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2Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States, 3Department of
Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States, 4Department of Internal
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Introduction: Breast cancer is the second most diagnosed cancer, as well as the

primary cause of cancer death in women worldwide. Of the different breast

cancer subtypes, triple-negative breast cancer (TNBC) is particularly aggressive

and is associated with poor prognosis. Black women are two to three times more

likely to be diagnosed with TNBCs than white women. Recent experimental

evidence suggests that basal-like TNBCs may derive from luminal cells which

acquire basal characteristics through phenotypic plasticity, a newly recognized

hallmark of cancer. Whether chemical exposures can promote phenotypic

plasticity in breast cells is poorly understood.

Methods: To invest igate further , we developed a high-content

immunocytochemistry assay using normal human breast cells to test whether

chemical exposures can impact luminal/basal plasticity by unbiased

quantification of keratin 14 (KRT14), a basal-myoepithelial marker; keratin 8

(KRT8), a luminal-epithelial marker; and Hoechst 33342, a DNA marker. Six cell

lines established from healthy tissue from donors to the Susan G. Komen Normal

Tissue Bank were exposed for 48 hours to three different concentrations (0.1mM,

1mM, and 10mM) of eight ubiquitous chemicals (arsenic, BPA, BPS, cadmium,

copper, DDE, lead, and PFNA), with documented exposure disparities in US Black

women, in triplicate. Automated fluorescence image quantification was

performed using Cell Profiler software, and a random-forest classifier was

trained to classify individual cells as KRT8 positive, KRT14 positive, or hybrid

(both KRT8 and KRT14 positive) using Cell Profiler Analyst.

Results and discussion: Results demonstrated significant concentration-

dependent increases in hybrid populations in response to BPA, BPS, DDE, and

PFNA. The increase in hybrid populations expressing both KRT14 and KRT8 is

indicative of a phenotypically plastic progenitor-like population in line with

known theories of carcinogenesis. Furthermore, BPA, BPS, DDE, and copper
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produced significant increases in cell proliferation, which could be indicative of a

more malignant phenotype. These results further elucidate the relationship

between chemical exposure and breast phenotypic plasticity and highlight

potential environmental factors that may impact TNBC risk.
KEYWORDS

breast cancer, triple negative breast cancer, phenotypic placticity, immunocytochemistry,
toxicology, environment, disparities
1 Introduction

Breast cancer alone accounts for 31% of all new cancer

diagnoses in women, and incidence rates have been increasing by

approximately 0.5% each year (1). Breast cancer is also responsible

for 15% of all female cancer-related deaths each year; however, there

are stark contrasts in outcomes and survival across races and

ethnicities (1). Despite a 4% lower incidence rate compared to

non-Hispanic White women, non-Hispanic Black women have a

40% higher breast cancer-associated mortality rate compared to

non-Hispanic White women (1). Furthermore, relative to non-

Hispanic White women, non-Hispanic Black women have a two to

three times higher risk of developing triple-negative breast cancer

(TNBC), an extremely aggressive and heterogenous subtype of

breast cancer with no targeted therapy (2).

There is no current data at a molecular or biological level that can

fully explain the etiology of these disparities (3). Environmental

factors, such as chemical exposure disparities, may play a role in

the disparate incidence of TNBC in African American women.

However, these drivers are poorly understood. Compared to other

demographics, African American women, on average, are exposed to

elevated levels of multiple toxicants, including lead, cadmium,

arsenic, p,p′-dichlorodiphenyldichloroethylene (DDE), bisphenol S

(BPS), and perfluorononanoic acid (PFNA) (4–6). Additionally,

bisphenol A (BPA) levels are higher in lower-income individuals,

and African American women are more likely to face socioeconomic

adversity (7, 8). Many of these disparate exposures can be directly

linked to unequal living conditions, associated with historical

systemically racist practices, such as redlining, that do not provide

an adequate amount of safety and protection against environmental

exposures (9). Dietze et. al (3) proposed that neighborhood level

factors may be the intersection between disparities and the aggressive

nature of TNBC in African American women. Independent of

socioeconomic factors, unjust beauty norms result in further

disparate exposures from harmful chemicals in targeted personal

care products (10). Hair texture preference and colorism have led to

widescale production of hair straightener and skin lightening beauty

products that are often unregulated and filled with deleterious

chemicals and contaminants (10). Chemical hair straightening

products, in particular, are disproportionately purchased by African

American women and have been associated with premature breast
02
development and increased risk of premenopausal breast cancer (10).

