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The objective of this review is to examine the potential benefits and challenges of

CT-based lung function imaging in radiotherapy over recent decades. This

includes reviewing background information, defining related concepts,

classifying and reviewing existing studies, and proposing directions for further

investigation. The lung function imaging techniques reviewed herein encompass

CT-based methods, specifically utilizing phase-resolved four-dimensional CT

(4D-CT) or end-inspiratory and end-expiratory CT scans, to delineate distinct

functional regions within the lungs. These methods extract crucial functional

parameters, including lung volume and ventilation distribution, pivotal for

assessing and characterizing the functional capacity of the lungs. CT-based

lung ventilation imaging offers numerous advantages, notably in the realm of

thoracic radiotherapy. By utilizing routine CT scans, additional radiation exposure

and financial burdens on patients can be avoided. This imaging technique also

enables the identification of different functional areas of the lung, which is crucial

for minimizing radiation exposure to healthy lung tissue and predicting and

detecting lung injury during treatment. In conclusion, CT-based lung function

imaging holds significant promise for improving the effectiveness and safety of

thoracic radiotherapy. Nevertheless, challenges persist, necessitating further

research to address limitations and optimize clinical utilization. Overall, this

review highlights the importance of CT-based lung function imaging as a

valuable tool in radiotherapy planning and lung injury monitoring.
KEYWORDS

CT-based functional imaging (CTVI), ventilation imaging, perfusion imaging,
radiotherapy, four-dimensional CT(4D-CT), magnetic resonance imaging (MRI),
single-photon emission computed tomography (SPECT)
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1 Introduction

Lung cancer is one of the most common malignancies worldwide

and ranks among the highest in morbidity and mortality in most

countries. Radiation therapy, a crucial treatment modality, effectively

inhibits tumor growth and dissemination (1). However, traditional

radiotherapy administers identical dosing priority and avoidance

protocols to all normal lung tissues, neglecting the functional

disparities among various regions. Radiation-induced damage to

normal lung tissue frequently results in complications, such as

acute radiation pneumonia, substantially deteriorating patients’

quality of life (2). Minimizing damage to normal lung tissue while

enhancing therapeutic outcomes during radiotherapy has emerged as

a central focus in clinical research. Studies (3–8) have highlighted

Dmean, %V5Gy, %V20Gy, and %V30Gy (%VxGy, represents the

percentage of lung volume receiving a radiation dose of at least x Gy)

as pivotal metrics for assessing Radiation-Induced Pulmonary Injury

(RIPI). Lung function imaging, a technology utilizing diverse imaging

modalities to evaluate the structural and functional integrity of the

lungs, facilitates quantitative assessment of lung function and precise

delineation of functional regions (9–11). The advantages of utilizing

lung function imaging in radiotherapy are twofold: firstly, it facilitates

personalized treatment planning by directing radiation reaching the

tumor through lung areas with poor gas exchange function, thus

reducing the risk of damage to healthy lung tissue (12); secondly, it

facilitates more precise and prompt evaluation of pulmonary injury,

as well as enabling real-time monitoring of lung function. This

capability is extensively utilized in diagnosing and prognostic

assessment of both acute and chronic lung conditions (13–15).

In the past decade, significant advancements in medical imaging

technologies have profoundly transformed the evaluation of lung

function, notably with the advent of CT-based lung ventilation

function imaging (CTVI). CTVI involves delineating lung function

across various regions, yielding detailed ventilation maps that

capture differences in lung ventilation between phase-resolved

four-dimensional CT (4D-CT) scans and end-inspiratory and

end-expiratory CT images (16). This innovative approach enables

the extraction of functional parameters like lung volume and

ventilation distribution, providing a comprehensive assessment

and characterization of lung function. Furthermore, CTVI

facilitates the quantitative description of both physiological and

pathological states of lung tissue (17), providing valuable insights

into lung health.

Although several CTVI reviews have been published, most of

them date back five years (18–20), excluding recent research

advancements. Moreover, certain reviews focused solely on

perfusion function imaging or machine learning (21, 22), failing

to provide a comprehensive overview of CTVI’s technical

advancements. In fact, CTVI research holds significant

importance for radiotherapy. For instance, CT-based lung

function studies eliminate the need for extra scans during

radiotherapy, thereby reducing patient exposure to radiation and

costs. This represents a distinct advantage over other imaging

modalities. As a result, the aim of the present paper was to bridge

these gaps by addressing the progress of CTVI research methods
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and the clinical application in radiotherapy in recent decades.

