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Purpose: This study aimed to develop amodel to predict the risk of axillary lymph

node (ALN) metastasis in breast cancer patients, using gray-scale ultrasound and

clinical pathological features.

Methods: A retrospective analysis of 212 breast cancer patients who met the

inclusion criteria from January 2011 to December 2021 was carried out. Clinical

and pathological characteristics, including age, tumor size, pathological type,

molecular subtype, estrogen receptor (ER), progesterone receptor (PR), human

epidermal growth factor receptor 2 (HER2), and proliferation cell nuclear antigen

(Ki-67), were examined. Preoperative ultrasound examinations were performed,

and ultrasound radiomics features of breast cancer lesions were extracted using

Pyradiomics software. The data was divided into training (70%) and testing (30%)

sets. A predictive model for axillary lymph node metastasis (ALNM) was

established by combining clinical and ultrasound features. The diagnostic

performance of the model was evaluated using receiver operating

characteristic (ROC) curves and five-fold cross-validation.

Results: The rate of lymph nodemetastasis was 41.51%. Using LASSO algorithm, 17

features linked to ALN metastasis were extracted from a comprehensive databank

of 8 clinical features and 1314 ultrasound radiomic attributes. Of these, four were

clinical-pathological features (tumor size, tumor type, age, and expression levels of

the Ki-67 protein), and 13 were radiomic features. And the following features

exhibited both high weights and correlation coefficients: tumor size (R=0.29,

weight=0.071), tumor type (R=-0.24, weight=-0.048), wavelet-LH_glcm_Imc1

(R=0.28, weight=0.029363), wavelet-LH_glszm_SZNUN (R=-0.20, weight=-

0.028507), and squareroot_ firstorder_ Minimum (R= -0.25, weight= -0.059).

The ROC area under the curve for the model in the training and testing sets was

0.882 (95% CI: 0.830-0.935) and 0.853 (95% CI: 0.762-0.945), respectively. The

predictive model demonstrated a sensitivity of 87.5% on the training set and 79.2%

on the test set, with corresponding specificities of 75.0% and 77.5%, accuracy of

80.4% and 78.1%, respectively. When evaluated using 5-fold cross-validation, the
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model achieved an average test set area under the curve (AUC) of 0.799 and a

training set AUC of 0.852.

Conclusion: The clinical-radiomic model has the potential to predict axillary

lymph node metastasis in breast cancer.
KEYWORDS

ultrasound, radiomics, breast cancer, lymph node, prediction model
1 Introduction

Breast cancer remains one of the most prevalent malignancies

affecting women worldwide, with metastasis to the axillary lymph

nodes (ALN) being a critical determinant of prognosis and

treatment strategies (1). Accurate prediction of axillary lymph

node metastasis (ALNM) risk is essential for guiding clinical

decision-making and optimizing patient outcomes.

The conventional assessment methodologies, which

predominantly utilize clinical pathological attributes such as tumor

size, grade of differentiation, and receptor status including estrogen

receptor (ER), progesterone receptor (PR), human epidermal growth

factor receptor 2 (HER2), are insufficient to capture the heterogeneity

of individual patients and the complexities inherent to tumor biology

(2, 3). Additionally, the assessment of ALN status has relied heavily

on invasive procedures, including sentinel lymph node biopsy or

axillary lymph node dissection. As a result, these procedures carry

inherent risks and limitations, highlighting the need for non-invasive,

reliable methods for predicting ALNM risk (4).

Currently, imaging examination is used as a non-invasive method

for preoperative confirmation of ALN status, such as mammography,

ultrasound, and magnetic resonance imaging. Among the various

imaging technologies, ultrasound is the main method for the

preoperative assessment of the axilla in women with initial

diagnosis of breast cancer due to its cost-effectiveness, simplicity,

and high spatial resolution (5). Many studies have shown that ALN

morphological features detected by axillary ultrasound are helpful in

predicting ALNM. However, the low sensitivity has limited its

widespread use. For the majority of early-stage breast cancer

patients with clinically negative lymph nodes, axillary ultrasound

shows no positive signs, which may lead to false-negative results in

early-stage ALNM patients. Therefore, there is an urgent need to

explore new methods not based on axillary examination, especially

for patients with early-stage breast cancer.

