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Objective: Construct models based on grayscale ultrasound and radiomics and

compare the efficacy of different models in preoperatively predicting the level of

tumor-infiltrating lymphocytes in breast cancer.

Materials and methods: This study retrospectively collected clinical data and

preoperative ultrasound images from 185 breast cancer patients confirmed by

surgical pathology. Patients were randomly divided into a training set (n=111) and

a testing set (n=74) using a 6:4 ratio. Based on a 10% threshold for tumor-

infiltrating lymphocytes (TIL) levels, patients were classified into low-level and

high-level groups. Radiomic features were extracted and selected using the

training set. The evaluation included assessing the relationship between TIL levels

and both radiomic features and grayscale ultrasound features. Subsequently,

grayscale ultrasound models, radiomic models, and nomograms combining

radiomics score (Rad-score) and grayscale ultrasound features were

established. The predictive performance of different models was evaluated

through receiver operating characteristic (ROC) analysis. Calibration curves

assessed the fit of the nomograms, and decision curve analysis (DCA)

evaluated the clinical effectiveness of the models.

Results:Univariate analyses andmultivariate logistic regression analyses revealed

that indistinct margin (P<0.001, Odds Ratio [OR]=0.214, 95% Confidence Interval

[CI]: 0.103-1.026), posterior acoustic enhancement (P=0.027, OR=2.585, 95% CI:

1.116-5.987), and ipsilateral axillary lymph node enlargement (P=0.001,

OR=4.214, 95% CI: 1.798-9.875) were independent predictive factors for high

levels of TIL in breast cancer. In comparison to grayscale ultrasound model

(Training set: Area under curve [AUC] 0.795; Testing set: AUC 0.720) and

radiomics model (Training set: AUC 0.803; Testing set: AUC 0.759), the

nomogram demonstrated superior discriminative ability on both the training

(AUC 0.884) and testing (AUC 0.820) datasets. Calibration curves indicated high

consistency between the nomogram model’s predicted probability of breast

cancer TIL levels and the actual occurrence probability. DCA revealed that the

radiomics model and the nomogram model achieved higher clinical net benefits

compared to the grayscale ultrasound model.
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Conclusion: The nomogram based on preoperative ultrasound radiomics

features exhibits robust predictive capacity for the non-invasive evaluation of

breast cancer TIL levels, potentially providing a significant basis for individualized

treatment decisions in breast cancer.
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1 Introduction

The latest 2022 statistics reveal that there were 287,850 new

breast cancer cases among American women, thereby positioning

breast cancer as the most common malignancy among women. It is

also a leading cause of cancer-related deaths in women (1).Thus,

early diagnosis and selecting effective treatment strategies are

imperative for patient survival and prognosis.

Tumor-Infiltrating Lymphocytes (TIL) are mononuclear cells

prevalent in the tumor interior and its surrounding matrix. They

influence tumor cell metabolism and local immune responses,

playing a role in the body’s immune reactions. Many studies have

found that when overall TIL levels or specific subgroups within the

stroma increase, pre-existing anti-tumor responses are enhanced.

Higher levels of TIL serve as prognostic factors for patients

undergoing adjuvant chemotherapy and are also biomarkers for

increased pathological response after neoadjuvant chemotherapy.

In a study of 2148 breast cancer patients, higher TIL levels in

TNBC were associated with a 17% reduction in recurrence risk and a

27% reduction in mortality risk (2). Additionally, two multicenter

randomized trials anthracycline-based adjuvant chemotherapy

revealed that TNBC patients with high TIL levels had a 10-year

overall survival rate of 89%, whereas those with low levels had a rate

of 68%. For HER2-positive patients, the corresponding 10-year overall

survival rates were 78% and 57%, respectively (3). In the GeparSixto

trial, tumors with high TIL levels had a 59.9% pathological complete

response rate, compared to 33.8% for tumors with low levels (4).

Moreover, studies suggest that the effectiveness of immune checkpoint

blockade (ICB) treatments correlates with the quality and extent of TIL

reactions in the tumor microenvironment (5). In a phase I clinical

study of metastatic TNBC patients treated with atezolizumab

monotherapy, those with TIL > 10% had significantly better median

overall survival than those with TIL < 10% (6).

Hence, identifying effective methods to evaluate TIL levels in

breast cancer is essential, as it enables identification of patients

more likely to respond to immune modulation and chemotherapy,

thereby facilitating more precise personalized treatments and

improving patient outcomes.

In 2014, the International Immuno-Oncology Biomarker

Working Group on Breast Cancer issued the latest guidelines for
02
TIL assessment, specifying the methodology for evaluating TIL in

breast cancer pathology sections by calculating the percentage of TIL

in the entire tumor stroma (7). However, pathology sections have

their limitations; obtaining the full extent of TIL infiltration in the

tumor requires excising the entire lesion, which is impractical for

patients unable to undergo initial surgery. Moreover, due to tumor

spatial heterogeneity, TIL levels based on tissue biopsies may not

accurately reflect the entire tumor’s TIL infiltration (8). Research also

indicates that cytotoxic chemotherapy induces dynamic changes in

the tumor immune microenvironment, meaning TIL levels in the

tumor stroma vary during chemotherapy, differing by molecular

subtype and pathological response (9). Consequently, monitoring

TIL levels during chemotherapy would necessitate multiple invasive

biopsies, a challenging proposition in clinical practice. Thus, there is

an urgent need for a more objective, reliable, and non-invasive

method to assess preoperative TIL infiltration levels in breast cancer.