Additionally, this review will discuss the limitations of CTVI

compared to other lung function imaging modalities, as well as

any changes in the theoretical basis and evaluation criteria of

research. Our analysis aims to stimulate further research

endeavors and offer valuable insights to enhance the utilization of

CT-based lung function imaging in radiotherapy.
2 Methods

In this review, we meticulously explored the potential and

challenges associated with CT-based lung function imaging in the

context of radiotherapy. Leveraging WOS and PubMed databases,

we conducted an extensive literature search spanning from 2000 to

2024, utilizing Boolean logic (CTVI or “CT ventilation imaging” or

“function imaging”or “functional lung”)AND (radiotherapy or

“radio oncology”or “Thoracic radiotherapy”) resulting in the

retrieval of 202 articles meeting our criteria. This meticulous

approach facilitated the identification of pertinent literature

aligning with the scope of this review.

Two reviewers (S.B. and Q.Y.) extracted the appropriate

information from each study independently. Article citations

included, but were not limited to, techniques, publication year,

imaging modalities, ventilation or perfusion, study population size,

research types and aims, clinical effect. Contradictions were discussed

with two reviewers (Z.D and X.S.). According to our research

objective, total of 77 articles were finally included with 10 reviews

and two books. 61 articles of them were published in recent decade.
3 Results

Studies investigating CT lung function imaging can be broadly

categorized into three key areas. Firstly, the development of CTVI

extraction technology, as documented in (23–25). This

advancement focuses on deriving variable values for ventilation-

related parameters, utilizing selection algorithms grounded in

deformable image registration (DIR) techniques and alternative

methodologies. Secondly, the quantitative analysis of CTVI, as

reported in (25–27), which is based on assessing the magnitude of

changes in pertinent images, involves seeking suitable tools,

including machine learning, modeling, and statistical approaches.

Lastly, with respect to clinical applications, radiotherapy strategies

utilizing CTVI, as detailed in (25, 28–30), encompass dose

allocation optimization, prediction of adverse effects, and

monitoring of treatment outcomes.
3.1 The extraction methods of CTVI

3.1.1 Deformable image registration based
selection algorithms

Existing computed tomography (CT) ventilation imaging

methods primarily evolved from image processing research, DIR
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of 4DCT lung scans. Subsequent quantification involves assessing

local breathing-induced variations in volume, Jacobian, and

Hounsfield Units (HU) (10, 23, 25). Zhang et al. (31) initially

introduced an algorithm that utilizes a direct geometrical approach

to estimate ventilation based on lung volume changes (DV). This
approach derives specific volume changes by computing the volume

of deformed elements, considering eight vertex positions of a voxel,

which are transformed using DIR. The volume of each tetrahedron

is calculated using the following formula:

V = ~b −~a
� �

· ~c −~að Þ � ~d −~a
� �h i

=6 (1)

where~a,~b,~c and~d are the vertices of the tetrahedron as vectors.

Summing the volumes of the six tetrahedrons from the DIR

deformation matrix yields the volume of a given polyhedron.

In addition to the direct geometrical method, Reinhardt et al.

(32) proposed an approximate change in volume of voxels method

by calculating the Jacobian of the deformation field. The Jacobian

matrix, based on the theory that the local partial derivatives of the

deformation field are all related to the volume change of voxels in a

given lung tissue, describes the local volume change caused by

ventilation (25). The calculation of the Jacobian relies exclusively on

the DIR transformation function and the Jacobian determinant

derived from the deformation field between different breathing

phases, as obtained through image registration. The formula is

expressed as follows (33):
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(2)

Where d1p , d
2
p and d3p represent the displacement components of

pixel points along the left and right, abdomen and back, and head

and foot directions respectively. VentJacexh(p) values between 0 and 1

indicate reduced lung volume, VentJacexh(p) = 1 indicates no change

in the volume of this area, and VentJacexh(p) > 1 indicates volume

expansion of pixels.

Apart from the Jacobian algorithm, the CT value method offers

an alternative approach to estimating the distribution of pulmonary

ventilation (28). This method utilizes variations in CT values during

the transition from inhalation to exhalation to approximate lung

ventilation, as the magnitude of CT values is intimately correlated

with lung tissue density. The formula for ventilation capacity

relating to the maximum expiratory and inspiratory phases is

expressed as follows (24):

VentHu
exh(p) =

HUexh(XP)� Gk1 −HUinh(xp+dp )� GK1

HUinh(xp+dp ) + 1000 
� GK2 (3)

Where HUexh(xp) represents the CT value of each pixel in

the image corresponding to the maximum expiratory phase; HUinh

(xp+dp ) represents the CT value of pixel p in the image

corresponding to the maximum inspiratory phase after the action

of the displacement vector; Gk1 and Gk2 represent Gaussian filters

for image smoothing and denoising.
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To evaluate the advantages and disadvantages of these three

approaches, Castillo et al. (23) conducted a comparative study and

found that although the Jacobian-based approach was more widely

used, the correlation between ventilation function based on changes

in CT values and clinical references was higher. Latififi (34) and

J Cai, et al. (35) compared the above three ventilation imaging

algorithms and found that the similarity between DV and Jacobian

is higher than that between HU and Jacobian, and DV and HU.