Grayscale ultrasound, an efficacious and non-invasive diagnostic

tool, plays a pivotal role in the assessment of breast cancer. It exhibits

excellent spatial resolution for visualizing breast tissues. Therefore,

combining grayscale ultrasound with clinical pathological features to

construct a predictive model for ALNM risk has become an area of

intense investigation within oncological diagnostics and treatment.
02
The emerging field of radiomics, dealing with the quantitative

analysis of medical images, offers promising avenues for predicting

metastatic involvement (6). This technology converts medical

images into quantifiable data that facilitates image reconstruction,

denoising, segmentation, and extraction, heralding novel avenues

for precise illness characterization (7). Evidently, radiomics has

proven effective in predicting lymph node involvement in thyroid

carcinoma (8), rectal cancer (9) and gastric cancer (10). Studies by

Huang et al. indicate that radiomics surpasses conventional CT in

prognosticating lymph node metastasis in colorectal cancer patients

(11). Nonetheless, the predictive performance of non-invasive

models for ALNM in breast cancer patients remains suboptimal.

Previously reported area under the curve (AUC) values for these

models range from 0.667 to 0.73 (12, 13), underscoring the necessity

for further improvement. Moreover, limited research has addressed

the combined influence of primary tumor ultrasound characteristics

and clinical parameters on lymph node metastasis (14). Therefore,

this study aims to elucidate risk factors for ALNM related to

grayscale ultrasonographic properties and the clinicopathological

features of the primary breast tumors. Additionally, a support

vector machine (SVM) model will be established based on these

factors to predict the likelihood of ALNM.
2 Methods

2.1 General information

This study was approved by the Hospital’s Medical Ethics

Committee (SPHFJP-T2022007-01). Individual consent was

waived. A retrospective analysis was performed on the

preoperative breast ultrasound grayscale images of patients who

were examined by the Ultrasound Department of the Second

People’s Hospital Affiliated to Fujian University of Traditional

Chinese Medicine from January 2011 to December 2021. All

patients were diagnosed with primary breast cancer through

ultrasound-guided biopsy or subsequent resection.

Inclusion criteria: (1) Confirmed primary breast cancer diagnosis

through biopsy or surgical pathology examination; (2) No prior biopsy

of breast cancer lesions, or local or systemic treatment targeting breast
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cancer lesions before breast ultrasound and mammography; (3) Single

unilateral lesion; (4) Complete axillary lymph node dissection with

comprehensive pathology results. Exclusion criteria: Patients with

lesions on ultrasound images that are poorly demarcated, preventing

accurate image analysis; patients with missing clinical data or

incomplete pathology results; patients with previous breast surgery or

other surgical history that could affect the ultrasound results; patients

with bilateral breast cancer or multiple lesions within the same breast;

patients who did not undergo complete axillary lymph node dissection

or lacked corresponding pathology reports.
2.2 Ultrasound examination method

The patients were positioned supine, with their hands elevated

and positioned on either side of the head, enabling comprehensive

exposure of both breasts and axillae. The examination leveraged

color Doppler ultrasound diagnostic instruments from Philips, GE,

or Siemens, equipped with a high-frequency linear array probe

(frequency 9–12 MHz). Upon lesion detection, two-dimensional

images were acquired and archived in the ultrasound workstation.

Image quality control was performed by two seasoned radiologists,

Qing Lin and Luting Zhang. Both radiologists collaborated to

ascertain the accuracy and dependability of the findings.
2.3 ALN surgical staging and
pathological assessment

The surgical approach adheres to relevant guideline protocols.

For patients who were candidates for sentinel lymph node biopsy

(SLNB), methylene blue was used as the indicator for initial SLNB.

If intraoperative frozen section or postoperative paraffin pathology

suggested SLN positivity, continue with or subsequently perform

ALN dissection. ALN pathology was assessed by intraoperative

frozen section and postoperative paraffin section.

The surgical strategy employed in the study strictly followed

pertinent medical guidelines. For patients who met the criteria for

sentinel lymph node biopsy (SLNB), methylene blue dye was first

used for SLNB. If sentinel lymph node (SLN) positivity was

indicated by the intraoperative frozen section or post-operative

paraffin section examination, an ALN dissection was performed

further, or a decision was made whether a second surgery was

necessary based on the postoperative pathological results.
2.4 Characterization of pathological and
clinical data

Eight clinical and pathological parameters were collected as the

clinical pathological characteristics of the patients, including: age,

tumor size, pathological type (non-special type invasive carcinoma,

special type invasive carcinoma, in situ carcinoma), molecular

typing (Luminal A-type, Luminal B-type, HER2 overexpression

type, and triple-negative), estrogen receptor (ER), progesterone
Frontiers in Oncology 03
receptor (PR), human epidermal growth factor receptor 2