Presently, imaging methods such as molybdenum target

mammography, ultrasound, and Magnetic Resonance Imaging

(MRI) are instrumental in diagnosing and treating breast cancer,

offering a holistic, non-invasive evaluation of the tumor’s

characteristics. Traditional imaging, however, is limited to

morphological diagnosis and does not provide the molecular and

genetic information required for precision medicine. Recently,

radiomics has emerged as a significant field. This computer-aided

technique, introduced by Lambin et al (10) in 2012, entails the high-

throughput extraction and quantitative analysis of numerous image

features frommedical images, particularly from the Region of Interest

(ROI). This process yields key insights, including high-dimensional,

quantifiable, and analyzable data regarding the tumor’s potential

tissue characteristics, which are distinct from other data types like

clinical, treatment-related, or genomic data (11, 12). It can be utilized

either independently or in conjunction with demographic,

histological, genomic, or proteomic data to tackle clinical challenges

(13). Numerous studies have demonstrated the effectiveness of

ultrasound-based radiomics in diagnosing and distinguishing breast

diseases, as well as in evaluating immunohistopathological features,

thus aiding in patient treatment decisions (14–16). While there have

been smaller studies using molybdenum target mammography and

MRI to assess the level of TIL in breast cancer (17–19), breast

ultrasound, recognized for its safety, absence of radiation, non-
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invasiveness, and cost-effectiveness, is more readily accepted by

patients and is a key imaging modality in breast cancer. However,

there are no reports yet on employing ultrasound radiomics for

assessing breast cancer TIL levels. Therefore, we posit that

ultrasound radiomics can evaluate the TIL level in breast cancer

patients, proposing the development of a novel ultrasound radiomics

assessment system. This system aims to predict TIL levels in breast

cancer, guiding the creation of more precise clinical diagnosis and

treatment strategies and improving the prognosis for breast

cancer patients.
2 Materials and methods

2.1 Patients

We retrospectively collected data from 185 female (mean age 54

± 10) with 194 breast cancer lesions diagnosed in our hospital

between August 2020 and August 2022. For cases with multiple

lesions, only the largest lesion was selected for radiological and

histopathological evaluation. This study is a single-center

retrospective study approved by Taizhou Hospital of Zhejiang

Province ethics committee, with the requirement for informed

consent waived. Patients were randomly assigned to training and

testing sets in a ratio of 6:4. Inclusion criteria were as follows: 1)

Unilateral breast cancer confirmed by surgical pathology at our

hospital; 2) Preoperative bilateral breast ultrasound examination

was mandatory; 3) Pathological evaluation of TIL levels after

surgery. Exclusion criteria included: 1) Patients who received

neoadjuvant treatment or other surgical interventions before

surgery; 2) Poor image quality or large lesion volume resulting in

the inability to assess a specific section; 3) Lack of complete clinical

pathological data and ultrasound examination data. The exclusion

and inclusion criteria are illustrated in Figure 1.
2.2 Clinical and pathological characteristics

Record clinical and pathological data of the tumor, including

age, histopathological subtype, molecular expression status,

molecular subtyping, histological grade, and ipsilateral axillary

lymph node metastasis.

Histological subtypes include invasive ductal carcinoma (IDC),

ductal carcinoma in situ (DCIS), and others (such as invasive

lobular carcinoma, lobular carcinoma in situ, etc.).

Based on the immunohistochemical results of estrogen receptor

(ER), progesterone receptor (PR), and HER2-amplified, patients are

categorized into the following four types:
Fron
(1) Luminal A: ER/PR (+), HER-2(-), and Ki-67<14%.

(2) Luminal B: ER/PR (+), HER-2(-), and Ki-67≥14%; or ER/

PR (+) and HER-2(+).

(3) TNBC: ER (-), PR (-) and HER-2(-).

(4) HER-2 -amplified: ER (-), PR (-) and HER-2(+).
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2.3 Histopathological evaluation of TIL

In line with the 2014 recommendations from the International

Immuno-Oncology Biomarker Working Group on Breast Cancer

(7), We primarily assessed and analyzed TIL within the stromal

area. The TIL score is defined as the percentage of TIL the entire

stromal area. This assessment is conducted on breast cancer

pathological sections. TIL should be evaluated within the invasive

tumor margin (IM), which is defined as the region centered on the

boundary between normal tissue and cancer nests, with a range of

1mm. TIL assessment requires the exclusion of TIL within tumor

cells, in situ carcinoma, surrounding normal lobules, tissue damage,

necrosis, fibrotic areas, and tertiary lymphoid structures. Only

mononuclear cells (lymphocytes and plasma cells) are assessed.

Different areas of the tumor are selected for TIL assessment to

obtain the average TIL count, rather than focusing only on hotspots.

In this study, TIL levels were categorized as low (<10%) and high

(≥10%). Two pathologists with five years or more of work

experience evaluated the lesions without knowing any clinical

data or pathological results. They categorized all specimens into

low TIL level group and high TIL level group.
2.4 Ultrasound image acquisition and
feature analysis

A Samsung XW80A color Doppler ultrasound machine with a

real-time linear array high-frequency probe (frequency range: 7.5-

15.0 MHz) was utilized for multi-angle and multi-sectional

scanning of the le s ion areas wi thout any marking .