Nonetheless, the accuracy of the DIR-based method is heavily

influenced by the precision of image registration. Furthermore,

despite the high consistency of the results obtained from the DV and

Jacobian methods, the absence of a standard functional area for

comparison in this study renders it impossible to definitively state

that the lung function area derived from these methods is superior

in terms of accuracy.

3.1.2 No-DIR selection methods
In addition to relying on DIR for obtaining image shapes at

different positions, some improved methods, not reliant on image

registration also yield promising results. Szmul (36) and Xue Peng

(37) combined superpixel segmentation with 4DCT image

registration methods to calculate pulmonary ventilation

distribution. Hegi-Johnson et al. (38) estimated blood-gas

exchange based on a time-averaged 4DCT Hounsfield unit (HU)

value and pulmonary ventilation based on the product of air and

tissue density fraction in all phases of a respiratory cycle; Li M et al.

(39) proposed an improved DIR method that combined the variable

intensity flow (VIF) block matching algorithm with the finite

element method (FEM) to evaluate lung deformation from the

end of expiration to the end of inspiration, thereby improving

registration accuracy. In contrast to traditional CT value-based and

Jacobian methods, This new approach exhibits smoother

characteristics and provides a more accurate representation of

regional variations in lung ventilation.

With significant advancements in scanning speed and imaging

resolution, a noninvasive lung ventilation assessment method has

been devised, leveraging the wash-in and/or wash-out rates of the

nonradioactive gas xenon. This approach produces color-coded

images of regional ventilation, enabling comprehensive analysis of

ventilation patterns and fusion with CT imaging. In recent studies

leveraging the latest CT technology, Honda et al. (40) evaluated the

single-breath-hold technique for ventilation mapping, employing a

dual-energy CT scanner. Another study concentrated on

biomechanics-based image registration and advanced air

segmentation methods to generate 4DCT ventilation maps (41).

These new techniques have demonstrated high accuracy and the

potential to provide a more precise characterization of

ventilation distribution.

The improved-DIR method has been found to effectively mitigate

uncertainties stemming from image registration. Furthermore, the

incorporation of novel technologies in this domain, which have

demonstrated encouraging outcomes, for instance, Xenon-

enhanced images displayed superior image quality upon visual

assessment, holds significant potential for future applications.

Nonetheless, the clinical implementation of radiotherapy
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encounters obstacles, primarily due to the requirement for novel

devices and the current lack of prospective trials.
3.2 Quantitative analysis in CTVI

In the study of lung ventilation function, it is crucial to acquire

change values of ventilation function at varying sampling volumes

and subsequently conduct image segmentation and visualization

utilizing these alterations. Typically, the conventional imaging

process involves image deformation registration or density and

gray value change to obtain the change matrix, followed by image

segmentation (23, 24, 38). This part pertains to the quantitative

analysis methodologies of image segmentation.

Image segmentation tasks can be classified into two categories

according to different processing purposes: semantic segmentation

and instance segmentation (42). Semantic segmentation involves

pixel-level classification, assigning corresponding categories to all

pixels in an image. In contrast, instance segmentation differentiates

individual objects within the same category, utilizing the

information obtained from semantic segmentation. Designing

segmentation methods to distinguish organ or lesion pixels

requires task-specific image data to provide critical details. For

medical imaging modalities, the data sources can be X-ray, CT, and

MRI. Edge detection, template matching techniques, region

growing, graph cuts, active contour lines, machine learning, and

other mathematical methods were the main approaches to medical

image segmentation in the early days (43–45).

3.2.1 Deep learning was used in
quantitative analysis

In recent years, deep learning (DL) has advanced significantly

and found applications in medical imaging processes (24). In CTVI,

the primary approach for machine learning and deep learning

entails utilizing labeled ventilation and perfusion function image

data as training targets, with radiological features extracted from

conventional CT images serving as training inputs. Utilizing

machine learning and deep learning, functional predictive models

are developed to automate the assessment and segmentation of

distinct functional regions within CT images.

As a traditional DL approach, Convolutional Neural Networks

(CNNs) are renowned for their superior performance and accuracy.

They effectively implement feature representation extraction for

images, obviating the necessity for manual feature engineering in

image segmentation, thereby becoming the primary choice in this

domain. Zhong et al. (46) developed a method utilizing deep CNNs

to directly derive ventilation images from 4DCT, bypassing the need

for explicit image registration. The initial convolutional layer

comprised 32 kernels, followed by eight additional convolutional

layers, all incorporating the ReLU activation function. They found

that deep CNNs excel in generating ventilation imaging, effectively

mitigating uncertainties as compared to conventional 4DCT

deformable registration methods.

