lacks statistical significance due to limited cohorts. While

miR-22 holds promise as a potential biomarker for response to

hypomethylating agents due to its targeting of TET2, studies have

not found a correlation between treatment response and miR-22 levels

(31), suggesting the need for further investigation into its therapeutic

implications in MDS.
MicroRNA-150

MicroRNA-150 is another microRNA with a role in

hematopoiesis, which is moderately expressed in megakaryocyte/

erythrocyte precursors (32). It is upregulated during megakaryocytic

differentiation (32) and downregulated in normal erythropoiesis (33).

In a study conducted by Hussein et al., a significant elevation of miR-

150 levels was observed in MDS with del(5q) compared to normal

hematopoiesis (34). The researchers suggested that miR-150 negatively

regulates the expression of the myeloblastosis virus oncogene (MYB), a

DNA-binding transcription factor crucial for hematopoietic

development. Building on this, a more recent study by Liu et al.

confirmed MYB as a direct target of miR-150 in MDS cells and also

showed that miR-150 is targeted by the oncogene BC200, also known

as brain cytoplasmic RNA 1 (BCYRN1) (35). Their findings

demonstrated that the overexpression of BC200 in MDS cells acted

as a sponge for miR-150-5p, leading to an increase in MYB mRNA

levels, highlighting the intricate regulatory network involving miR-150,

MYB, and BC200 in the context of hematopoietic disorders.
TABLE 1 Diagnostic and prognostic microRNAs.

MicroRNA Sample
source

Expression Function Target Implication Reference

MiR-16 Bone
marrow

Upregulated Tumor suppressor VEGF Prognosis (13)

MiR-22 Bone
marrow/
Plasma

Upregulated Role in HSC renewal TET2 Prognosis (14)

MiR-146b Bone
marrow

Upregulated Role in tumorigenesis,
erythropoiesis, megakaryopoiesis

TRAF6,
IRAK1, PDGFRA

Diagnostic and
prognostic marker

(15, 16)

MiR-181 Bone
marrow

Upregulated Regulator of granulocytic and
macrophage differentiation

PRKCD,
CTDSPL,
CAMKK1

Prognostic marker (7, 17, 18)

MiR-320 Bone
marrow

Upregulated Diagnostic and
prognostic marker

(4, 19)

MiR-424 Bone
marrow

Downregulated Regulator of monocyte and
macrophage differentiation

VEGFR2 Diagnostic marker, therapy
response marker

(15, 20, 21)

MiRs in DLK1-DIO3
genomic region

Bone
marrow

Upregulated Apoptosis, regulation of
HSPC differentiation

MEG3-DMR Prognostic markers, Therapy
response markers

(22)

MiR-194 Bone
marrow

Upregulated Apoptosis p53 Prognostic marker (4)

MiR-218 Downregulated Role in tumorigenesis SLIT2/3 Prognostic marker, Potential
therapeutic target

(23)
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MicroRNA-181

The miR-181 family serves as a crucial negative regulator of

granulocytic and macrophage differentiation by directly targeting

PRKCD, CTDSPL, and CAMKK1 (36). Dysregulation of the miR-

181 family expression is implicated in the pathogenesis of AML, with

aberrantly elevated levels believed to contribute to disease development

(36). Pons et al. identified miR-181a with progressively increasing

expression levels from controls to early-stage MDS, to advanced MDS,

and post-MDSAML, suggesting its potential as a prognosticmarker for

disease progression (7). Moreover, miR-181a-5p, miR-181b-5p, and

miR-181d-5p were found to be overexpressed in MDS patients who
Frontiers in Oncology 04
later progressed to AML, independently of blast count (17). Another

study revealed high expression of four miR-181 family members in

high-risk MDS, and also that elevated miR-181 expression in low-risk

MDS correlated with reduced overall survival (18). Additionally,

miR-181c upregulation was observed in GATA2 deficiency (37), a

disorder associated with progressive cytopenias, bone marrow

hypocellularity, severe immunodeficiency, sensorineural hearing loss,

lymphedema, abnormal myeloid differentiation, and increased

propensity to develop bone marrow failure, MDS, AML, or chronic

myelomonocytic leukemia (38). Contrary to these findings, Liang et al.

reported downregulation of miR-181a-2-3p inMDS patients compared

to healthy controls, still secondary AML patients exhibited higher
FIGURE 1

MiR-22 directly inhibits TET2 expression, resulting in hypermethylation and decreased expression of TET2 target genes such as AIM2 and SP140. AIM2
has a role in the reduction of cell proliferation by inducing cell cycle arrest, and along with SP140, plays a crucial role in MDS development and
leukemogenesis. Additionally, miR-22 downregulates PTEN expression, a phosphatase that dephosphorylates phosphatidylinositol-3,4,5-trisphosphate
(PIP3), thereby counteracting the activation of the PI3K/AKT pathway, which leads to aberrant hematopoiesis. The concomitant silencing of TET2 and
PTEN by miR-22 enhances cell proliferation and survival, ultimately contributing to the development of MDS and leukemogenesis (14).
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expression levels. Interestingly, low levels of miR-181a were associated

with worse overall survival in MDS patients, but the analysis excluded

patients with secondary AML (39). Nonetheless, these findings present

discrepancies that warrant further investigation, possibly attributable to

the limitations of small sample cohorts, underscoring the need for

larger-scale studies to elucidate the precise role of miR-181 family

members in MDS and AML pathogenesis.