While the mechanisms implicating disparate chemical exposures as

drivers of aggressive breast cancer are poorly understood, it is

becoming increasingly apparent that chemical exposures may

impact breast cancer risk (11, 12).

A process that contributes to breast cancer progression is

phenotypic plasticity, a newly defined Hallmark of Cancer (13,

14). Phenotypic plasticity describes a cell’s ability to transition and

acquire another cellular constitution in response to environmental

stress (15). The result is a cell that exhibits “hybrid” characteristics,

simultaneous expression of phenotypic characteristics of two or

more cell types. These hybrid cells can be present in normal

mammary tissue; however, they are primarily observed in

malignant cells, and have been shown to promote tumorigenesis

and metastasis of breast cancer (15, 16). Of TNBC cases, 80.6% are

considered basal-like breast cancers (17). Basal-like breast cancers

express genes consistent with normal myoepithelial cells such as

KRT14 (17). Numerous other genes can be useful as markers for

other cell types, such as KRT8, a known luminal marker gene (18).

Overlap of KRT14 and KRT8 expression is indicative of hybrid

populations (15), and single-cell analyses have revealed that these

hybrid “basoluminal” populations increase with age in the normal

mammary gland (19). KRT8 and KRT14 are both intermediate

filament proteins that not only reflect the epithelial cell type but can

also be used to indicate growth and differentiation factors (20).

Upregulation of KRT14 has been associated with a more invasive

breast cancer phenotype, while increased abundance of KRT8 is

common in malignant cells (21, 22).

For estrogen receptor-negative breast cancers, such as TNBC,

there is mounting evidence to suggest that chemical exposures may

increase risk for breast cancer by inducing phenotypic plasticity.

Recent studies have implicated cadmium, arsenic, and BPA as

environmental chemicals capable of inducing phenotypic

plasticity in normal human breast cells (1–3, 5–7, 9, 11, 12, 14–

16, 18, 19, 22–49). The goal of the present study was to further

characterize the association between exposure to chemicals with

documented exposure disparities and phenotypic plasticity in

primary normal breast cells from diverse donors. Based on

previous work that highlights known chemical exposure

disparities, as well as prior evidence of chemically induced

phenotypic plasticity, we hypothesized that chemicals with known
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exposure disparities in African American women would promote

phenotypic plasticity and hybrid states in normal breast epithelial

cells. To test this hypothesis, we optimized a novel high-throughput

imaging assay using luminal and basal markers in normal human

breast cells. This assay was employed to examine phenotypic

plasticity in response to chemical dosing in primary breast cells

and further elucidate the environmental factors and disparities

present in breast cancer.
2 Methods

We developed a high-throughput immunocytochemistry assay

to quantify KRT8 and KRT14 staining of toxicant-treated and

negative control/vehicle-treated primary human cell lines. The

toxicants used were lead acetate (Sigma-Aldrich 316512), copper

chloride (Sigma-Aldrich 222011), cadmium chloride (Sigma-

Aldrich 202908), sodium arsenite (Sigma-Aldrich S4700), p,p

′-DDE (Chem Service N-10875), BPA (Sigma-Aldrich 239658),

BPS (Sigma-Aldrich 103039), and PFNA (Sigma-Aldrich 394459).

Chemicals were chosen based on a previous study that identified

known exposure disparities between non-Hispanic Black women

and non-Hispanic White women (5). A diverse set of normal

human breast cell lines grown from normal breast punch biopsy

tissues obtained from the Susan G. Komen Tissue Bank were used to

test these exposures and observe differences in response to chemical

dosing in vitro. The samples were all from nulliparous women who

either self-identified as African American or European American

(three cell lines for each group) and matched for age, BMI, and date

of last menstrual period (Supplementary Table 1).

Following optimization of our novel assay, we cultured each cell

line and treated cells with human-relevant concentrations of our

chosen chemicals. Following an incubation period, we employed our

immunostaining protocol and imaged plates on a high-content

imaging microscope. To quantify and analyze dosing effects, as well

as interindividual differences, we created Cell Profiler Analyst pipelines.