In addition to CNNs, Long et al. (47) proposed fully

convolutional networks (FCN) learning method. This method
Frontiers in Oncology 04
applies several convolutional blocks consisting of convolution,

activation, and pooling layers on the encoder path to capture

semantic representation. Inspired by the architecture of FCNs and

encoder-decoder models, some researches (48–50) developed the

U-Net model for biomedical image segmentation, tailored for

practical use in medical image analysis that is applicable across

various imaging modalities. Later, Liu (51) devised a DL method

based on U-Net for producing 4DCT ventilation imaging. The

accuracy of DL-based ventilation imaging was evaluated against

SPECT ventilation imaging (SPECT-VI) by comparing the density

change-based and Jacobian-based methods. The findings indicated

that the DL-based method surpassed other approaches in terms

of performance.

As artificial intelligence progresses, lung function imaging

leveraging deep learning holds significant potential for advancements.

Within the realm of deep learning, the development of a unified

standard for lung function image selection represents an important

research direction.
3.3 Radiotherapy strategies based on CTVI

Currently, the application of lung function imaging based on

CT in radiotherapy has yielded promising results. Studies have

indicated that CTVI can offer more accurate anatomical and

functional information for designing radiation therapy plans,

effectively minimizing dose exposure to normal tissues (25).

Additionally, lung function imaging can aid in predicting side

effects and monitoring therapeutic effects, enabling personalized

radiation therapy. As shown in Table 1, references (9, 29, 30, 32, 52–

56) have demonstrated that radiotherapy schedules avoiding

functional lung can reduce adverse reactions to thoracic

radiotherapy, while references (12, 37, 57–60) have focused on

whether functional lung dose index can better evaluate and predict

radiation lung injury.

3.3.1 Functional lung avoidance radiotherapy/
functional planning design

In 2007, Yaremko et al. (28) embarked on integrating lung

ventilation data into the NSCLC program. In recent decades,

numerous subsequent clinical studies have affirmed that

radiotherapy using 4DCT functional lung imaging aiming at

avoiding functional lung can decrease the occurrence of adverse

radiation reactions such as radiation pneumonia (25) (Figure 1).

For example, Takemoto S et al. (12) investigated whether the

decline in pulmonary function post-SBRT could be anticipated

based on radiation dose-volume parameters. Their studies

revealed correlations between planning target volume (PTV) and

alterations in mean forced vital capacity (FVC), as well as

associations between changes in predicted percent FVC and %

V5Gy and %V40Gy. Yamamoto T (29) and Li S (30) researches also

confirmed that lung functional image-guided radiation therapy,

which avoids irradiating highly functional regions, has the potential

to reduce pulmonary toxicity following RT. Despite ample evidence

favoring the integration of lung function imaging in radiotherapy to
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mitigate pulmonary toxicity, the study conducted by Vinogradskiy

et al. (53) merits attention. They performed a multi-institutional

phase 2 clinical trial that utilized 4DCT ventilation function

imaging in the planning of thoracic radiotherapy. In this study,

comprising 67 patients, only 10 (14.9%) exhibited RP, with an

upper limit of 95% CI at 24.0%, representing a statistically

significant reduction compared to conventional radiotherapy.

This study confirms that functional lung avoidance radiotherapy

plans effect ive ly mit igate the incidence of radiat ion

pneumonitis (RP).

Functional lung imaging has not only been applied in photon

therapy but also in proton therapy (PT). Huang (54) and Leko (55)

designed functional proton plans using double scattering proton

therapy (DSPT) and intensity-modulated proton therapy (IMPT)

based on 4DCT ventilation images, comparing them with

functional photon plans employing 3D-CRT, IMRT, and VMAT.

Their studies revealed that DSPT and IMPT plans offered superior

protection of the low-dose regions of the total lung (V5) compared

to IMRT. Additionally, functional DSPT and functional IMPT

exhibited marked advantages in preserving high-functioning lung

tissue, outperforming anatomical planning approaches. Dougherty

JM, et al. (56) also assessed the potential dosimetric gains of

conducting functional avoidance-based proton treatment

planning using 4DCT-derived ventilation imaging. They observed
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a mean 5.7% reduction in Grade 2+ RP with functional IMPT, with

a 26% higher reduction in individual patients compared to standard

IMPT planning (Figure 1).

These studies show that functional lung imaging, when applied

to protect normal lung tissue, offers advantages not only in X-ray

therapy but also in proton therapy. Furthermore, NTCP

calculations indicated a further decrease in the risk of pulmonary

complications when using functional IMPT.