Simultaneously, color Doppler was employed to examine the

vascularization of the lesions. Two diagnostic physicians with

more than five years of experience in superficial ultrasound

reviewed the images. The physicians were unaware of the

patients’ information. Based on the ACR 2013 edition Breast

Imaging Reporting and Data System (BIRADS) diagnostic

criteria, the image features were evaluated. In case of

disagreements, consensus was reached through discussion, and

the evaluation results were recorded. The assessed features

included the maximum diameter of the mass, growth direction

(parallel or non-parallel), morphology (regular or irregular),

margins (indistinct, spiculated, angular, micro-lobulated), internal

echogenicity (low echogenicity, cystic-solid echogenicity,

heterogeneous echogenicity), microcalcifications (present or

absent), posterior echoes (no apparent changes, enhancement,

attenuation, mixed changes), color doppler flow imaging

(according to the Adler method: Grade 0, no blood flow signal

detected within the mass; Grade 1, minimal blood flow, with 1-2

punctate or rod-like tumor vessels visible; Grade 2, moderate blood

flow, with 3-4 punctate vessels or a longer vessel entering the lesion,

with its length approaching or exceeding the radius of the mass;

Grade 3, abundant blood flow, with more than 5 punctate vessels or

2 longer vessels visible). Additionally, the status of ipsilateral

axillary lymph node enlargement (cortical thickening, length-to-

width ratio < 2.0 defined as lymph node enlargement) was assessed.
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2.5 Grayscale ultrasound
model construction

In conducting univariate analysis to compare grayscale

ultrasound differences among patients in various TIL groups,

features exhibiting significance at P < 0.05 are identified as risk

factors for evaluating high TIL levels. Subsequently, these

significant features are incorporated into multivariate logistic

regression analysis. Grayscale ultrasound features with a

significance level of P < 0.05 in the multivariate analysis are

chosen to formulate a grayscale ultrasound model. Odds ratios

(OR) along with 95% confidence intervals (CI) are then computed

to evaluate the relative risk associated with each predictive factor.
2.6 Radiomics analysis and
model construction

2.6.1 ROI segmentation and feature extraction
Ultrasound images of the lesion’s maximum diameter were

imported into the 3D Slicer software (version Slicer-5.0.2). An

ultrasound doctor (A) with 5 years or more of ultrasound diagnostic
Frontiers in Oncology 04
experience manually delineated the Region of Interest (ROI) along the

tumor contour on the grayscale ultrasound image (Figure 2). Feature

extraction was conducted using the pyradiomics software package

based on the Python. The extracted features included several

categories: first-order features, shape features (2D), gray-level co-

occurrence matrix features (GLCM), gray-level size zone matrix

features (GLSZM), gray-level run length matrix features (GLRLM),

neighboring gray tone difference matrix features (NGTDM), gray-level

dependence matrix features (GLDM), and wavelet transform features.

2.6.2 Intra-observer and inter-observer
agreement for defining the ROI

We randomly selected 20 images, and the same ultrasound

doctor(A) repeated ROI segmentation after two weeks to analyze

intra-observer repeatability. Another ultrasound doctor (B)

performed ROI segmentation independently during the same

period to analyze inter-observer repeatability. One-way analysis of

variance (ANOVA) was used to calculate the Intraclass Correlation

Coefficient (ICC) to quantify the consistency within and between

observers. The ICC values range from 0 to 1, with values closer to 1

indicating higher consistency. We selected radiomics features with

ICC values all greater than 0.75.
FIGURE 1

A flowchart illustrating the patient inclusion process for this study.
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2.6.3 Feature selection and model development
The features of both the training and testing sets were

standardized using Z-Score. Subsequently, dimensionality

reduction and elimination of redundant features were performed

on the training set through univariate analysis and the Least

Absolute Shrinkage and Selection Operator (LASSO) regression

algorithm. This process aimed to identify the most relevant features.

For the univariate analysis, only features with P < 0.05 were

retained. As for the LASSO method, feature selection was carried

out through ten-fold cross-validation to obtain the final radiomics

features and their coefficients. The selected features were weighted

based on their coefficients to calculate the Rad-score for each

patient. Finally, a multivariate logistic regression analysis was

employed to construct the radiomics model.
2.7 Construction of the nomogram model
and evaluation of models

A multivariate logistic regression analysis was employed to

jointly establish the nomogram model, incorporating predictive

factors from grayscale ultrasound features with the Rad-score. ROC

curves were utilized to assess the performance of different models,

calculating AUC values, accuracy, sensitivity, specificity, Positive

Predictive Value (PPV), and Negative Predictive Value (NPV). The

Delong test was applied for pairwise comparisons of ROC curves.

Additionally, calibration curves were used to evaluate the

consistency between clinical application and the actual probability

versus predicted probability. The goodness-of-fit of the model was

assessed through the Hosmer-Lemeshow test. Finally, Decision

Curve Analysis (DCA) was conducted to evaluate the clinical

application value of the nomogram
2.8 Statistical analysis methodology

The statistical analyses were conducted using IBM SPSS 25.0 and R

software (version 3.6.0; available at http://www.Rproject.org.). For the

analysis of clinical data, qualitative variables were compared using the

Chi-square test or Fisher’s exact test, while quantitative variables were

analyzed using the independent sample T-test. The R software facilitated

various aspects of the analysis: the “glmnet” package was employed for

LASSO analysis, with 10-fold cross-validation to enhance model
Frontiers in Oncology 05
optimization; the “psych” package was utilized for ICC test; ROC

curves were generated using the “pROC” package; and the “rms”

package was applied for conducting multivariate logistic regression,

creating nomograms, and plotting calibration curves. Additionally,

Decision Curve Analysis (DCA) curves were created using the “rmda”

package, aiding in the evaluation of the model’s clinical applicability.
3 Results

3.1 Clinical and pathological characteristics

This study included a total of 185 breast cancer patients, with

101 cases (56.2%) in the low-level group and 84 cases (43.8%) in the

high-level group. Significant differences between the two groups

were observed in the expression of ER (P=0.007) and PR (P=0.024),

ki67 levels (P=0.001), molecular subtypes (P<0.001), and

histological grade (P=0.002). No statistical differences were found

between the high and low-level groups in terms of age (P=0.746),

axillary lymph node metastasis (P=0.693), HER2 expression

(P=0.455), and histopathological subtypes (P=0.252). Table 1

presents the clinical and pathological characteristics of the patients.
3.2 Grayscale ultrasound feature analysis
and model construction