(HER2), and proliferating cell nuclear antigen (Ki-67).
2.5 Radiomic analysis

2.5.1 Image annotation
The task of image annotation was jointly undertaken by two

experienced sonography physicians. One of them is an attending

physician with 5 years of experience, while the other is an associate

chief physician with over 12 years of clinical practice. Utilizing ITK-

SNAP software, both physicians manually delineated the lesion

borders on the maximal cross-sectional images to accurately define

the regions of interest (ROIs). Once the annotations were completed,

a senior chief sonography physician, with more than 15 years of

experience, conducted a thorough review of the annotated ROIs.

Based on this review, the optimally qualified ROIs were selected for

the extraction of radiomic features. Two sonography physicians

independently selected 100 patients to delineate ROIs, with one

physician repeating the delineation within one week to ensure

consistency. Feature stability was assessed using intra-class

correlation coefficients and inter-class correlation coefficient (ICC).

Features exhibiting intra-class correlation coefficients and ICC values

below 0.75 were omitted from the final dataset.

2.5.2 Feature extraction
The Pyradiomics software version 3.0 was used to extract

radiomic features from breast lesion images. For each ultrasound

image examined, a total of 1314 features were extracted, covering

seven major categories: 252 first order statistical features, 12 shape

features, 336 gray level co-occurrence matrix (GLCM) features, 224

gray level size zone matrix (GLSZM) features, 224 gray level run

length matrix (GLRLM) features, 196 gray level dependence matrix

(GLDM) features, and 70 neighborhood gray tone difference matrix

(NGTDM) features (15).

2.5.3 Feature selection
In this study, a total of 1314 radiomics features were extracted from

each ultrasound image. After preprocessing and variance filtering, 1205

features were selected. These features were combined with 8 clinical

pathological characteristics, yielding a total of 1213 features. All

ultrasound features and clinicopathological characteristics were

correlated with ALN metastasis using Pearson correlation

coefficients. Subsequently, Least Absolute Shrinkage and Selection

Operator (LASSO) method was applied for feature selection, and

used the selected features for the construction of the radiomics model.

2.5.4 Model establishment
Prior to model building, we divided the dataset into a training

set and a test set in a 7:3 ratio. The test set data were not used in

model building. Utilizing the filtered features, we adopted Bayesian

optimization method to optimize the parameters, in order to select

the best-performing parameters that enhance the optimization

effect of the model.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1415584
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ouyang et al. 10.3389/fonc.2024.1415584
2.5.5 Model evaluation
To evaluate the model, the pathological results of ALNs were taken

as the diagnostic criteria. The receiver operating characteristic curve

(ROC) was plotted, and the area under the curve (AUC), along with the

95% confidence interval (CI) was calculated. Based on grayscale

ultrasound and clinical pathological characteristics, a predictive

model for the risk of axillary lymph node metastasis in breast cancer

was constructed. The indexes such as sensitivity, specificity, and

accuracy were calculated to assess the diagnostic efficacy of this

model in predicting the risk of ALN metastasis in both the training

and test sets. In order to accurately assess the performance of the lymph

node metastasis prediction model, this study adopted the 5-fold cross-

validation strategy. Through 3-round 5-fold cross-validation, the

model was trained and tested under various data partitions to ensure

the robustness of the results. ROC curve for each round of training and

testing was plotted. Finally, the average AUC was taken as the main

performance indicator of the model to ensure its generalization ability

on new data. The procedure of this study is shown in Figure 1.
2.6 Statistical analysis

Data analysis was performed using Python software version

3.7.1. Data are presented as mean ± standard deviation. For
Frontiers in Oncology 04
comparing multiple sample means of quantitative data that are

normally distributed and have homogeneity of variance, one-way

ANOVA was used for independent events. The least significant

difference (LSD) method was employed for pairwise comparisons

between multiple sample means that are normally distributed and

have equal variances. Data that were normally distributed but had

unequal variances were analyzed after transformation or using

Dunnett’s test. For data not following a normal distribution, the

non-parametric Kruskal-Wallis rank-sum test was used to compare

multiple independent sample means. Categorical data were

analyzed using the chi-squared (c2) test. A P-value of less than

0.05 was considered to indicate statistically significant differences.