MicroRNA-765

MiR-765 has emerged as another player in the pathogenesis of

MDS. A recent study by Kang et al. unveiled elevated levels of this

miRNA in MDS patients, particularly those with multilineage

dysplasia (40). Functionally, miR-765 exerts its effects by inducing

apoptosis. This effect occurs through the downregulation of

proteolipid protein 2 (PLP2) (41), an integral membrane protein

located in the endoplasmic reticulum. Consequently, the

upregulation of miR-765 in MDS leads to apoptosis induction via

the inhibition of PLP2.

MicroRNA-320

Upregulation of the miR-320 family has been observed in

MDS patients compared to controls (4, 19). Moreover, elevated

levels of miR-320c and miR-320d have been associated with

shorter OS in MDS patients and miR-320d has been identified

as an independent prognostic factor for OS (19). These findings

underscore the clinical relevance of the miR-320 family in MDS

management, warranting further investigation into its diagnostic

and prognostic value.

MicroRNA-34a

MiR-34a plays a pivotal role in the pathogenesis of MDS

through various mechanisms. Its function as a regulator of

proliferation, as miR-34a inhibits cell proliferation by inducing

apoptosis, thereby affecting hematopoietic stem cells (42).

Additionally, the upregulation of miR-34a, along with miR-155,

has been linked to the inhibition of neutrophil migration by

downregulating genes such as DOCK8, FGD4, and Rac1, further

contributing to the dysregulated immune response observed in

MDS (43). Moreover, the overexpression of miR-34a has been

implicated in reducing c-Fos levels, a factor that contributes to

tumor necrosis factor-alpha (TNF-alpha) overproduction in

response to inflammatory stimuli in MDS, ultimately leading to

ineffective hematopoiesis (44). Furthermore, miR-34a has been

implicated in inducing neutrophil apoptosis via the Cdc42-

WASP-Arp2/3 pathway, contributing to the dysregulation of

myeloid cell homeostasis in MDS (45). These multifaceted roles

of miR-34a underscore its significance in MDS pathogenesis.

MicroRNA-146b

The microRNA-146 family comprises two members, miR146a and

miR146b, which are located on different chromosomes, but are nearly
Frontiers in Oncology 05
identical in sequence (46). Studies have revealed that these microRNAs

are implicated in inflammatory diseases and tumorigenesis by

downregulating key molecules essential for NF-kB activation through

the inhibition of tumor necrosis factor receptor–associated factor 6

(TRAF6) and interleukin-1 receptor–associated kinase 1 (IRAK1) (47).

Furthermore, microRNA-146b-5p has been identified as a significant

player in erythropoiesis and megakaryopoiesis by targeting platelet-

derived growth factor receptor alpha (48). Notably, in animal models,

knockout mice lacking miR-146a and miR-146b have shown a

predisposition to developing hematopoietic malignancies with age,

with miR-146a knockout mice developing lymphomas and miR-146b

knockout mice developing lymphomas and acute myeloid leukemia

(49). In clinical studies, the expression of miR-146b-5p has emerged as

a potential diagnostic marker for MDS, with elevated levels observed in

MDS and aplastic anemia (AA) patients compared to healthy controls

(15). Additionally, research by Choi et al. has demonstrated a

correlation between the expression levels of miR-146b-5p in bone

marrow mononuclear cells and the prognosis of MDS patients, with

significantly higher expression detected in high risk MDS cases (16).
MicroRNA-424

MicroRNA-424 is another potential molecule in the

pathogenesis of MDS. It has a role as a regulator of monocyte

and macrophage differentiation (50) and is also associated with

aberrant endothelial cell proliferation by directly targeting VEGFR2

and influencing angiogenic processes (51). Notably, dysregulated

expression of miR-424 has been observed in hematological diseases,

such as its upregulation in AML with MN1 overexpression (52).

Studies have revealed the potential diagnostic value of miR-424,

with its expression levels serving as a distinguishing factor among

different hematological conditions.

It is found out to be downregulated in severe AA compared to

MDS (15). In another study, miR-424 levels were significantly

reduced in cell lines derived from monoMAC patients with MDS

(20). Research by Kunze et al. utilizing next-generation sequencing

and SNP array analysis in formalin- fixed, paraffin-embedded

(FFPE) bone marrow biopsies from MDS patients, unveiled

reduced miR-424 expression (53). This was linked to a recurrent

microdeletion in Xq26.3, resulting in the loss of PHF6 expression, a

potential tumor suppressor gene. MiR-424 has also a potential for

therapeutic response assessment in MDS patients treated with

azacitidine and lenalidomide (21). While preliminary findings

indicate promising avenues for miR-424, further investigations

involving larger cohorts are warranted to validate its clinical

utility in MDS management.
MicroRNA-597

MicroRNA-597 is located on chromosome 8, and trisomy 8 is

present in 5-7% of patients with MDS, making it the most common

chromosomal gain abnormality in MDS (54). Moreover, miR-597 is

found out to be dysregulated in various solid cancers such as

hepatocellular carcinoma (55), non-small cell lung cancer (56),
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colorectal neoplasms (57), and breast cancer (58), implicating its

role in tumorigenesis. Recent research conducted by Kang et al.