Results from univariate analysis revealed statistically significant

differences in tumor morphology (P=0.001), presence of spiculated

margins (P=0.03), margin clarity (P<0.001), posterior enhancement

(P<0.001), and ipsilateral axillary lymph node enlargement

(P=0.007) among TIL subgroups in ultrasound images, as shown

in Table 2. Multivariate logistic regression analysis demonstrated

that blurry margins (P<0.001, OR=0.214, 95% CI: 0.103-1.026),

posterior enhancement (P=0.027, OR=2.585, 95% CI: 1.116-5.987),

and ipsilateral axillary lymph node enlargement (P=0.001,

OR=4.214, 95% CI: 1.798-9.875) were independent predictors of

high TIL levels (Table 3). The grayscale ultrasound model

constructed based on these independent predictors showed an

AUC, accuracy, sensitivity, specificity, PPV, NPV, and 95% CI of

0.795, 0.757, 0.644, 0.833, 0.725, 0.775, and 0.705-0.885 in the

training set, and 0.720, 0.689, 0.528, 0.840, 0.760, 0.653, and 0.604-

0.837 in the testing set (Table 4).
FIGURE 2

Breast mass ultrasound image region of interest (ROI) delineation schematic. (A):Two-dimensional ultrasound image of a breast mass. (B):Delineate
the boundaries of ROI (C):the mask image segmented from (A).
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3.3 Radiomics feature selection and
model construction

A total of 837 radiomics features were extracted from the original

ultrasound images. After evaluating the consistency within and

between observers, 664 features with an ICC greater than 0.75 were

retained. Following one-way analysis of variance to eliminate features

with low relevance, 42 features were retained. These features had ICC

distributions intra-observers ranging from 0.831 to 0.997 and inter-

observers ranging from 0.800 to 0.960. Further, LASSO regression
Frontiers in Oncology 06
analysis with ten-fold cross-validation identified two optimal features

along with their respective coefficients (Figures 3A–C): “wavelet-

LHH GLSZM Large Area High Gray Level Emphasis” and “wavelet-

HHH GLSZM High Gray Level Zone Emphasis.” Rad-scores were

calculated for each patient, and a multivariate logistic regression

radiomics model was established. In the training set, the model

exhibited an AUC, accuracy, sensitivity, specificity, PPV, NPV, and

95% CI of 0.803, 0.730, 0.621, 0.889, 0.615, 0.891, and 0.719-0.887,

respectively. In the testing set, these values were 0.759, 0.743, 0.639,

0.842, 0.793, 0.711, and 0.647-0.871 (Table 4).
TABLE 1 Clinical and pathological characteristics of patients with different TIL levels.

Variable All(n=185) Low level(n=104) High level(n=81) P-value

Age, Mean ± SD (years) 53.70 ± 9.62 53.50 ± 9.36 53.96 ± 10.00 0.746

Axillary lymph node metastasis 0.693

Negative 116 (62.7) 67 (64.6) 49 (60.5)

Positive 69 (37.3) 37 (35.6) 32 (39.5)

ER status 0.007*

Negative 47 (25.4) 18 (17.3) 29 (35.8)

Positive 138 (74.6) 86 (82.7) 52 (64.2)

PR status 0.024*

Negative 56 (30.3) 24 (23.1) 32 (39.5)

Positive 129 (69.7) 80 (76.9) 49 (60.5)

HER2 status 0.455

Negative 143 (77.3) 83 (79.8) 60 (74.1)

Positive 42 (22.7) 21 (20.2) 21 (25.9)

Ki67 status 0.001*

Low (<14%) 38 (20.5) 31 (29.8) 7 (8.6)

High (≥14%) 147 (79.5) 73 (70.2) 74 (91.4)

Molecular subtype <0.001*

Luminal A 37 (20.0) 30 (28.8) 7 (8.6)

Luminal B 102 (55.1) 56 (53.8) 46 (56.8)

TNBC 24 (13.0) 5 (4.8) 19 (23.5)

HER2-amplified 22 (11.9) 13 (12.5) 9 (11.1)

Histological grade 0.002*

I 19 (10.3) 16 (15.4) 3 (3.7)

II 98 (53.0) 61 (58.7) 37 (45.7)

III 55 (29.7) 22 (21.2) 33 (40.7)

Null 13 (7.0) 5 (4.8) 8 (9.9)

Histological subtype 0.252

IDC 175 (94.6) 100 (96.2) 75 (92.6)

DICS 5 (2.7) 3 (2.9) 2 (2.5)

Others 5 (2.7) 1 (1.0) 4 (4.9)
*P<0.05.
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3.4 Construction of the nomogram model
and evaluation of models

Using logistic regression, a radiomics nomogram model was

constructed by combining Rad-score with grayscale ultrasound

predictors (Figure 4). In the training set, the nomogram

demonstrated an AUC of 0.884, accuracy of 0.829, sensitivity of

0.778, specificity of 0.864, PPV of 0.795, NPV of 0.851, and a 95%

confidence interval of 0.820-0.949. In the testing set, these values
Frontiers in Oncology 07
were 0.820, 0.757, 0.694, 0.816, 0.781, 0.738, and 0.727-0.914,

respectively. The ROC curves for all models are shown in

Figures 5A, B. Delong’s test (Table 5) indicates that the

nomogram model performs significantly better than the grayscale

ultrasound model in both the training set (P=0.020) and testing set

(P=0.024). In the training set, the nomogram model outperforms

the radiomics model (P=0.005), but in the testing set, there is no

significant statistical difference compared to the radiomics model

(P=0.630). The radiomics model shows no significant statistical

difference in performance compared to the grayscale ultrasound

model in both the training set (P=0.891) and testing set (P=0.136).