3.3.2 The prediction of side effects and the
monitoring of therapeutic effects

Functional imaging integrated into radiotherapy has

demonstrated greater advantages compared to traditional methods,

enabling more accurate prediction through new functional LDVP,

such as mean functional lung dose (f-MLD), functional lung V20

(fV20), etc. Vinogradskiy Y, et al. (53, 57, 58) sought to correlate

4DCT with chest adverse reactions post-radiotherapy. Their findings

indicated that IMRT planning guided by ventilation function imaging

was capable of decreasing the incidence of grade 2+ and 3+ radiation

pneumonitis by 7.1% and 4.7%, respectively, as predicted by Normal

Tissue Complication Probability models. They also concluded that

dose-function index incorporating functional lung information holds

greater significance in predicting radiation pneumonia than dose-

volume index. Furthermore, Faught AM et al. (59) compared three
TABLE 1 Study on clinical application of CTVI.

Author Years Case Treatment techniques Research type Application

Takemoto S, et al. (12) 2021 70 Photon therapy, SBRT prospective Evaluation and prediction

Yamamoto T, et al (24), 2018 14 Photon therapy, IMRT prospective
Functional

lung avoidance

Li S, et al. (25) 2023 17
Photon therapy,

TomoTherapy (HT) retrospective
Functional

lung avoidance

Huang YH,et al (27) 2022 15 Photon therapy retrospective
Functional

lung avoidance

Waxweiler, et al. (48) 2017 96 Photon therapy, 3D-CRT or IMRT retrospective
Functional

lung avoidance

Vinogradskiy, et al. (49) 2022 67 Photon therapy,IMRT prospective
Functional

lung avoidance

Huang Q, et al. (50) 2018 8 proton therapy, DSPT, IMPT retrospective
Functional

lung avoidance

Ieko Y,et al (51) 2020 13 proton therapy, SBPT retrospective
Functional

lung avoidance

Dougherty JM, et al. (25) 2021 31 proton therapy, IMPT retrospective
Functional

lung avoidance

Vinogradskiy Y,
et al (52) 2013 96 Photon therapy, 3D-CRT or IMRT retrospective Evaluation and prediction

Vinogradskiy Y,
et al (53) 2022 6 Photon therapy retrospective Evaluation and prediction

Farr KP, et al (54) 2015 58 Photon therapy,IMRT retrospective Evaluation and prediction

Lan F, et al. (55) 2016 37 Photon therapy retrospective Evaluation and prediction

Patton TJ, et al. (56) 2018 12 Photon therapy retrospective Evaluation and prediction

Faught AM, et al. (57) 2017 70 Photon therapy retrospective Evaluation and prediction
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different methods of dose-function metrics incorporating the patient’s

4D-CT ventilation image and treatment planning dose distribution

(structure-based approaches, image-based approaches using the dose-

function histogram, and nonlinear weighting schemes) to predict

grade 3 or higher RP using the NTCP model. When the functional

lung dose exceeded 20Gy, the prediction accuracy of the structure-

based approaches was higher than the other two methods. Additional

studies (60–62) further validated the predictive capability of 4D-CT

for radiation pneumonitis (RP). Research findings demonstrate that

implementing functional lung avoidance techniques can reduce the

risk of developing severe radiation pneumonia (grade 3 or higher) by

18%, with some patients experiencing up to a 20% reduction. This
Frontiers in Oncology 06
suggests that functional lung avoidance combined with functional

information can lower the incidence of thoracic adverse reactions

after radiotherapy.

For prospective clinical trials that utilize CT-ventilation, such as

NCT02528942 and NCT02843568, the outcomes of these trials serve

as pivotal evidence for applying lung ventilation function in assessing

and predicting RP in clinical settings. As an example, the phase II

study (NCT025242) demonstrated that functional lung avoidance

planning, grounded in 4D-CT ventilation imaging, could significantly

decrease the occurrence of grade 2 or higher radiation pneumonitis

by 14.9% among lung cancer patients. The comprehensive list of

currently registered clinical trials investigating lung functional
FIGURE 1

The dose distribution in CTVI-based planning of photon and proton therapy respectively. Figure1 is the comparison of a functional avoidance plan
and non-functional plan. The CT, CT-ventilation images, isodose lines, and PTV (shown in red) are presented for both groups of plans of photon
(A) and proton (B) herapy. The arrows highlight the regions with the most prevalent functional lung sparing. A printed with permission from
Yamamoto T, et al (25) and B printed with permission from Dougherty JM, et al (56).
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imaging-guided radiotherapy at ClinicalTrials.gov is summarized

in Table 2.
3.4 Comparative study of CTVI and
other images

Apart from CTVI, current research endeavors to explore diverse

functional imaging modalities, particularly SPECT-based imaging that

employs positron emission tomography (PET) to evaluate lung

metabolism and ventilation. Additionally, MRI-based functional

imaging is utilized, primarily leveraging magnetic resonance imaging

(MRI) to visualize lung tissue motion and hemodynamics (10, 11).