unveiled elevated levels of miR-597 in MDS patients (59). They

performed an in vitro study, which demonstrated that miR-597

mimics induce apoptosis by downregulating FOS like 2 (FOSL2),

shedding light on the role of miR-597 in MDS pathogenesis.
MicroRNA-218

MicroRNA-218 is also involved in carcinogenesis and it is

known for targeting the tumor suppressor gene slit guidance

ligand (SLIT2/3). It is correlated with clinical staging, prognosis

and metastasis of solid tumors, which underscores its significance in

disease development (60). A study by Zhang et al. demonstrated

that hypermethylation of the SLIT2 promoter leads to the

repression of mir-218 expression, which is associated with disease

progression in MDS and it is predictive of poor prognoses in both

MDS and AML (23). Furthermore, the overexpression of SLIT2-

IT1/miR-218 demonstrated potent anti-leukemic effects by

modulating cell proliferation, apoptosis, and colony formation

both in vitro and in vivo, highlighting the therapeutic potential of

microRNA-218 in combating hematologic malignancies.
MicroRNAs in DLK1-DIO3 genomic region

The DLK1–DIO3 genomic region is located on chromosome 14

(14q32) and contains one of the largest miRNA clusters (54

miRNAs) in the human genome (61). These miRs exhibit dual

roles as both oncogenic drivers and tumor suppressors, with

frequent dysregulation observed across various cancer types.

Their aberrant expression has been associated with disrupted
Frontiers in Oncology 06
apoptosis and suppression of proliferation (62). Furthermore,

these miRNAs play a crucial role in regulating hematopoietic

stem/progenitor cell (HSPC) differentiation, highlighting their

involvement in hematopoietic development (63).

In another study by Merkerova et al., the expression levels of

miRNAs within the DLK1-DIO3 region were investigated in patients

with high-risk MDS and acute myeloid leukemia with myelodysplasia-

related changes (AML-MRC) (22). Despite the small cohort size,

intriguing findings emerged, with approximately half of the patients

demonstrating increased expression of these miRNAs. Notably,

following treatment with azacitidine a reduction in miRNA

expression levels to near-normal was observed. Furthermore, the

study revealed a correlation between the expression levels of these

miRNAs in pretreatment samples and important clinical parameters,

including bone marrow blast count, patient diagnoses, and outcomes

such as overall survival (OS) and progression-free survival (PFS). High

expression was related with AML-MRC and poor outcome and low

expression was associated with MDS and favorable outcome. These

findings underscore the potential utility of miRNAs within the DLK1-

DIO3 region as biomarkers for disease prognosis and treatment

response in high-risk MDS and AML-MRC patients.
MicroRNAs and specific
chromosome abnormalities

Chromosome abnormalities represent a hallmark feature in

MDS, with specific MDS karyotypes potentially linked to distinct

microRNA expression profiles. Understanding these associations is

a point of several investigations (Table 2). For instance, Bousquet

et al. demonstrated elevated expression levels of microRNA-125b in

patients harboring the translocation (2;11)(p21;q23) compared to

both healthy individuals and patients without this translocation
TABLE 2 MicroRNAs associated with specific chromosome abnormalities.

MicroRNA Sample
source

Karyotype
association

Expression Function Target Implication Reference

MiR-150 Bone
marrow

MDS with
del(5q)

Upregulated Role in
erythropoiesis,
megakaryopoiesis

MYB,
BC200

Potential
therapeutic
target

(34)

MiR-125b Bone
marrow

t(2;11)(p21;q23) Upregulated Block the
myelomonocytic
differentiation

Potential
therapeutic
target

(64)

MiR-194 Bone
marrow

Trisomy 1 Upregulated Apoptosis p53 Prognostic
marker

(4)

MiR-595 Bone
marrow

Chromosome
7 abnormalities

Downregulated Cellular proliferation,
apoptosis, and
defective
ribosomal biogenesis

RPL27A Potential
therapeutic
target

(65)

miR-449a, miR-300, miR-210, miR-874,
miR-589, miR-451 miR-223, miR-128b,
miR-342

Bone
marrow

MDS with
del(5q)

Downregulated Diagnostic
markers

(66, 67)

miR-196b, miR-451, miR-98, miR-34a,
miR-10a miR-10b, miR-126, miR-99b
miR-130a, miR-199a, miR-125a,
miR-125b

Bone
marrow

MDS with
del(5q)

Upregulated Diagnostic
markers

(66, 67)
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(64). Notably, mature miR-125b originates from two distinct loci:

miR-125b-1, derived from the long noncoding RNA (lncRNA)–

MIR100HG (miR-100/let-7a-2/miR-125b-1) on chromosome 11,

and miR-125b-2, derived from the miRNA cluster (miR-99a/let-7c/

miR-125b-2) on chromosome 21 (68). The role of microRNA-125b

is to block the myelomonocytic differentiation of cell lines in vitro

(64), shedding light on its potential role in MDS pathogenesis.