3 Results

3.1 Clinical pathological characteristics

This study included 212 breast cancer patients, all female, with

ages ranging from 25 to 80 years and a mean age of 53.7 years. Among

the cases, there were 154 instances of non-special type invasive

carcinoma, 31 cases of special type invasive carcinoma, and 27 cases

of in situ carcinoma. Patients were divided into two groups based on

ALNM. ALNmetastasis group comprised 88 patients with a mean age

of 50 years and non-metastasis group comprised 124 patients with a
FIGURE 1

The workflow of this study. ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki-67, proliferating
cell nuclear antigen; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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mean age of 54.5 years. The metastasis rate of lymph node of 41.51%.

No statistically significant differences were observed in age between

the two groups (t=1.404, P=0.162). Tumor size, pathological type

(non-special type invasive carcinoma, special type invasive carcinoma,

and in situ carcinoma), and levels of Ki-67 were identified as

influencing factors for lymph node metastasis. However, there were

no significant statistical differences in molecular subtypes (Luminal A,

Luminal B, HER2 overexpression, and triple-negative), ER, PR, and

HER2 expression between the two groups (Table 1).
3.2 Feature selection

Utilizing the LASSO algorithm, 17 features linked to axillary lymph

node metastasis has been extracted from a comprehensive databank of
Frontiers in Oncology 05
1322 clinical and ultrasound radiomic attributes (Figure 2). Within this

selected group, four features are clinical-pathological, encompassing

tumor size, tumor type, age, and expression levels of the Ki-67 protein.

The remaining 13 are radiomic features, including variables such as

Busyness, squareroot_firstorder_Minimum, informational measure of

correlation 1 (Imc1), SizeZoneNonUniformityNormalized (SZNUN),

ShortRun HighGrayLevelEmphasis (SRHGLE), BoundingBox2,

wavelet-HH_glcm_Imc1, gradient_ngtdm_Strength, Strengthlbp-

2D_firstorder_ Kurtosis, logarithm_glszm_ LargeAreaHighGrayLevel

Emphasis RunEntropy, ZoneEntropy, and wavelet-HH_

glszm_LargeAreaHighGray Level Emphasis (LAHGLE). These 17

discriminative features, comprising both clinical-pathological and

radiomic factors, were subsequently saved as labels for further

analysis. The 13 features screened in this model exhibit ICC values

exceeding 0.75, denoting strong reliability.
TABLE 1 Clinical pathological characteristics.

features metastasis of ALN non-metastasis of ALN Value of t orc2 P value

Age (years) 52.4 + 11.3 54.6 ± 11.3 1.404 0.162

Tumor size 19.279 0.000

Maximum diameter ≤ 2.0 cm 26 (29.5%) 74 (59.7%)

Maximum diameter 2.1–5.0 cm 53 (60.2%) 45 (36.3%)

Maximum diameter > 5.0 cm 9 (10.2%) 5 (4.0%)

Pathological type 16.759 0.008

Invasive ductal carcinoma 75 (85.2%) 79 (63.7%)

Invasive lobular carcinoma 2 (2.3%) 3 (2.4%)

Special type invasive carcinoma 10 (11.4%) 21 (16.9%)

In situ carcinoma 1 (1.1%) 21 (16.9%)

Molecular subtype 8.076 0.445

Luminal A 13 (14.8%) 39 (31.5%)

Luminal B 46 (52.3%) 50 (40.3%)

HER2 overexpression 14 (15.9%) 19 (15.3%)

Triple-negative 15 (17.0%) 16 (12.9%)

ER 0.546 0.460

Negative 29 (33.0%) 35 (28.2%)

Positive 59 (67.0%) 89 (71.8%)

PR 2.531 0.112

Negative 43 (48.9%) 47 (37.9%)

Positive 45 (51.1%) 77 (62.1%)

HER2 0.018 0.893

Negative 66 (75.0%) 94 (75.8%)

Positive 22 (25.0%) 30 (24,2%)

Ki-67 34.8 ± 25.9 25.3 ± 20.2 3.000 0.003
HER2, human epidermal growth factor receptor 2; ER, estrogen receptor; PR, progesterone receptor.
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3.3 Correlation matrix heatmap of selected
radiomics features

The correlation coefficients among the 17 features were generally

low, suggesting that the feature clusters were not redundant and that

each feature supplied distinct information to the models (Figure 3).