3.4.1 Comparative study with PET-based
function imaging

PET-based functional imaging relies on the development of

perfusion imaging techniques (28). It was shown that when

combined with radioactive gas inhalation, PET-based imaging can

roughly reflect lung blood flow and ventilation function, thereby

better reflecting changes in local lung function during the course of

radiotherapy (10). Using SPECT, HOOVER et al. (63) classified

lung cancer patients into non-radioactive and radioactive

pneumonia groups. They found that compared to the radioactive

pneumonia groups, the mean lung dose is nearly 5Gy higher, and %

V20Gy and %V30Gy are nearly 5% higher in the non-radioactive

pneumonia groups. Meanwhile, MATUSZAK et al. (64) found that

optimizing radiotherapy plans based on SPECT could reduce the

mean lung dose, suggesting that SPECT-guided radiation plans can

reduce the incidence and severity of radiation pneumonia.
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Castillo E et al. (65) investigated the correlation between CT

ventilation-based lung functional imaging and SPECT perfusion in

a study involving 15 pre-radiotherapy non-small cell lung cancer

patients, comparing 4DCT and SPECT-V images. In each imaging

case, CT-ventilation images utilizing Mass Conserving Volume

Change (MCVC) and the Integrated Jacobian Formulation (IJF)

were generated for 30 distinct uncertainty parameter values. They

found that the median correlations between MCVC and SPECT-V

ranged from 0.20 to 0.48 across the parameter sweep, while the

median correlations for IJF and SPECT-V ranged between 0.79 and

0.82. The results indicated that robust methods generate ventilation

images that are spatially consistent with SPECT-V, with the

transformation-based IJF method yielding higher correlations

than those previously reported in the literature (Figure 2).

3.4.2 Comparative study with MRI
According to different techniques, MRI-based functional imaging

mainly consists of MRI ventilation imaging, fluorinated gas MR

imaging, pulmonary perfusion and hemodynamic imaging, as well as

biomechanical evaluation for pulmonary functional imaging (66).

Hyperpolarized noble gas (3He or 129Xe) MR imaging, oxygen-

enhanced MR imaging and fluorine-19 (19F) MR imaging have been

studied as potential MR-based ventilation imaging techniques since the

1990s. They have been extensively tested for assessing disease severity

and evaluating therapeutic effects of various pulmonary diseases (67–

69). The pulmonary perfusion and hemodynamic imaging are widely

used in visualizing pulmonary vasculature and blood flow (70, 71). The

MR-based biomechanical assessment, currently, has been mainly

attempted for radiation oncology rather than pulmonary functional

imaging. Additionally, the absence of ionizing radiation renders these
TABLE 2 Registered clinical trials of CT-based functional-guided radio- therapy (from ClinicalTrials.gov).

NTC number Status Study Results Conditions Interventions Locations

NCT05103670 Recruiting No Results Available • Pulmonary Embolism
• Dyspnea

• Procedure: Ventilation/
Perfusion SPECT with
Galligas and 68Ga-MAA

• LEROUX Pierre-Yves,
Brest, France

NCT00531180 Completed No Results Available • Esophageal Cancer
• Lung Cancer

• Procedure: 4D CT scans
• Procedure: Lung
Function Imaging

• University of Texas MD
Anderson Cancer Center,
Houston, Texas, United States

NCT01200888 Terminated No Results Available • Cystic Fibrosis • Stanford University School
of Medicine, Stanford,
California,
United States

NCT05134558 Recruiting No Results Available • Lung Cancer
• Radiation
Therapy Complication

• Radiation: Xenon-enhanced
Ventilation CT-
guided Radiotherapy

• National Taiwan University
Hospital, Taipei, Taiwan

NCT03357094 Unknown status No Results Available • Lung Neoplasms • Tongren Hospital, Beijing,
Beijing, China

NCT01034514 Terminated No Results Available • Lung Cancer SPECT scanner and gamma
camera, treatment planning
system et al.

• Stanford University School
of Medicine, Stanford,
California, United States

NCT04702607 Recruiting No Results Available • Non-Small Cell
Lung Cancer

• Procedure: contrast
enhanced 4DCT

• Abamson Cancer Center of
the University of
Pennsylvania,
Philadelphia, Pennsylvania,
United States
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techniques suitable for experimental studies involving healthy

subjects (72).