In another study, Choi et al. looked into the involvement of

microRNAs encoded on chromosomes 8 and 1q in patients with

MDS (4). They specifically examined the expression levels of nine

microRNAs encoded on chromosome 8 and three on chromosome 1q.

Their findings revealed increased expression of miR-194-5p in patients

with trisomy 1, a chromosomal aberration frequently observed in

MDS. Moreover, the expression levels of miR-194-5p correlated with

OS, with lower levels of this microRNA significantly associated with

decreased OS. The increased expression of miR-194 is known to inhibit

cell growth and promote apoptosis by regulating p53 through the

suppression of E3 ubiquitin–protein ligase Mdm2 (69). Interestingly,

p53, in turn, has been reported to induce the expression of miR-194,

suggesting a complex interplay between microRNAs and key

regulatory pathways implicated in MDS pathogenesis.

Expanding on the exploration of microRNAs in MDS,

Alkhatabi et al. investigated miR-595, located on chromosome 7q

(65). MiR-595 is situated within one of the commonly deleted

regions (CDR) identified in MDS with monosomy 7 (-7) or isolated

loss of 7q (7q-). Their study revealed significant dysregulation of

this microRNA in MDS patients with -7/-7q and those with

complex karyotypes containing chromosome 7 anomalies,

compared to patients with a normal karyotype. Furthermore,

Alkhatabi et al. demonstrated that miR-595 regulates RPL27A, a

ribosomal protein-coding gene. They found out that deficiency of

RPL27A leads to both p53-dependent and independent effects,

including attenuated cellular proliferation, apoptosis, and

defective ribosomal biogenesis. These findings shed light on the

intricate molecular mechanisms underlying MDS pathogenesis and

highlight miR-595 as a potential therapeutic target in MDS patients

with chromosome 7 abnormalities.

As part of their comprehensive investigation into microRNA

dysregulation in MDS, Zuo et al. examined specific plasma

microRNA expression patterns in patients with MDS harboring

isolated del(7q)/-7 or del(20q), compared with other MDS cases

(70). Their investigation unveiled eight microRNAs significantly

differentially expressed in MDS with isolated del(7q)/-7, four of

which are mapped on chromosome 7 - miR-96, miR-196b, miR-25,

and miR-590. Additionally, thirteen microRNAs exhibited significant

differences in MDS with isolated del(20q), with two of them located

on the long arm of chromosome 20. Intriguingly, the levels of these

microRNAs were notably higher in this subset of patients. These

findings contribute to our understanding of the molecular landscape

of MDS and highlight the potential utility of plasma microRNAs in

cases with specific chromosomal abnormalities.

In MDS, the 5q syndrome represents a distinct subtype

characterized by a deletion of part of the long arm of chromosome

5 (del(5q)). This subtype typically manifests with cytopenias,
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particularly anemia, and displays a favorable prognosis compared

to other MDS subtypes. Furthermore, the presence of the del(5q)

abnormality is associated with specific clinical andmolecular features,

including responsiveness to lenalidomide therapy, suggesting a

unique pathogenic mechanism mediated by dysregulated

microRNAs. A certain number of studies have demonstrated a

specific miR signature associated with 5q- phenotype. Distinct

microRNA profiles have been identified in 5q syndrome, shedding

light on its pathogenesis and potential therapeutic targets. Studies

have revealed upregulation of miR-199a and miR-125a, as

demonstrated by two independent investigations (66, 71).

Furthermore, Votavova et al. uncovered increased expression of

miR-10a, miR-10b, miR-34a, miR-451, miR-223, alongside

downregulation of miR-128b and miR-342 (66). Understanding the

dynamic changes in microRNA expression profiles following

treatment with lenalidomide is essential for unraveling the complex

pathogenesis of 5q syndrome, offering insights into the molecular

mechanisms underlying therapeutic responses. Merkerova et al.

conducted a study investigating microRNA expression in response

to lenalidomide treatment, revealing a notable increase in pro-

apoptotic miR-34a and miR-34a* expression, which decreased over

the course of lenalidomide exposure (67). MiR-34a is directly

regulated by p53, acting as a pro-apoptotic transcriptional target

that modulates the expression of specific genes targeted by p53 (72).

Additionally, they observed that microRNAs initially unchanged,

such as those located in the 14q32 locus and miR-145 and miR-146a,

exhibited increased levels following treatment, suggesting dynamic

regulatory shifts associated with therapeutic response (67). MiR-145

and miR-146a are notable for their location within the 5q

chromosomal region. Starczynowski et al. research demonstrated

that reduced levels of these miRNAs in murine models led to a

phenotype resembling MDS (73), highlighting their potential

significance in disease pathogenesis. A proposed model suggests

that hemizygous deletion of the miR-145 and the protein-coding

gene RPS14 may collaborate to increase megakaryocyte production,

contributing to thrombocytosis in the 5q syndrome (74). Moreover,

miR-145 targets FLI1, a megakaryocyte and erythroid regulatory

transcription factor who plays a central role in megakaryopoiesis (74).