Quantitative analysis and data visualization were completed in R Studio

software using the results obtained from Cell Profiler.
2.1 Cell culture

Cell lines (Supplementary Table 1) were established from tissue

by enzymatic and mechanical digestion as previously described (15,

50). The resulting cryopreserved cell lines were thawed and cultured

in accordance with previously established methods (15, 38).

Primary cells grew to confluence in T-75 flasks with irradiated

mouse J2 fibroblasts, which provide an optimal growth

environment (15).

Once confluent, cells were diluted to 50,000 live cells per ml in

F-media, to be plated at 1,500 cells (30 ml) per well in collagen-

coated 384-well plates (Corning Biocoat Collagen I-rat tail collagen

type I Product Number: 354667). Cells were plated 24 h prior to

dosing and placed in a humidified incubator at 37°C/5%

CO2 overnight.
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F-media was prepared by combining 500 ml of DMEM (Fisher,

cat. no. 11965092), 50 ml of heat-inactivated fetal bovine serum

(Sigma Aldrich, cat. no. F4135), 5.5 ml of 200 mM L-glutamine

(Gibco, cat. no. 25–030-081), 5.5 ml of 100X Pen-Strep (Fisher, cat.

no. 15140122), 187 ml of F-12 (Fisher, cat. no. 11765054), 194.48 ml
of 96 mg/ml of hydrocortisone (Stem Cell, cat. no. 07925), 935 ml of
4 mg/ml of insulin (Fisher, cat. no. 12585014), 8.98 ml of 10 mg/ml of

EGF (Stem Cell, cat. no. 78006.1), 62.83 ml of 1.2 mM cholera toxin

(Sigma Aldrich, cat. no. C8052), and 623.83 ml of 12 mM Y-27632

inhibitor (Stem Cell cat. no. 72302).
2.2 Chemical dosing

Chemical concentrations were prepared using serial dilutions,

and each chemical was diluted to three concentrations: 100 nM, 1

mM, and 10 mM. These concentrations were chosen given

established biological relevance from previous work from our

group that established benchmark concentrations in vitro linked

to biomarker concentrations from human population data from the

National Health and Nutrition Examination Survey (6, 22). Sala-

Hamrick et al. established median benchmark concentrations for

each of the toxicants used in this study using RNA sequencing and

found large impacts between 10 nM and 10 mM (22). Water

(Invitrogen 10–977-015) and DMSO (Sigma-Aldrich D2650)

served as the vehicles for heavy metals and organics, respectively.

Three replicates were assessed per concentration for each chemical

on each cell line. Following dosing, well plates were placed back in

the humidified incubator at 37°C/5% CO2 for 48 h prior

to immunostaining.
2.3 Immunostaining and imaging

After exposure, cells were stained for expression of KRT8 and

KRT14, along with the nuclear stain Hoechst 33342. The following

reagent concentrations have been optimized and were used for each

cell line: 4% paraformaldehyde was prepared by diluting 925 ml of
16% paraformaldehyde (Thermo Fisher Scientific cat. no.

AA433689M) in 3,150 ml of PBS (Gibco cat. no. 10–010-049).

PBST was prepared by adding 50 ml of 100% Tween20 (Thermo

Fisher Scientific cat. no. BP337) to 49.95 ml of PBS. Triton X (0.1%)

was prepared by diluting 3.7 ml of 100% Triton X (Sigma-Aldrich

cat. no. T8787) in 3.7 ml of PBST. Blocking buffer was prepared by

dissolving 83.33 mg of glycine (Thermo Fisher Scientific cat. no.

AAA1381636) in 3.7 ml of PBST and 493.3 ml of 7.5% BSA (Gibco

cat. no. 50–121-5315). BSA (1%) was prepared by adding 493.3 ml of
BSA to 3.7 ml of PBST. The antibody solution was prepared by

adding 24.6 ml of Anti-Cytokeratin 8 (1:150 ratio) (Alexa Fluor 488,

Clone number EP 1628Y; Isotype IgG) and 37 ml of Anti-

Cytokeratin 14 (1:100 ratio) (Alexa Fluor 647, Clone number EP

1612Y; Isotype IgG) to 3.7 ml of 1% BSA in PBST. The

counterstaining solution was prepared by adding 1.9 ml of

Hoechst 33342 (Thermo Fisher Scientific cat. no. H3570) and

3.7 ml of 1% BSA in PBST.
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After 48 h of incubation (37°C), dosed cells were washed with

PBS and then fixed with 4% paraformaldehyde in PBS (pH 7.4).