The calibration curves for the training set and testing set

(Figures 6A, B), assessed using the Hosmer-Lemeshow test,

showed no significant differences in both the training set

(P=0.340) and testing set (P=0.147). This suggests good

consistency between the actual and predicted risks of TIL levels.

Decision Curve Analysis (DCA) (Figures 7A, B) demonstrated the

clinical utility of the nomogram model. The results indicate that the

combined radiomics nomogram model performs better in

evaluating breast cancer TIL levels compared to the grayscale

ultrasound model. The threshold probabilities in the training set

and testing set range between 0.20-0.92 and 0.20-0.78, respectively.
4 Discussion

Recent research increasingly supports that TIL are crucial

biomarkers for predicting the effectiveness of immunotherapy and

neoadjuvant chemotherapy in breast cancer (3, 20–22).Given the

complexity of postoperative pathological evaluations and the

limitation of preoperative biopsies in fully representing the TIL

level across the entire tumor, a non-invasive and practical method

for assessing TIL levels is vital for tailored treatment strategies. Our

study discovered that the nomogram, integrating optimal grayscale

ultrasound and radiomics features and based on preoperative

ultrasound radiomics, excels in evaluating TIL levels.
TABLE 2 Grayscale ultrasound features of breast cancer patients with
different TIL levels.

Variable
Low
level
(N=104)

High
level
(N=81)

P
value

Shape 0.001*

Regular 4(3.8) 16(19.8)

Irregular 100(96.2) 65(80.2)

Growth direction 0.666

Parallel 65(62.5) 54(66.7)

Non-parallel 39(37.5) 27(33.3)

Margin

Spiculated 64(61.5) 36(44.4) 0.030*

Angular 77(74.0) 57(70.4) 0.698

Indistinct 75(72.1) 34(42.0) <0.001*

Micro-lobulated 16(15.4) 19(23.5) 0.230

Echo pattern (%) 0.302

Hypoechoic 96(92.3) 69(85.2)

Heterogeneous 2(1.9) 3(3.7)

Cystic-solid 6(5.8) 9(11.1)

Posterior features (%) <0.001*

No posterior features 45(43.3) 26(32.1)

Enhancement 19(18.3) 31(38.3)

Shadowing 34(32.7) 10(12.3)

Combined pattern 6(5.8) 14(17.3)

Microcalcification 1

Yes 64(61.5) 49(60.5)

No 40(38.5) 32(39.5)

Ipsilateral axillary lymph
node enlargement

0.007*

Yes 15(14.4) 26(32.1)

No 86(85.6) 55(67.9)

Adler classification 0.847

Grade0-1 9(11.5) 14(13.6)

Grade2-3 92(88.5) 70(86.4)
*P<0.05.
TABLE 3 Multivariate logistic regression analysis of grayscale ultrasound
features in nreast cancer patients with different TIL levels.

Variable

Multivariable Logistic
Regression Analysis

OR (95%CI) P-value

Shape 0.379(0.103,1.398) 0.145

Spiculated 0.494(0.237,1.026) 0.059

Indistinct 0.214(0.103,0.446) <0.001*

Posterior features 0.006*

Enhancement 2.585(1.116,5.987) 0.027*

Shadowing 0.543(0.209,1.408) 0.209

Combined pattern 3.019(0.934,9.752) 0.065

Ipsilateral axillary lymph node enlargement 4.214(1.798,9.875) 0.001*
fr
*P<0.05.
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Earlier studies suggested a correlation between breast cancer

TIL levels and ultrasound imaging characteristics (23), though these

findings were not definitive. Our results indicate that tumors with

elevated TIL levels are more likely to exhibit distinct margins and

intensified posterior echoes on ultrasound, aligning with studies by

Jia (24), Candelaria (25). The enhancement or attenuation of
Frontiers in Oncology 08
posterior echoes is associated with the tumor’s internal

composition. It’s posited that increased TIL levels reflect a rise in

water-soluble components and a reduction in collagen fibers within

the tumor stroma. Additionally, tumor margins might influence, or

be influenced by, the tumor microenvironment, potentially altering

the tumor’s perimeter and interior. Hence, the intricate molecular
TABLE 4 Predictive performance of different models in the training and testing sets.

Models AUC 95%CI ACC SEN SPE PPV NPV

Training set (N=111)

US 0.795 0.705-0.885 0.757 0.644 0.833 0.725 0.775

Radiomics 0.803 0.719-0.887 0.730 0.621 0.889 0.615 0.891

Nomogram 0.884 0.820-0.949 0.829 0.778 0.864 0.795 0.851

Testing set (N = 74)

US 0.720 0.604-0.837 0.689 0.528 0.842 0.760 0.653

Radiomics 0.759 0.647-0.871 0.743 0.639 0.842 0.793 0.711

Nomogram 0.820 0.727-0.914 0.757 0.694 0.816 0.781 0.738
B CA

FIGURE 3

Using lasso regression model to select radiomics features (A) shows the variation of coefficients with the Log Lambda (Log l) value. (B) depicts the
selection of the most valuable features through lasso regression coupled with ten-fold cross-validation; the x-axis represents the Log (l) value, with
two vertical lines indicating the number of features at the optimal Log (l) value and the minimum number of independent variables in the model
with the best performance. (C) the two non-zero coefficient features of the simplest model we selected, along with the coefficient for each feature.
FIGURE 4

Nomogram model combining grayscale ultrasound features with Rad-score. Indistinct 0:no,1:yes. Posterior feature:0:No .posterior features,1:
Enhancement,2: Shadowing,3:Combined pattern ALN represent Ipsilateral axillary lymph node enlargement,0:no,1:yes.
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and biological mechanisms governing the interplay between the

tumor and its surrounding stroma warrant further investigation.