The correlation coefficients (left) and the corresponding p-values

(right) were presented (Figure 4). Based on the most significant

characteristics identified by the Pearson correlation coefficient, the

top ten features were identified, including Ki-67 (R=0.20), Tumor type

(R=-0.24), Tumor size (R=0.29), wavelet-LH_glcm_Imc1 (R=0.28),

wavelet-LH_glszm_SizeZone NonUniformity Normalized (SZNUN,

R=-0.20), wavelet-HH_glcm_Imc1 (R=0.20), squareroot_firstorder_

Minimum (R=-0.25), squareroot_glrlm_RunEntropy (R=0.26),

logar i thm_g l s zm_ ZoneEntropy (R=0 .25) , and lbp-

2D_firstorder_Kurtosis (R= -0.23).
3.4 Construction and evaluation of support
vector machine model

The clinical features include tumor size, type, age, and Ki-67

expression, with corresponding weight coefficients of 0.071, -0.048,

-0.009, and 0.004, respectively. Among the 13 radiomic features, the

top 5 ranked are Busyness, Minimum, Imc1, SZNUN, and

SRHGLE, with weight coefficients of -0.069, -0.059, 0.029363,

-0.028507, and 0.022331, respectively. Among all the 17 features

ranked by weight and correlation coefficients, the following

exhibited both high weights and correlation coefficients: tumor

size (R=0.29, weight=0.071), tumor type (R=-0.24, weight=-

0.048), Imc1 (R=0.28, weight=0.029363), SZNUN(R=-0.20,

weight= -0.028507), and Minimum (R=-0.25, weight= -0.059).

Utilizing these features, along with clinical-pathological factors, a

predictive model for axillary lymph node metastasis was developed

employing SVM. The model demonstrated robust predictive ability

with areas under the receiver operating characteristic (ROC) curve

of 0.882 (95% CI: 0.830-0.935) for the training set and 0.853 (95%

CI: 0.762-0.945) for the test set, as illustrated in Figure 5. The

model’s performance evaluation parameters, including sensitivity,

specificity, accuracy, positive predictive value, and negative

predictive value, are detailed in Table 2.
Frontiers in Oncology 06
3.5 Model performance validation

The lymph node metastasis prediction model, evaluated

through 3 rounds of 5-fold cross-validation, showed that the test

set AUC ranged from 0.717 to 0.883, with an average AUC of 0.799,

demonstrating reliable predictive performance on the test set. The

AUC for the training set was 0.852, indicating high model fit during

training (Figure 6).
4 Discussion

Breast cancer, a leading malignancy in women, requires

accurate prediction of ALNM to guide treatment strategies and

prognosis (16). Radiographic examinations, particularly ultrasound,

serve as valuable preoperative tools for the evaluation of lymph

nodes and substantially guide clinicians towards optimal treatment

strategies. Nevertheless, the sensitivity of ultrasound for detecting

early-stage ALN metastasis is notably limited, which underscores

the necessity for the development of more efficacious diagnostic

techniques. In this study, we identified tumor type, tumor size,

Imc1, SZNUN, and Minimum as important risk factors for ALNM.

Moreover, we constructed a SVM model to predicate ALNM based

on ultrasound findings and clinicopathological characteristics,

which demonstrated excellent performance, as evidenced by AUC

values of 0.882 (95% CI: 0.830-0.935) for the training set and 0.853

(95% CI: 0.762-0.945) for the test set. After cross validation, our

model achieved an AUC of 0.799 for the test set and 0.852 for the

training set, outperforming previous publications, which recorded

an AUC of 0.67 (17).

Our research innovatively delineated critical ultrasound

radiomics features linked to ALNM and established a model that

integrated clinicopathological indicators and ultrasound features.

By leveraging artificial intelligence to improve diagnostic precision,

this study makes a substantial contribution to the evolution of

personalized medicine and precision oncology of breast cancer.

In the predictive model, tumor size (R=0.29, weight=0.071) and

tumor type (R=-0.24, weight=-0.048) exhibited significant

correlation coefficients and were assigned substantial weights,

underscoring their importance as clinical variables. These findings

imply a heightened risk of lymph node metastasis associated with
FIGURE 2

Schematic diagram of conventional ultrasound image of breast cancer lesion (left) and delineation of the region of interest (right).
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FIGURE 3