However, contradictory findings arise from other studies that did not

detect changes in the expression levels of these miRNAs in patients

with 5q syndrome (66, 71). Interestingly, the observed increase in

miR-145 and miR-146a levels following lenalidomide treatment (67)

offers insight into Starczynowski’s findings, suggesting a dynamic

regulatory response that may impact disease progression and

therapeutic outcomes in MDS.
Circulating microRNAs as less
invasive biomarkers

The collective findings from these studies underscore the

potential of miRNAs as promising diagnostic and prognostic

biomarkers in MDS. The majority of these research primarily

focuses on microRNAs isolated from bone marrow CD34+ cells,
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given their direct relevance to hematopoietic stem cell biology and

disease pathogenesis. As we strive for less invasive diagnostic

procedures, miRNAs could offer a non-invasive avenue, as they

can be isolated from various materials including plasma, serum, and

extracellular vesicles. Several research endeavors have explored the

differential expression of miRNAs in plasma and serum samples

from MDS patients, revealing distinct miRNA profiles that could

serve as valuable indicators of disease status and prognosis. By

elucidating the intricate molecular signatures associated with MDS

progression, these studies contribute to the ongoing efforts to refine

diagnostic and prognostic strategies for this heterogeneous

disorder (Table 3).

In one retrospective analysis, researchers compared the levels of

let-7a and miR-16 in plasma samples from patients with MDS and

healthy controls (5). Significantly lower levels of both miRNAs were

observed in MDS patients, and these levels were found to be

predictive of both OS and PFS. Building upon these findings, Zuo

et al. conducted a subsequent study involving 72 patients diagnosed

with cytogenetically normal myelodysplastic syndrome and 12

healthy controls (70). The study aimed to profile plasma miRNA

expression patterns in MDS and identify miRNAs that could

potentially serve as prognostic biomarkers. Utilizing an array

containing 800 miRNAs, 639 of which generated analyzable

signals, the patients were stratified into groups based on their

survival outcomes, with a cutoff of 30 months for OS. Through

this analysis, seven highly differentially expressed microRNAs (let-

7a, miR-144, miR-16, miR-25, miR-451, miR-651, and miR-655)

were identified, all of which demonstrated correlations with

patient survival.

Merkerova et al. conducted a comprehensive genome-wide

miRNA profiling study, analyzing plasma samples from a

discovery cohort consisting of 14 patients with MDS and 7

healthy controls, using a microarray containing 2,006 miRNAs

(75). They identified 207 and 201 miRNAs in the MDS and

control samples, respectively. Subsequently, the patients were

stratified into lower and higher risk categories, and six

hematopoiesis and/or oncology-related miRNAs (miR-16-5p,

miR-27a-3p, miR-150-5p, miR-199-5p, miR-223-3p, and miR-

451) were selected for validation in a cohort of 40 MDS patients

and 20 healthy controls. In the validation cohort, plasma levels of

miR-150-5p were elevated, while miR-16-5p, miR-27a-3p, miR-

199a-5p, and miR-451a were decreased in MDS patients compared

to healthy controls. Moreover, lower levels of miR-27a-3p, miR-

199-5p, and miR-223-3p were identified in patients with higher-risk

disease. Additionally, univariate analysis revealed a correlation

between PFS and the levels of five miRNAs (miR-27a-3p, miR-
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150-5p, miR-199a-5p, miR-223-3p, and miR-451a), as well as

between OS and miR-27a-3p and miR-223-3p.

MicroRNAs can be extracted from various sources including

plasma, extracellular vesicles (EVs), and bone marrow, with specific

small RNAs selectively packaged within EVs (76). Hrustincova et al.

conducted a study comparing the levels of miRNAs in total plasma

with those in EVs, revealing substantial variability between the two

types of material (77). Interestingly, the content of miRNAs in EVs

was found to be more homogenous than that of total plasma.

Furthermore, the RNA profiles of total plasma and paired EVs

exhibited differences among MDS patients but remained similar in

healthy controls. Specifically, numerous hematopoiesis-related

miRNAs, such as miR-103a-3p, miR-103b, miR-107, miR-221-3p,

miR-221-5p, and miR-130b-5p, were elevated in both plasma and

EVs of MDS patients compared to healthy controls. Intriguingly,

several dysregulated miRNAs, including miR-127- 3p, miR-154-5p,

miR 323-3p, miR-383-3p, miR-409-5p, and miR-485-3p, clustered

on chromosomal region 14q32, were significantly upregulated in

early MDS stages. This specific increase in miRNA expression in

early MDS may be linked to excessive apoptosis, while advanced

MDS is characterized by the inhibition of apoptosis and a

proproliferative phenotype (78). These findings shed light on the

dynamic role of miRNAs in different stages of MDS pathogenesis.