The correlation between MRI-based and CT-based functional

imaging modalities in radiotherapy was investigated in a study

conducted by Carey KJ et al. (73), which involved 34 patients

undergoing both HP ³He MRI and CT imaging. Ventilation defects

were evaluated using a semi-automated k-means clustering

algorithm in HP ³He MRI. Parametric response mapping (PRM)

was applied to inspiratory and expiratory CT images to quantify

emphysema markers and indicators of functional small airways

disease (fSAD). Results shown that fSAD was well correlated with

the whole lung ventilation defect percent (VDP), whereas the

correlation with forced vital capacity (FVC)%p was poor (-0.38 ≤

r ≤ -0.35, p < 0.001), as anticipated from previous studies.

Furthermore, Matsumoto KI (74) proposed a novel methodology

incorporating MRI, EPRI, and PET for investigating the tumour

microenvironment. This research presents a novel concept that a

multimodal instrument, such as PET-MRI, could potentially

facilitate the integration of multiple functions.

The above functional imaging studies based on CTVI, SPETCT

and MRI technology have their own characteristics showed in

Table 3. SPECT perfusion imaging involves the use of 99mTc-

labeled radioactive aerosols, which are hazardous and necessitate

specialized aerosolization equipment. Furthermore, the image

resolution of inert gas 133Xe is suboptimal. MRI using 3He faces

cost constraints due to its limited source and the necessity of

specialized inert gas polarization devices. Additionally, the

inadequate signal and contrast derived from solid tissue and

blood vessels hinder the accuracy of 3D MRI registration.
3.5 Uncertainties in CT-ventilation

Ventilation function imaging utilizing CT technology occupies

a pivotal position in radiomic oncology owing to its distinctive

benefits, particularly its non-invasive nature and the absence of the
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need for extra CT scans. Research has further confirmed that dose-

function metrics exhibit superior predictive power for radiation

toxicity, in comparison to dose metrics alone, as evidenced by

previous studies (58–62). Nonetheless, there remain several

pertinent issues requiring attention, particularly uncertainties

surrounding the principles, methods, and practical applications of

ventilation function imaging.

3.5.1 Uncertainties of principles
Pulmonary function evaluation involves assessing alveolar

ventilation capacity, initially proposed by Geppert and ZIINtz in

1886 (76). Krogh further validated that pulmonary blood flow,

oxygen absorption, and carbon dioxide elimination collectively

affect gas exchange efficiency. He suggested describing local lung

ventilation capacity by the ratio of ventilation-to-perfusion (77).

This concept is now widely accepted in clinical and scientific

research, emphasizing that lung function is influenced by both

ventilation and perfusion. Consequently, CTVI, which only

considers ventilation ability, cannot accurately depict gas

exchange capability, i.e. the actual lung function. In recent years,

there have been reports on establishing functional images based on

ventilation perfusion by administering radioactive inhaled gas using

dual-energy CT (40). However, research in this area remains

limited. With the application of deep learning in functional

imaging, it is expected that the uncertainty caused by CTVI only

considering ventilation function can be reduced by using deep

learning methods in the future.

3.5.2 Uncertainties of methods
CTVI is primarily implemented through DIR. During 4DCT

image acquisition, artifacts may arise due to irregular patient

breathing and imaging limitations, impacting reliability and

accuracy. Lung ventilation methods based on CT values are

influenced not only by image registration results but also

significantly by image quality (19). While Jacobian methods

heavily rely on subjects’ breathing consistency in both breathing
FIGURE 2

The correlation between 4D-CT and SPECT images Top Row: The 4DCT‐Inhale phase (left) and SPECT (right) ventilation images for the case with
the lowest over correlation . Bottom Row: The IJF (left) and MCVC (right) superimposed on the 4DCT‐Exhale phase. Ventilation images were
converted to percentile images for direct visual comparison. printed with permission from Castillo E, et al (65).
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state and mode, the generated ventilation images are highly

sensitive to the chosen DIR algorithm. Slight disturbances in DIR

results can lead to substantial changes in ventilation estimation,

resulting in poor model repeatability (75). The tissue-density

method, independent of DIR, exhibits higher accuracy and

reproducibility despite some limitations (38, 78). The method is

invalid for tumor-blocked areas and areas exhibiting abnormal

morphology, including lung tissues with fluid or surrounding

tumors of HU values ≥-600. Importantly, deep learning methods

have been proven to substantially improve the accuracy of

ventilation images (43). Despite being in the research phase, these

methods hold promise for overcoming the limitations of

traditional methods.

3.5.3 Uncertainties of applications
Numerous issues exist in the clinical application of pulmonary

function. For instance, PET-based or MRI-based functional

imaging requires additional scanning, and the cost of inhaled gas

is prohibitive, limiting clinical application (11, 13, 33). While CT-

based functional imaging does not encounter these issues, technical

deficiencies (solely considering ventilation function, inaccurate pre-

registration positions, etc.) necessitate further result validation (19,

65, 66). Additionally, changes in location of lung functional areas

due to tumor regression during radiotherapy may result in lung

function avoidance failure, aggravating dose exposure in some

functional areas (62).
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4 Summary and future research

The utilization of CT-based lung function imaging in radiation

therapy holds considerable promise, albeit accompanied by persistent

challenges. A crucial challenge lies in the lack of a standardized

approach for evaluating the precision of lung function imaging.