40 ml of 4% paraformaldehyde was dispensed into each well, and the

plate was centrifuged once at 500g for 30 s. Following

centrifugation, plates were allowed to sit at room temperature for

10 min. The 4% paraformaldehyde was then aspirated, and cells

were washed with PBS again prior to permeabilization. Cells were

permeabilized with 0.1% Triton-X 100 in PBS. Triton-X 100 (0.1%)

was also dispensed at 40 ml per well, and the plate was centrifuged

again at 500g for 30 s. The plate then sat at room temperature for

10 min before being washed twice with PBS. To prevent any non-

specific staining, cells were blocked using a 1% BSA and glycine in

PBST blocking buffer. 40 ml of blocking buffer was added to each

well, the plate was centrifuged at 500g for 30 s, and then sat at room

temperature for 1 h. The cells were not washed after blocking; the

buffer was aspirated, and 40 ml per well of the antibody solution was

added. The plate was centrifuged once more at 500g for 30 s and

then covered and allowed to incubate overnight (8–12 h) in a 4°C

refrigerator. The next day, the antibody solution was decanted, and

cells were washed with PBST three times in the dark prior to

counterstaining. 40 ml of the counterstaining solution was added to

each well, and the plate was centrifuged at 500g for 30 s. The plate

was then covered and allowed to rest at room temperature for 1 h in

the dark. Cells were then washed three times with PBST before

imaging with the Yokogawa Cell Voyager 8000 (CV8000)

microscope. Automated plate imaging was performed on the

CV8000 with a ×20/1.0NA water immersion objective lens, 50-

µm pinhole, with three channels; 405 nm (Hoescht), 488 nm

(KRT8), and 647 nm (KRT14). Laser power for each channel was

adjusted to ensure optimal signal-to-noise ratios, laser-based

autofocus was performed at each field, and nine fields per well

were imaged.
2.4 Fluorescence microscopy analysis

Images obtained from the CV8000 were analyzed using Cell

Profiler and Cell Profiler Analyst software (45, 46). To analyze the

acquired images, we optimized a quality control (QC) pipeline in

Cell Profiler, as well as an analysis pipeline in Cell Profiler. Images

ran through the QC pipeline first, and a gentle boosting classifier
Frontiers in Oncology 04
was created to identify images that were oversaturated for each cell

line in Cell Profiler Analyst to create unique flag rules. These rules

were then inputted into the Cell Profiler Analysis pipeline, and

oversaturated images were removed and excluded from further

analysis. In the Cell Profiler Analysis pipeline, nuclei were set as

primary objects, while an overlay of both keratins was used to

identify individual cells as secondary objects. Mean intensity of

KRT8 and KRT14 were measured on a per-cell basis to ensure

population classification was accurate in the Cell Profiler

classification. Total cell counts were quantified using the primary

object, including any cells that did not express either

keratin protein.

Following the completion of the analysis pipeline, we trained a

random forest classifier for each cell line in Cell Profiler Analyst to

recognize and identify the different antibody staining patterns, as

well as any remaining J2 fibroblasts, which were identified by

Hoechst and their unique nuclear staining. Classifiers were

trained to at least 90% accuracy. These classifiers were specifically

grouped into four categories: luminal (KRT8+/KRT14−),

myoepithelial (KRT14+/KRT8−), hybrids (KRT8+/KRT14+), and

cells that did not express either protein (KRT8−/KRT14−)

(Supplementary Figure 1).