Another research conducted by Giudice et al. investigated exosomal

microRNAs in patients with AA and MDS (79). Their analysis

revealed 25 exosomal miRs uniquely or commonly present in AA

and/or MDS patients. Notably, 14 exosomal miRNAs were

exclusively present in MDS patients, while 7 miRNAs were

common to both SAA and MDS. This study underscores the

potential of exosomal miRNAs as biomarkers for differentiating

between these hematologic conditions and understanding their

underlying pathophysiology.

When comparing cellular, plasma, and exosomal miRNAs, each

type has distinct advantages and challenges. Cellular miRNAs can be

isolated from CD34+ bone marrow cells, making them highly specific

for the pathology of MDS. This specificity is invaluable for detailed

research, and indeed, a substantial body of research focuses on these

miRNAs. However, isolating cellular miRNAs is a more invasive

procedure, which for example might complicate treatment response

assessment due to the need for repeated bone marrow aspirations. On

the other hand, plasma and exosomal miRNAs can be conveniently

obtained from blood samples, offering a less invasive alternative.

Exosomal miRNAs, in particular, are considered more reliable

because they are tissue-specific, protected from degradation,

and specifically loaded into vesicles from proliferating or apoptotic

cells (80, 81). Nevertheless, there are technical challenges associated
TABLE 3 Differentially expressed circulating microRNAs.

Upregulated
plasma microRNAs

Downregulated
plasma microRNAs

Upregulated
exosomal microRNAs

Downregulated
exosomal microRNAs

miR-206, miR-34b,
miR-503, miR-651,
miR-655, miR-150

miR-16, miR-let-7a,
miR-144, miR-25,
miR-451, miR-493,
miR-92a, miR-96,
miR-27a, miR-199a,

miR-103a, miR-103b,
miR-107, miR-221,
miR-221, miR-130b,
miR-378i, miR-3200,
miR-423, miR-1193,
miR-143

miR-426, miR-19b,
miR-1180, miR-126,
miR-382
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with exosome preparation and RNA extraction (82), making them

harder to obtain. Despite their potential, the lack of clear guidelines for

data normalization in exosomal miRNA research remains a significant

limitation (83). In contrast, data normalization for circulating plasma

miRNAs is well-established. It typically employs small nucleolar RNAs

(snoRNAs) and other robust methods like GeNormPlus, NormFinder,

and the global mean of miRNA expression (79). This standardization

makes plasma miRNA data more accessible and reliable for clinical

and research applications, despite the broader and potentially less

specific nature of plasma-derived miRNAs.
MicroRNAs as markers for response
to therapy

Hypomethylating agents are used as first-line therapy in

patients with high-risk MDS, with azacitidine being preferred,

resulting in better overall survival. Azacitidine prolongs patient

survival, improves quality of life and delays time to AML

progression. However it takes several months to determine the

effect of the therapy and the response to the treatment occurs in

approximately 40-50% of patients (84, 85). This necessitates the

need for biomarkers to determine the sensitivity of patients to this

type of therapy.

Certain miRs are associated with different response to azacitidine

treatment. For example the plasma levels of miR-4474-3p and miR-

762 are increased and the levels of miR-125b-5p, miR4324, miR-

3156-3p are decreased in relation to later response (77).

In a study conducted by Mongiorgi et al., the expression of miR-

192-5p in MDS patients treated with azacitidine and lenalidomide

was investigated. Their findings revealed a consistent increase in

miR-192-5p levels in MDS patients compared to healthy controls

(86). MiR-192-5p, belonging to the miR-192/215 family, is

recognized as a conserved tumor and leukemia-related miRNA

(87). It exerts a tumor-suppressive role by targeting key genes

involved in oncogenic pathways, including BCL2, TP53, and TGF-

beta signaling (88–90) while inhibiting CCNT2 in leukemia (91),
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thereby suppressing cell proliferation and inducing G0/G1 cell cycle

arrest in AML cells (92). Interestingly, differences in miR-192-5p

expression were noted between responders and patients who lost

response early and therapy non-responders (86). Furthermore, after

four cycles of therapy, a statistically significant upregulation of miR-

192-5p was observed, suggesting its association with treatment

response. Additionally, Mongiorgi et al. demonstrated that miR-

192 targets the BCL2 promoter, suggesting a potential mechanism

underlying the suppressive role of miR-192-5p, as evidenced by the

low BCL2 gene expression in MDS responder patients, possibly

correlating with inhibition of proliferation in this subgroup. These

findings underscore the intricate regulatory role of miR-192-5p in

MDS pathogenesis and treatment response, offering valuable

insights into its therapeutic potential and prognostic significance

in this disease context.