Furthermore, the imperative of ensuring the accuracy and

reproducibility of functional parameters necessitates continued

validation efforts. As such, future research endeavors must prioritize

tackling these challenges and devising appropriate solutions.

A pivotal challenge for future research is to enhance the image

quality and stability of CT imaging, as it is fundamental for precise

assessment of lung tissue’s physiological and pathophysiological states.

Researchers have extensively explored various methods, including

techniques independent of image registration and deep learning

approaches, to address this challenge. O. Ronneberger (48) highlights

the effectiveness of FCN networks, particularly the U-Net, in leveraging

limited annotated datasets through techniques like random elastic

deformation for data augmentation. This approach enables the

extraction of detailed image features without the need for additional

training data, resulting in robust segmentation outcomes.

Secondly, the integration of CT perfusion imaging and CT

elastography with additional imaging modalities, such as SPECT and

MRI, can yield a more holistic evaluation of lung cancer patients’

condition and treatment efficacy. Combining CT-based lung

ventilation imaging with PET and MRI-based blood perfusion
TABLE 3 The characters of CTVI, SPECT and MRI functional imaging.

Function imaging CTVI
(9, 16–18, 23–37, 39–58,

60–62)

SPECT
(10, 17, 19, 38, 38, 59, 63–

65, 75)

MRI
(11, 15, 17, 38, 66–74)

Technique types Ventilation Ventilation/Perfusion Ventilation/Perfusion/
Biomechanical assessment

Function Imaging qualities 1 Imaging resolution is depended by CT
images, mostly high.
2 The imaging accuracy was effected by
the DIR
3 Only reflect the ability of ventilation

1 The imaging resolution of inert gas
133Xe is not high.
2 The imaging accuracy was high
3 It could well reflect the ability
of perfusion

1 Poor signal and contrast from solid
tissue and blood vessels
2 The imaging accuracy was effected by
the patient position (long scan time) and
registration with CT (if applied to the
radiotherapy)
3 It could well reflect the ability
of perfusion

Patient safety 1 Patients is safety and easy to complete
the scan
2 No added scan for radiotherapy patients
3 No additional radiation damage

1 Patients need to training before scan
2 Patients need additional scan and even
inhalation radioactive gas
3 Additional radiation damage

1 Patients need to training before scan
2 Patients need additional scan and even
inhalation gas
3 No additional radiation damage

Cost No additional cost for
radiotherapy patients

1 Needs special aeroso- lization equipment
cost
2 SPECT scan needs high cost for patient
3 Radiopharmaceutical cost

1The 3He is expensive due to its source
limitations
2 The requirement of specific inert gas
polarization devices
3 MRI scan cost

Clinical value 1 It is easy to achieve and can widely be
used in radiotherapy
2 Lots clinical trials about radiotherapy
have been application
3 Prospective studies have demonstrated
its clinical benefits in radiotherapy

1 It is not widely used in radiotherapy for
the cost
2 Less clinical trials about radiotherapy
have been application
3 No prospective studies have
demonstrated its clinical benefits
in radiotherapy

1 It is not widely used in radiotherapy, but
widely used in pulmonary disease
diagnosis
2 Less clinical trials about radiotherapy
have been application
3 No prospective studies have
demonstrated its clinical benefits
in radiotherapy
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imaging can enhance the depiction of gas exchange capacity in the

functional lung, potentially establishing a standardized lung function

image. Furthermore, recent research on dual-energy CT in conjunction

with gas inhalation techniques (40) provides fresh perspectives on

evaluating blood perfusion in the functional lung, hinting at

groundbreaking paths for standardizing functional imaging protocols.

The assessment of CT-based lung function imaging technology’s

efficacy in preventing and managing complications, particularly acute

radiation pneumonia, and its role in guiding the development and

modification of radiation therapy plans in clinical practice, is of

paramount importance. Further investigation and research in these

areas are warranted, as highlighted in previous studies (13, 28).
5 Conclusion

This study aim to shed light on the opportunities and challenges

by a comprehensive examination encompassing the background,

definition of relevant concepts, classification of existing studies, and

review of pertinent literature in this burgeoning field. A

comprehensive review of CTVI’s application in radiotherapy

facilitates a thorough understanding of advancements and

limitations of current research, providing valuable insights for

advancing the field. Given the ongoing technological innovations,

CT-based lung function imaging is anticipated to play a pivotal role

in delivering individualized and precise radiotherapy to patients.
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