Celebi and colleagues (26) also identified variations in the

appearance of tumor margins across different levels of TIL. They

proposed that tumors with higher TIL levels tend to have larger

volumes and more heterogeneous internal echoes. However, our

study did not observe significant statistical differences in these

aspects. Furthermore, MRI-based studies have also shown

divergent outcomes regarding the correlation between tumor size

and TIL levels (17, 27). The variance in findings related to tumor

size may stem from different measurement approaches, such as

assessments based on pathological specimens, the largest
Frontiers in Oncology 09
ultrasound cross-section, and the largest MRI cross-section. As

for internal echoes, Fukui et al. in their sequential studies noted that

higher TIL levels correlate with lower internal echo intensities (28,

29). In contrast, research focusing on TNBC revealed that tumors

with high TIL levels display complex cystic and solid echo patterns

(25). These variations might be attributed to the different

classification systems used by Fukui’s team, such as the Japanese

Breast and Thyroid Ultrasound Society, as well as differences in TIL

level classification methods.

Our study also observed that tumors with higher levels of TIL

were more prone to associated sentinel lymph node enlargement,

aligning with findings from Chen et al. in MRI-based studies (30).
TABLE 5 Comparison of ROC curve performance for different models in the training and testing sets.

Delong test AUC of training set P-value AUC of testing set P-value

Nomogram vs US 0.884 vs 0.795 0.020* 0.820 vs 0.720 0.025*

Nomogram vs Radiomics 0.884 vs 0.803 0.005* 0.820 vs 0.759 0.630

Radiomics vs US 0.803 vs 0.795 0.891 0.759 vs 0.720 0.136
*P<0.05.
BA

FIGURE 5

ROC curves of the grayscale ultrasound model, radiomics model, and nomogram model in the training set (A) and testing set (B).
BA

FIGURE 6

Calibration curves of the Nomogram Model in the training set (A) and testing set (B).
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Contrarily, Takada et al. (31) reported that TIL density in patients

with lymph node metastasis was notably lower than in those

without, focusing exclusively on T1 stage breast cancer patients,

which may account for the disparities in our findings. Additionally,

our investigation was limited to the morphological study of lymph

nodes, necessitating larger sample sizes for more robust

confirmation. Generally, grayscale ultrasound features correlate

with TIL levels, yet they are operator-dependent and exhibit

low reproducibility.

In our study, based on grayscale ultrasound images, we obtained

a total of 837 rich quantitative features. Eventually, we narrowed

down our selection to 2 wavelet transform features. Wavelet

transform decomposes a signal into different frequency bands of

wavelet coefficients, which can be utilized to analyze signal

characteristics such as edges, textures, etc. The feature “Wavelet-

LHH GLSZM Large Area High Gray Level Emphasis” quantifies

large-sized, high-gray-level regions in the image, emphasizing their

contribution to the overall texture. On the other hand, the feature

“Wavelet-HHH GLSZM High Gray Level Zone Emphasis”

quantifies regions with high gray levels in the image, highlighting

their importance in the overall image. While the application of

radiomics significantly mitigated the drawback of low repeatability

in the original grayscale ultrasound images, our study results

indicate that the incorporation of radiomic features significantly

improved the predictive performance of the model (training set

AUC=0.884, testing set AUC=0.820).

Jia et al.’s model, based on conventional ultrasound and

contrast-enhanced ultrasound features, yielded an AUC of 0.790

in predicting TIL levels, further underscoring the superior

predictive accuracy of ultrasound-based radiomics (24). Another

analogous study reported a higher performance for their TIL-US

scoring model (AUC=0.88) (29). However, this model involved

subjective scoring of ultrasound features based on logistic

regression outcomes and lacked validation in a new dataset, thus

necessitating further verification of its generalizability.

Our work was contrasted with analogous radiomics studies

based on mammography and MRI, as reported by Yu (19) and Xu

et al (27). Their models achieved AUC values of 0.790 and 0.800,

respectively, in the testing set, signifying moderate efficacy. Our

study, with the nomogram model, demonstrated a slightly superior
Frontiers in Oncology 10
performance (AUC=0.820), albeit somewhat below that of the MRI-

Dynamic Contrast-Enhanced (DCE) radiomics nomogram

(AUC=0.840) (17).Despite this, the potential of ultrasound in

accurately predicting TIL levels in breast cancer remains

significant. Moreover, these studies, utilizing different imaging

modalities, extracted diverse sets of radiomics features, and their

approaches to delineating Regions of Interest (ROIs) also varied.

Thus, future research will benefit from standardized feature

extrac t ion protocol s to a t ta in more cons i s tent and

enhanced outcomes.

This study has several limitations. Firstly, the sample size is

relatively small, and it is a single-center retrospective study. Further

research involving multiple centers and a larger number of patients

is necessary. Secondly, our radiomic classifier was calculated using

an ROI drawn only on the single largest slice in two-dimensional

breast ultrasound images, which may introduce selection bias.

However, breast ultrasound remains the most common method

for breast cancer screening and diagnosis. Our study’s goal was to

examine the predictive correlation between ultrasound

presentations in breast cancer patients and their TIL levels.