MicroRNAs have also a role in chemoresistance, as evidenced by

several studies in the field. For instance, Solly et al. investigated

microRNAs associated with azacitidine resistance and identified seven

microRNAs that were downregulated in azacitidine-resistant SKM1

cells, with five of these targeting DNMT1, a key enzyme inhibited by

azacitidine. Among these microRNAs, miR-126-3p showed the most

significant prognostic impact, with low levels correlating with reduced

response rates, increased relapse rates, and shorter progression-free

survival and overall survival (93). Notably, miR-126 interacts with

DNMT1 to suppress its translation without affecting its transcription

(94). In another study, Lei et al. explored decitabine (DAC) resistance

and revealed that miR-4755-5p is overexpressed in extracellular

vesicles from a DAC-resistant cell line (KG1a-DAC), promoting

resistance by targeting the CDKN2B gene (95). Additionally, Li

et al. demonstrated that both high and low levels of miR92a-Exos

can induce chemoresistance to Ara-C in recipient cells, with low

miR92a-Exos levels leading to a less pronounced resistance in SKM1

cells. Their findings highlighted the role of miR-92 in targeting PTEN

and activating the Wnt/beta- catenin pathway to induce Ara-C

resistance (96). These studies collectively underscore the intricate

involvement of microRNAs in mediating chemoresistance

mechanisms in various contexts (Table 4).
TABLE 4 MicroRNAs with implications in therapy.

MicroRNA Sample
source

Karyotype
association

Expression Function Target Implication Reference

MiR-22 Bone
marrow/
Plasma

Upregulated Role in HSC renewal TET2 Prognosis/
Therapeutic target

(14)

MiR-34a Peripheral
blood

Upregulated Regulator of proliferation DOCK8, FGD4, Rac1, c-
Fos, Cdc42-WASP-
Arp2/3 pathway

Potential
therapeutic target

(43–45)

MiR-150 Bone
marrow

MDS with
del(5q)

Upregulated Role in
erythropoiesis,
megakaryopoiesis

MYB, BC200 Potential
therapeutic target

(34)

MiR-765 Bone
marrow

Upregulated Apoptosis PLP2 Potential
therapeutic target

(40)

MiRs in DLK1-
DIO3
genomic region

Bone
marrow

Upregulated Apoptosis, regulation of
HSPC differentiation

MEG3-DMR Prognostic
markers, Therapy
response markers

(22)

(Continued)
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MicroRNAs as therapeutics

MicroRNAs can not only be used as diagnostic and prognostic

biomarkers but also as therapeutic targets. These small, non-coding

RNA molecules can act as tumor suppressors or oncogenes

(oncomiRs) and have the ability to target multiple mRNAs that may

be dysregulated in various diseases, making them promising

candidates for therapeutic targets (Table 4). MicroRNA-based

therapeutics can be broadly classified into two categories: microRNA

mimics and microRNA inhibitors or antimiRs (99, 100). MicroRNA

mimics are designed to replenish the lost miRNA expression in

disease, thereby restoring normal cellular function. On the other

hand, microRNA inhibitors or antimiRs are synthetic molecules

with sequences complementary to the miRNA to be inhibited. By

binding strongly to their target miRNAs, antimiRs effectively block the

miRNAs function, thereby preventing its pathological effects.

The development of miRNAs as therapeutic agents presents

several challenges, which must be addressed to ensure their efficacy

and safety. One of the primary difficulties is the stability of miRNAs

inside the body because they are susceptible to degradation by RNases

present in the serum or within cellular endocytic compartments. One

strategy to address this challenge is to modify the structure of

oligonucleotides by altering the nucleotides or RNA backbone.

Another strategy focuses on developing delivery vehicles, such as

lipid nanoparticles, to encapsulate RNAs, offering protection and

endosomal escape (100). Another concern is determining the proper

administration routes to deliver miRNAs effectively to the target

sites (101). Additionally, identifying the most suitable miRNA
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candidate for each disease remains a significant challenge.

Addressing this issue requires a systematic analysis of existing data

on various miRNA profiles across different diseases, and a thorough

understanding of the miRNA-target networks involved in disease

pathogenesis. By overcoming these hurdles, the potential of miRNAs

as powerful therapeutic tools can be realized.

There are currently a few Phase I and II clinical trials testing these

innovative therapeutic approaches involving miRNAs. One notable

trial involves miravirsen, a 15-nucleotide antisense RNA oligo that

targets miR-122-5p, designed for the treatment of Hepatitis C Virus

(HCV) (102). Additionally, MRX34, a miR-34 mimic developed by

Mirna Therapeutics, was encapsulated in a lipid carrier (103) and

entered a multicenter Phase I trial in 2013. This trial included patients

with advenced solid tumours (104). Unfortunately, the trial was

terminated due to immune-related adverse events, including patient

deaths (105). The exact cause of these immune reactions remains

unclear, highlighting the need for redesigned pre-clinical trials with a

focused study on immune-related toxicities. Furthermore, another

Phase I clinical trial was initiated for the LNA-based antimiR-155

(MRG-106; miRagen Therapeutics) in patients with cutaneous T cell

lymphoma, mycosis fungoides subtype with promising preliminary

results (106).