Output from classifications were saved as CSV documents that

scored each image and identified the number of each phenotype

across all treatments and cell lines. This CSV text document was

then inputted into R software (1.4.1717) for further analysis and

data visualization.
2.5 Data analysis

To perform statistical analysis, CSV documents generated from

Cell Profiler Analyst were uploaded and used to compare the

proportion of cells that fluoresced in each category (KRT8,

KRT14, and hybrids) by treatment and concentration. J2

fibroblasts were excluded from further analysis, although primary

cells that were negative for either KRT8 or KRT14 were still

accounted for in the total cell counts. To ensure the accuracy of

the Cell Profiler Analyst classifier, validation of the classified cells

(KRT8, KRT14, and hybrid) were verified by comparing KRT8 and

KRT14 staining intensity data (Figure 1 shows an example of this
A B

FIGURE 1

KCR 8195 classification intensity validation for (A) KRT8 intensity and (B) KRT14 intensity.
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for one line, KCR8195. Supplementary Figures 2–6 show the

validation data from the remaining five lines.).

Wilcoxon signed rank-sum tests were utilized to quantify

differences in the proportions of KRT8, KRT14, and hybrids by

treatment and concentration for a given cell line, compared to the

appropriate vehicle control. Significance was measured using

Wilcoxon signed rank-sum tests (p < 0.05), and three criteria

were used to indicate phenotypic plasticity: 1. Significant

increases in hybrid populations, and/or 2. Significant and

complementary shifts between hybrid populations and KRT8 or

KRT14 populations, and/or 3. Significant and complementary shifts

between KRT8 and KRT14 populations. Conditions that met at

least one of the three criteria were indicators of phenotypic

plasticity in this study. Cell count was also compared by

treatment and concentration by conducting Wilcoxon signed
Frontiers in Oncology 05
rank-sum tests. Significant decreases in hybrid populations

without a concomitant increase in another cell population were

not counted as phenotypic plasticity; while some phenotypic

plasticity may be present, changes in total cell count after dosing

could have also contributed to population decreases.
3 Results

3.1 Concentration-response effect on cell
populations with fluorescence microscopy

Images obtained from the CV8000 were analyzed for nuclear

(Hoescht), luminal (KRT8), myoepithelial (KRT14), and hybrid

(KRT8/KRT14 overlap) expression (Figure 2).
A B C D

FIGURE 2

An example image series of KCR 8195 dosed with 1 mM of PFNA: (A) Nuclei. (B) KRT8. (C) KRT14 (D) Composite with KRT14 immunofluorescence
shown in red, KRT8 immunofluorescence shown in green, with Hoechst shown in blue. Orange and yellow cells represent KRT8/KRT14 basoluminal
hybrids. Scale bar represents 100 mm.
FIGURE 3

KCR 8195 combined populations (%) for each chemical compared to each associated control (0 mM concentration). Significance determined by
Wilcoxon signed rank-sum tests and reported in Figures 4, 5 and Supplementary Figures 12–15.
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KCR7889, KCR7953, KCR8195, and KCR8580 primarily

expressed myoepithelial cells in both the dosed and control

populations (Figure 3 and Supplementary Figures 8, 9 and

Supplementary Figure 11). KCR7518 and KCR8519 primarily

expressed luminal cells in both the dosed and control populations

(Supplementary Figures 7, 10). Basal populations of hybrid cells

were present in each cell line as well. To identify the effect of

chemical concentrations on phenotypic plasticity, we used machine

learning to quantify the amount of each cell type under each dosed

condition and compared these values to controls (Figure 3 and

Supplementary Figures 7–11). KCR 8195, in particular, had a high

cell count as well as a large presence of hybrid cells at baseline and

was subsequently chosen for presentation. As shown in Figure 3,

KCR 8195 had concentration-dependent decreases in KRT14-

marked cells and subsequent increases in KRT8 and hybrid cell

populations, with significant shifts seen in low concentrations of p,p

′-DDE and BPS.
3.2 Significant changes in cell type as a
marker for phenotypic plasticity