Should the radiomics predictive model, predicated on breast

ultrasound imagery, prove effective in evaluating TIL levels, it

could furnish radiologists and clinicians with invaluable insights,

thereby enhancing clinical decision-making for breast

cancer patients.
5 Conclusion

Radiomics introduces a novel approach for gleaning critical

data from ultrasound images. The synergy of radiomics features

with grayscale ultrasound characteristics has shown promising

potential in accurately predicting the levels of TIL in breast

cancer patients, thus facilitating clinical treatment strategies. The

quantitative nomogram predictive model, anchored in the Rad-

score and incorporating grayscale ultrasound features, emerges as a

pivotal tool for the preoperative determination of TIL levels,

potentially enriching clinical insights and decision-making in

breast cancer management.
BA

FIGURE 7

DCA for predicting breast cancer TIL levels by different models in the training set (A) and testing set (B).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1411261
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1411261
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Medical Ethics

Committee of Taizhou Hospital of Zhejiang Province. The studies

were conducted in accordance with the local legislation and

institutional requirements. Written informed consent for

participation was not required from the participants or the

participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements.
Author contributions

MZ: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Writing – original draft, Writing –

review & editing, Software. XYL: Conceptualization, Data curation,

Formal analysis, Investigation, Methodology, Writing – original

draft, Writing – review & editing, Software. PZ: Data curation,

Formal analysis, Investigation, Writing – original draft. PPZ: Data

curation, Formal analysis, Investigation, Writing – original draft.

GW: Data curation, Formal analysis, Investigation, Writing –
Frontiers in Oncology 11
original draft. XFL: Funding acquisition, Project administration,

Resources, Supervision, Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by the Taizhou City Social Development

Science and Technology Planning Project (No.23ywb54).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J
Clin. (2022) 72:7–33. doi: 10.3322/caac.21708

2. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and
predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant
breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to
doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. (2013)
31:860–7. doi: 10.1200/JCO.2011.41.0902

3. Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, et al.
Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III
randomized adjuvant breast cancer trials. Ann Oncol. (2015) 26:1698–704.
doi: 10.1093/annonc/mdv239

4. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al.
Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or
without carboplatin in human epidermal growth factor receptor 2-positive and triple-
negative primary breast cancers. J Clin Oncol. (2015) 33:983–91. doi: 10.1200/
JCO.2014.58.1967

5. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes
in the immunotherapy era. Cell Mol Immunol. (2020) 18:842–59. doi: 10.1038/s41423-
020-00565-9

6. Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, et al. Long-term
clinical outcomes and biomarker analyses of atezolizumab therapy for patients with
metastatic triple-negative breast cancer: A phase 1 study. JAMA Oncol. (2019) 5:74–82.
doi: 10.1001/jamaoncol.2018.4224

7. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The
evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations
by an International TILs Working Group 2014. Ann Oncol. (2015) 26:259–71.
doi: 10.1093/annonc/mdu450

8. Khan AM, Yuan Y. Biopsy variability of lymphocytic infiltration in breast cancer
subtypes and the ImmunoSkew score. Sci Rep. (2016) 6:36231. doi: 10.1038/srep36231

9. Park YH, Lal S, Lee JE, Choi Y-L, Wen J, Ram S, et al. Chemotherapy induces
dynamic immune responses in breast cancers that impact treatment outcome. Nat
Commun. (2020) 11:6175. doi: 10.1038/s41467-020-19933-0
10. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM,
Granton P, et al. Radiomics: Extracting more information from medical images using
advanced feature analysis. Eur J Cancer. (2012) 48:441–6. doi: 10.1016/j.ejca.2011.11.036

11. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and
ecology. Radiology. (2013) 269:8-15. doi: 10.1148/radiol.13122697

12. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, et al. Promises and
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et al. Introduction to radiomics. J Nucl Med. (2020) 61:488–95. doi: 10.2967/
jnumed.118.222893

14. Jiang M, Li C-L, Luo X-M, Chuan Z-R, Lv W-Z, Li X, et al. Ultrasound-based
deep learning radiomics in the assessment of pathological complete response to
neoadjuvant chemotherapy in locally advanced breast cancer. Eur J Cancer. (2021)
147:95–105. doi: 10.1016/j.ejca.2021.01.028

15. Lee SE, Han K, Kwak JY, Lee E, Kim E-K. Radiomics of US texture features in
differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci Rep.
(2018) 8:13546. doi: 10.1038/s41598-018-31906-4

16. Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, et al. Deep learning radiomics
can predict axillary lymph node status in early-stage breast cancer. Nat Commun.
(2020) 11:1236. doi: 10.1038/s41467-020-15027-z

17. Bian T, Wu Z, Lin Q, Mao Y, Wang H, Chen J, et al. Evaluating tumor-
infiltrating lymphocytes in breast cancer using preoperative MRI-based radiomics.
J Magnetic Resonance Imaging. (2021) 55:772–84. doi: 10.1002/jmri.27910

18. Yu H, Meng X, Chen H, Han X, Fan J, Gao W, et al. Correlation between
mammographic radiomics features and the level of tumor-infiltrating lymphocytes in
patients with triple-negative breast cancer. Front Oncol. (2020) 10. doi: 10.3389/
fonc.2020.00412

19. Yu H, Meng X, Chen H, Liu J, Gao W, Du L, et al. Predicting the level of tumor-
infiltrating lymphocytes in patients with breast cancer: usefulness of mammographic
radiomics features. Front Oncol. (2021) 11. doi: 10.3389/fonc.2021.628577
frontiersin.org

https://doi.org/10.3322/caac.21708
https://doi.org/10.1200/JCO.2011.41.0902
https://doi.org/10.1093/annonc/mdv239
https://doi.org/10.1200/JCO.2014.58.1967
https://doi.org/10.1200/JCO.2014.58.1967
https://doi.org/10.1038/s41423-020-00565-9
https://doi.org/10.1038/s41423-020-00565-9
https://doi.org/10.1001/jamaoncol.2018.4224
https://doi.org/10.1093/annonc/mdu450
https://doi.org/10.1038/srep36231
https://doi.org/10.1038/s41467-020-19933-0
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1148/radiol.13122697
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1016/j.ejca.2021.01.028
https://doi.org/10.1038/s41598-018-31906-4
https://doi.org/10.1038/s41467-020-15027-z
https://doi.org/10.1002/jmri.27910
https://doi.org/10.3389/fonc.2020.00412
https://doi.org/10.3389/fonc.2020.00412
https://doi.org/10.3389/fonc.2021.628577
https://doi.org/10.3389/fonc.2024.1411261
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1411261
20. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al.
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer
patients. Nature. (2014) 515:563–7. doi: 10.1038/nature14011