The potential utilization of miRNA therapeutics in myeloid

malignancies is gaining significant interest, particularly with

promising research findings. In a study conducted by Bhagat et al,

researchers discovered elevated levels of miR-21, a microRNA that

binds to SMAD7, a negative regulator of transforming growth factor–

beta (TGF-b) receptor-I kinase, leading to reduced expression in
TABLE 4 Continued

MicroRNA Sample
source

Karyotype
association

Expression Function Target Implication Reference

MiR-125b Bone
marrow

t(2;11)(p21;q23) Upregulated Block the
myelomonocytic
differentiation

Potential
therapeutic target

(64)

MiR-218 Downregulated Role in tumorigenesis SLIT2/3 Prognostic marker,
Potential
therapeutic target

(23)

MiR-595 Bone
marrow

Chromosome
7 abnormalities

Downregulated Cellular proliferation,
apoptosis, and defective
ribosomal biogenesis

RPL27A Potential
therapeutic target

(65)

MiR-597 Upregulated Apoptosis FOSL2 Potential
therapeutic target

(59)

MiR-192 Bone
marrow/
plasma

Upregulated Tumor suppressor BCL2, TP53, and
TGF-beta

Therapy response (86)

MiR-126 Bone
marrow

Downregulated DNMT1 Azacitidine
resistance

(93)

MiR-4755 Upregulated CDKN2B Decitabine
resistance

(95)

MiR-92a Exosomes Upregulated PTEN Ara-C resistance (96)

MiR-21 Bone
marrow

Upregulated SMAD7, TGF-b Therapeutic target (97)

MiR-146a TRAF6, IRAK1 Therapeutic target (98)
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FIGURE 2

(A) The figure depicts the signaling cascade initiated by Toll-like receptors (TLRs) upon ligand binding, and the regulatory role of miR-146a in this
pathway. Upon binding to their ligands, TLRs undergo a conformational change that recruits the adapter protein MyD88, leading to the activation of
IRAK1. Activated IRAK1 then binds to TRAF6, which in turn activates TAK1. TAK1 phosphorylates the IKK complex, resulting in the activation of the
transcription factor NF-kB. Activated NF-kB translocates into the nucleus to induce the expression of proinflammatory genes. MiR-146a targets and
downregulates IRAK1 and TRAF6, thereby modulating this signaling pathway. In MDS, decreased levels of miR-146a contribute to the activation of
NF-kB through IRAK1 and TRAF6, promoting the development of MDS and its progression to AML. (B) The therapeutic potential of a chemically
modified miRNA-146a mimic oligonucleotide (C-miR146a) conjugated to a scavenger receptor/Toll-like receptor 9 agonist. This conjugation
significantly increases the levels of miR-146a, effectively restoring its function. The restoration of miR-146a levels results in near-complete and
durable inhibition of its targets, IRAK1 and TRAF6. This leads to the complete elimination of exacerbated NF-kB activity, thereby preventing
exaggerated inflammatory responses and aberrant myeloproliferation (107, 108).
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hematopoietic cells (97). To explore the implications of this finding,

they treated transgenic mice expressing a fusion gene (Alb/TGF) with

chemically modified inhibitors of miR-21. Remarkably, the treated

mice were with significantly increased hematocrit levels and showed

enhanced capacity to form erythroid colonies from marrow-derived

cells. The researchers further tested miR-21 inhibitors in primary

MDS bone marrow samples, observing a notable increase in erythroid

(BFU-E) colony numbers. These findings highlight the potential of

miR-21 as a therapeutic target in hematologic disorders, suggesting a

promising avenue for future research and clinical applications.

Another recent study explored the therapeutic effects of a

chemically modified miRNA-146a mimic oligonucleotide

conjugated to a scavenger receptor/Toll-like receptor 9 agonist (C-

miR146a) in miR-146a knockout mice (98). Reduced expression of

miR-146a is known to contribute to the development of del(5q) MDS

(73) and its progression to AML through IRAK1- and TRAF6-

dependent activation of NF-kB (107, 108). In this study,

intravenous injection of C-miR146a successfully restored miR-

146a-5p levels in target myeloid cells, achieving complete

elimination of exacerbated NF-kB activity in miR-146a knockout

mice. This restoration prevented exaggerated inflammatory responses

and aberrant myeloproliferation, leading to near-complete and

durable inhibition of classic miR-146a targets, IRAK1 and TRAF6

(Figure 2). Furthermore, C-miR146a demonstrated cytotoxic effects

on human MDSL, HL-60, and MV4-11 leukemia cells in vitro.

Repeated intravenous administration of C-miR146a inhibited the

expression of NF-kB target genes, thereby thwarting the progression

of disseminated HL-60 leukemia. These findings underscore the

therapeutic potential of miRNA mimics in treating myeloid

malignancies, highlighting the ability to correct specific molecular

dysfunctions and inhibit key pathological pathways.
Conclusions

In summary, the dysregulation of microRNAs in MDS patients

underscores their potential as crucial players in disease pathogenesis.

With distinct miRNA profiles associated with various types of MDS,

these small regulatory molecules offer promise as less invasive

diagnostic and prognostic biomarkers. Moreover, their potential as

indicators for response to therapy suggests a future role in treatment

decision-making and monitoring. However, despite significant
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progress, there remain many unanswered questions, highlighting

the need for further research in larger cohorts of patients.

Continued exploration of miRNA dysregulation in MDS holds the

key to unlocking novel insights into disease mechanisms and refining

personalized approaches to patient care.
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