Significant changes in cell type, either from luminal to

myoepithelial, myoepithelial to luminal, or increases and

decreases of hybrid populations were used as markers of

phenotypic plasticity. Significance was determined using

Wilcoxon signed rank-sum tests (p < 0.05). In controls, four of

the six cell lines were predominately myoepithelial; however, each

displayed significant changes in the KRT8 luminal marker under

dosed conditions (Supplementary Figures 12, 13). KCR 7889

demonstrated the most myoepithelial to luminal plasticity, with

significance found in 10 different concentrations across each of the

organic chemicals that were used (Supplementary Figure 12). KRT

8580 demonstrated the most phenotypic plasticity, with significant

myoepithelial to hybrid shifts as well as luminal to hybrid shifts in

eight different concentrations across each of the organic chemicals

that were used (Supplementary Figures 12, 13). The two cell lines

that presented predominately luminal markers basally also

demonstrated significant plasticity. Notably, KCR 7518 had a

significant shift between hybrid to KRT8 luminal populations in

one concentration of BPS, and KCR 8519 had a significant increase

in KRT14 myoepithelial cells following exposure to two

concentrations of lead acetate (Supplementary Figures 12, 15).

Overall, most cell lines demonstrated the potential for phenotypic

plasticity; however, KCR 8580 had the highest proportion of hybrid

cells at baseline and demonstrated the most significant transitions

between luminal and myoepithelial cell types (Figures 4, 5 and

Supplementary Figures 12–15).
3.3 Changes in cell count as an implication
for requisite future work

The average cell counts of each cell line varied; however, water

control wells and wells that were dosed with metals diluted in water

were more robust to cell number changes than DMSO control wells
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or wells that were dosed with chemicals diluted in DMSO across cell

lines (Figure 6). Significant decreases in cell number occurred in

multiple chemicals at multiple concentrations. KCR 8195 had

significant decreases in cell number in 100 nm and 10 mm of

BPA, 100 nm and 1 mm of BPS, 1 mm of cadmium, 1 mm of arsenic,

and across all lead concentrations (Supplementary Figure 16). KCR

7518 had significant decreases in cell number throughout all

concentrations of arsenic (Supplementary Figure 17). KCR 7889

had significant decreases in cell number in 100 nm of cadmium, 10

mm of arsenic, and 10 mm of lead (Supplementary Figure 18). KCR

7953 only saw a significant decrease in cell number in 10 mm of

arsenic (Supplementary Figure 19). KCR 8519 had significant

decreases in cell number in 10 mm of cadmium, 1 and 10 mm of

arsenic, and 10 mm of copper (Supplementary Figure 20). KCR 8580

only saw a significant decrease in cell number in 10 mm of arsenic

(Supplementary Figure 21).
4 Discussion

There are consistent data that implicates chemical exposures as

drivers of breast cancer. Cadmium, arsenic, and BPA have each

been associated with epigenetic modifications in normal human
FIGURE 4

Heatmap depicting the percent of the cells in each treatment
condition, which are in a hybrid state, for organic chemical-treated
cells only. Differences in hybrid percentages between a given
treatment and the DMSO control were determined by Wilcoxon
signed rank-sum tests and denoted by an * (p < 0.05). Increases in
hybrid populations are represented by a black asterisk, while
decreases in hybrid populations are represented by red asterisks.
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breast cells; previous work has demonstrated that each of these

chemicals may be drivers of malignant phenotypic plasticity in

normal human breast cells via basoluminal transitions (23, 24, 49).

In addition to these three chemicals, prior research has highlighted

that exposure disparities of lead, p,p′-DDE, PFNA, BPS, and copper
exist for African American women (6). In this study, we sought to

further characterize the potential for disparate chemical exposures

to induce malignant phenotypic plasticity in vitro.

Phenotypic plasticity was identified by significant increases in

hybrid populations, or through significant and complementary

changes between cytokeratin 8 and cytokeratin 14 populations, a

summary of which is shown in Table 1. Collectively, these findings

suggest that arsenic, BPA, BPS, DDE, and PFNA are capable of

stimulating basoluminal transitions in normal human breast cells.

This is consistent with previous findings that identified low in vivo

and in vitro concentrations, between 7 nM and 2 mM of BPA, 1 nM

and 3 mM of BPS, 20 nM to 0.75 mM of DDE, and 1 nM to 1.65 mM
of PFNA, could induce transcriptomic changes in breast cells (22).