21. Ochi T, Bianchini G, Ando M, Nozaki F, Kobayashi D, Criscitiello C, et al.
Predictive and prognostic value of stromal tumour-infiltrating lymphocytes before and
after neoadjuvant therapy in triple negative and HER2-positive breast cancer. Eur J
Cancer. (2019) 118:41–8. doi: 10.1016/j.ejca.2019.05.014

22. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber
KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast
cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet
Oncol. (2018) 19:40–50. doi: 10.1016/S1470-2045(17)30904-X

23. Frankowska K, Zarobkiewicz M, Dabrowska I, Bojarska-Junak A. Tumor
infiltrating lymphocytes and radiological picture of the tumor. Med Oncol. (2023)
40:176. doi: 10.1007/s12032-023-02036-3

24. Jia Y, Zhu Y, Li T, Song X, Duan Y, Yang D, et al. Evaluating tumor-infiltrating
lymphocytes in breast cancer: the role of conventional ultrasound and contrast-
enhanced ultrasound. J Ultrasound Med. (2023) 42:623–34. doi: 10.1002/jum.16058

25. Candelaria RP, Spak DA, Rauch GM, Huo L, Bassett RL, Santiago L, et al. BI-
RADS ultrasound lexicon descriptors and stromal tumor-infiltrating lymphocytes in
triple-negative breast cancer. Acad Radiol. (2022) 29 Suppl 1:S35–41. doi: 10.1016/
j.acra.2021.06.007
Frontiers in Oncology 12
26. Celebi F, Agacayak F, Ozturk A, Ilgun S, Ucuncu M, Iyigun ZE, et al. Usefulness
of imaging findings in predicting tumor-infiltrating lymphocytes in patients with breast
cancer. Eur Radiol. (2020) 30:2049–57. doi: 10.1007/s00330-019-06516-x

27. Xu N, Zhou J, He X, Ye S, Miao H, Liu H, et al. Radiomics model for evaluating
the level of tumor-infiltrating lymphocytes in breast cancer based on dynamic contrast-
enhanced MRI. Clin Breast Cancer. (2021) 21:440–9.e1. doi: 10.1016/j.clbc.2020.12.008

28. Fukui K, Masumoto N, Yokoyama E, Kanou A, Yokozaki M, Sasada S, et al.
Ultrasonography combined with contrast-enhanced ultrasonography can predict
lymphocyte-predominant breast cancer. Cancer Diagn Progn. (2021) 1:309–16.
doi: 10.21873/cdp.

29. Fukui K, Masumoto N, Shiroma N, Kanou A, Sasada S, Emi A, et al. Novel
tumor-infiltrating lymphocytes ultrasonography score based on ultrasonic tissue
findings predicts tumor-infiltrating lymphocytes in breast cancer. Breast Cancer.
(2019) 26:573–80. doi: 10.1007/s12282-019-00958-3

30. Chen S, Sui Y, Ding S, Chen C, Liu C, Zhong Z, et al. A simple and convenient
model combining multiparametric MRI and clinical features to predict tumour-
infiltrating lymphocytes in breast cancer. Clin Radiol. (2023) 78:e1065–e74.
doi: 10.1016/j.crad.2023.08.029

31. Takada K, Kashiwagi S, Asano Y, Goto W, Kouhashi R, Yabumoto A, et al.
Prediction of lymph node metastasis by tumor-infiltrating lymphocytes in T1 breast
cancer. BMC Cancer. (2020) 20:598. doi: 10.1186/s12885-020-07101-y
frontiersin.org

https://doi.org/10.1038/nature14011
https://doi.org/10.1016/j.ejca.2019.05.014
https://doi.org/10.1016/S1470-2045(17)30904-X
https://doi.org/10.1007/s12032-023-02036-3
https://doi.org/10.1002/jum.16058
https://doi.org/10.1016/j.acra.2021.06.007
https://doi.org/10.1016/j.acra.2021.06.007
https://doi.org/10.1007/s00330-019-06516-x
https://doi.org/10.1016/j.clbc.2020.12.008
https://doi.org/10.21873/cdp.
https://doi.org/10.1007/s12282-019-00958-3
https://doi.org/10.1016/j.crad.2023.08.029
https://doi.org/10.1186/s12885-020-07101-y
https://doi.org/10.3389/fonc.2024.1411261
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 Clinical and pathological characteristics
	2.3 Histopathological evaluation of TIL
	2.4 Ultrasound image acquisition and feature analysis
	2.5 Grayscale ultrasound model construction
	2.6 Radiomics analysis and model construction
	2.6.1 ROI segmentation and feature extraction
	2.6.2 Intra-observer and inter-observer agreement for defining the ROI
	2.6.3 Feature selection and model development

	2.7 Construction of the nomogram model and evaluation of models
	2.8 Statistical analysis methodology

	3 Results
	3.1 Clinical and pathological characteristics
	3.2 Grayscale ultrasound feature analysis and model construction
	3.3 Radiomics feature selection and model construction
	3.4 Construction of the nomogram model and evaluation of models

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