Changes in total cell count in response to exposures are also

highlighted in Table 1. Collectively, these results may demonstrate

the cytotoxicity of arsenic, cadmium, and lead at these

concentrations, which are consistent with previous findings (23,

24, 26, 43). Sodium arsenite, in particular, has been shown to induce
Frontiers in Oncology 07
apoptosis in MCF-7 breast cancer cells at concentrations greater

than 5 mM (43). The interindividual response to metal exposure, as

reflected by cell numbers being impacted in cultures from some

individuals but not others, is also worthy of exploration in future

studies to understand the factors that promote or prevent toxic

effects from a given substance.

Results shown in Table 1 may also demonstrate the proliferative

effects of BPA, BPS, and DDE, which are consistent with previous

findings (22, 30, 42). These proliferative effects have been attributed to

genetic and epigenetic modifications following exposures in non-

tumorigenic MCF-10A breast epithelial cells, with specific

upregulation of human epidermal growth factor following

BPS exposure, and upregulation of the PCNA gene following

DDE exposure (22, 30, 42). We also recently found that low-

concentration DDE (25 nM) activates Wnt signaling in MCF-10A

cells, as reflected by increased translocation of beta catenin to the

nucleus, which may, in part, explain increased cellular proliferation

(47). The mechanisms behind the proliferative effects associated with

these chemicals in these normal primary lines from diverse donors is

worthy of future exploration.

Interindividual differences were present between cell lines at

baseline; some lines were predominately luminal, while others were

predominately myoepithelial. Among the cell lines used in this

study, those that were predominately myoepithelial or contained

more hybrid cells at a baseline level demonstrated increased

plasticity compared to the cell lines that contained predominately

luminal cells in the control. Significant phenotypic plasticity

markers were analyzed for each individual, the three European

American cell lines never (KCR 7953) or rarely (one for KCR7518

and three for KCR 7889) had significant plasticity, while the African

American cell lines more commonly demonstrated plasticity (two

for KCR 8519, three for KCR 8195, and eight for KCR 8580).

Although the low sample size dictates that no conclusive data can be

deduced regarding TNBC disparities, this represents an

approximate 3.25-fold increase in phenotypic plasticity markers

among the African American cell lines compared to the European

American cell lines. Future work is requisite to validate these

findings, to test additional diverse cell lines to further elucidate

these trends, and to examine the impact of exposures of longer

duration, which more accurately model the chronic nature of many

of the exposures under investigation. Additional work should also

examine the impacts of these toxicants in vivo and in well-

characterized human tissue samples, as phenotypic plasticity in

culture may not reflect what is possible when cells are constrained

in a tissue microenvironment. Future research should also consider

the larger exposome of toxicants that each individual may be

subjected to, as previous work has identified that mixtures of

chemicals may increase the aggression of breast cancer cells and

promote additional Hallmarks of Cancer, such as invasion and

metastasis (51). As we know that people are exposed to complex

mixtures of toxicants, reconstructing chemical mixtures at human

relevant concentrations, particularly in the context of exposure

disparities, and assessing the effects of the mixtures in primary

cell lines would be an exciting and important next step.

Additional work is also necessary to further characterize the

mechanisms underlying both the cytotoxicity and cellular proliferation
FIGURE 5

Heatmap depicting the percent of the cells in each treatment
condition, which are in a hybrid state, for metal-treated cells only.
Differences in hybrid percentages between a given treatment and
the water control were determined by Wilcoxon signed rank-sum
tests and denoted by a * (p < 0.05). Increases in hybrid populations
are represented by a black asterisk, while decreases in hybrid
populations are represented by red asterisks.
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FIGURE 6

Heatmaps depicting changes in cell counts (% relative to control) per sample for (A) DMSO solvent chemicals and (B) water solvent chemicals.
Chemical concentrations are measured in mM—0.1 is equal to 100 nM. Differences in cell counts relative to control were determined by Wilcoxon
signed rank-sum tests and denoted by a * (p < 0.05). Increases in cell counts are represented by a black asterisk, while decreases are represented by
red asterisks.
TABLE 1 Summary of phenotypic plasticity for each cell line as indicated by increases in hybrid populations and/or shifts between KRT 8 and KRT 14
populations, as well as significant total cell count increases or decreases by cell line.

Cell Line Increase in Hybrids KRT 8/KRT 14 Shift Increase in Cell Count Decrease in Cell Count

KCR 7518 None Decrease in hybrid populations
seen with subsequent increase in
KRT 8 populations in 100 nM BPS

None Decrease in cell count in all
concentrations of Arsenic

KCR 7889 Increase in hybrid populations in 1
mM PFNA and 100 nM Arsenic

Decrease in KRT 14 populations
seen with subsequent increase in
KRT 8 populations in 10 mM BPS

Increase in cell count in 1 mM and
10 mM concentrations of BPA, and
across all concentrations of DDE

and BPS

Decrease in cell count in 100 nM
of Cadmium, 10 mM of Arsenic,

and 10 mM of Lead

KCR 7953 None None None Decrease in cell count in 10
mM Arsenic

KCR 8195 Increase in hybrid populations in 1
mM PFNA and 100 nM BPS

Decrease in KRT 14 seen with
subsequent increases in KRT 8
populations in 100 nM DDE

None Decrease in cell count in 100 nM
and 10 mM BPA, 100 nM and 1
mM BPS, 1 mM Cadmium, 1 mM

Arsenic, and across all
Lead concentrations

KCR 8519 Increase in hybrid populations in
10 mM DDE

Decrease in KRT 14 populations
seen with subsequent increase in

KRT 8 populations in 100
nM BPA

Increase in cell count in 1 mM and
10 mM DDE, 10 mM BPA, and
across all concentrations of BPS

Decrease in cell count in 10 mM
Cadmium, 1 mM and 10 mM
Arsenic, and 10 mM Copper

KCR 8580 Increase in hybrid populations in
100 nM and 10 mM PFNA, 100
nM and 10 mM DDE, 1 mM and
10 mM BPS, and 100 nM and 10

mM BPA

None None Decrease in cell count in 10
mM Arsenic
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associations found in some of these chemicals as well—this work is

currently underway.Additional cytotoxicity assays, inparticular,may be

useful in elucidating the mechanisms behind the alterations in cell

number, and the interindividual variation in these alterations, due to

increasing concentrations of arsenic, lead, and cadmium. This work also

sets the stage for a mechanistic interrogation of how environmental

factors can promote cellular plasticity and cell state transitions, for

example, by interrogating epigenetic changes (27). Understanding the

biological drivers of luminal–basal phenotypic plasticity, and how

toxicants can perturb these processes, would provide substantial

insights into how chemicals may impact the risk of aggressive breast

cancers. Luminal–basal hybrid cells have been identified in normal

breast tissue using single-cell profiling (15, 19, 50). Intriguingly, the

proportion of these hybrid cells increases with age suggesting aging-

associated alterations—perhaps the accrual of a lifetime of exposure to

environmental stressors—can promote the emergence or expansion of

these cell populations (19). In cancer, experimental studies suggest

that basal breast cancers derive from luminal cell populations (33).

Studies of estrogen receptor-positive breast cancer MCF7 cells exposed

to arsenic long term in vitro highlight suppression of epithelial markers,

induction of basal markers, and reduced expression of hormone

receptors potentially linked to alterations in signaling of stem cell-

associated pathways like Hedgehog (24). Research exploring how

exposure to additional chemicals and a broader range of

concentrations may drive similar effects in primary cells is now

requisite. While concentrations chosen for this study were chosen

based on previous benchmark concentration modeling based on

RNA-seq data, a broader concentration range could be tested in the

future, particularly to understand and quantify low concentration effects

and potential non-monotonic concentration responses (22). Assaying

additional markers may also prove useful in elucidating the role

environmental factors may play in the progression of cancer. For

example, expression of CD44, CD24, and ALDH1A3 can quantify

epithelial and mesenchymal stem cell states in breast cancer and

normal breast tissue (37, 50). Associations drawn from these

experiments would further solidify the role environmental factors play

inTNBCdevelopment linkedtodysregulatedstemness.Further research

focused on the specific mechanisms, including epigenetic changes, by

which environmental exposures can promote cellular plasticity will

provide key insights into how chemical exposures may promote

aggressive breast cancers. Overall, these data support that phenotypic

plasticity canbemodulatedby toxicantswithdisparate exposures in vitro

in primary human breast cells providing supporting evidence that

exposure to these toxicants may be able to perturb this newly defined

Hallmark of Cancer.
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