Ultrasound radiomics features associated with lymph node metastasis were selected using LASSO algorithm. And the inter-class correlation
coefficient of the key ultrasound features was analyzed. The mean squared error (MSE) graph for radiomic feature selection using LASSO logistic
regression; LASSO stands for Least Absolute Shrinkage and Selection Operator; Lambda (l) represents the LASSO coefficient. The dotted vertical line
indicates the optimal lambda value corresponding to the smallest average standard error, which is used for feature selection. The red line represents
the average of the MSE. The gray area represents the range of the MSE’s standard deviation. The coefficient distribution graph for the radiomic
features is selected by the model. It shows the changes in each feature’s coefficients as the l value changes, with each line representing a separate
radiomic feature. Inter-class correlation coefficient with 95% confidence interval of the key ultrasound features is analyzed. LN, lymph node. 0, non-
metastasis of ALN. 1, metastasis of ALN. ICC, inter-class correlation coefficient; CI, confidence interval.
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larger breast cancer masses and nonspecific types of invasive cancer.

These observations are consonant with those reported by Min S K

et al., which demonstrate a significant relationship between tumor

size and type and the incidence of lymph node metastasis (18). The

underlying reason is that an increased tumor area often represents a

greater tumor burden, which in turn raises the likelihood of

penetration into adjacent tissues, lymphatic channels, and blood

vessels. Among invasive cancers, nonspecific types such as invasive
Frontiers in Oncology 08
ductal carcinoma and invasive lobular carcinoma are known for

their aggressive invasiveness and metastatic potential.

Ultrasound features of Imc1 (R=0.28, weight=0.029363),

SZNUN (R=-0.20, weight= -0.028507), and Minimum (R=-0.25,

weight= -0.059) were also an important predictor factor in ALNM.

Imc1 quantifies the complexity of the texture in the image by

assessing how every pixel is correlated with its neighbors over the

entire image. Tumors with more heterogeneous appearances may
FIGURE 4

Correlation matrix heatmap of selected radiomics features. The correlation coefficients and magnitude of the correlation between the features.
*P ≤ 0.05, **P ≤ 0.01.
FIGURE 5

Diagnostic efficacy of the breast cancer lymph node metastasis model. (A) The clinicopathologic and radiomic features selected and their respective
weights; (B) Comparison of the area under the receiver operating characteristic curve for the model in both training set and test set.
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have higher Imc1 values (19). The positive correlation between

lymph node metastasis risk and Imc1 can be explained by the fact

that more aggressive tumors tend to exhibit more complex and

heterogeneous patterns on imaging. Imc1 is a predictor of

metastatic spread (20). SZNUN measures the variability of size

zone volumes throughout the image. Higher SZNUN values

correspond to a more variation of zone sizes, whereas lower

values indicate more homogeneous distribution. SZNUN feature

was mainly associated with nuclear division and cell-substrate

junction (21). It is also reported that SZNUN was correlated with

the gene expression of Kirsten Rat Sarcoma Viral Oncogene

Homolog (KRAS), Signal Transducer and Activator of

Transcription 1(STAT1), and Mitogen-Activated Protein Kinase 1

(MAPK1) (22). Squareroot_firstorder_Minimum refers to the

square root of the minimum pixel or voxel intensity value within

a region of interest (ROI) in a medical image. Minimum

characterizes the darkest regions (areas with lower intensity

values) in the imaging study, which could relate to necrosis. The

negative correlation between Minimum and the risk of lymph node

metastasis suggests that lower pre-transformed minimum intensity

values (which correspond to darker areas on the image) are

associated with increased likelihood of metastasis. This could be

due to aggressive tumor regions which might be prone to

metastasize (23).

The predictive model examined in this study, which

incorporates 17 features, has demonstrated remarkable diagnostic
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efficacy for ALNM in breast cancer. Specifically, it achieved an area

under the receiver operating characteristic curve of 0.882 for the

training set and 0.853 for the test set. This combined-method model

surpasses those relying solely on clinicopathologic factors or

ultrasound features in predicting ALNM (24). Moreover, our

findings differ from those of Xiong J et al., who developed a

nomogram to predict the probability of ALNM (13). Their AUC

was 0.705 for the training set and 0.745 for the validation set,

slightly lower than the AUC observed in our study. Previous studies

have successfully predicted the LN status in breast cancer patients.

Sun et al. applied a convolutional neural network to predict axillary

lymph node metastasis using primary breast cancer ultrasound

images, achieving an AUC of 0.72 (25), which is lower than the

performance of our model. This difference may be due to our

radiomic approach, which integrates clinicopathological features,

enhancing the overall predictive accuracy. Similarly, Fanizzi et al.

(26) highlighted the importance of combining histopathological

features with other types of data to enhance predictive precision. In

line with this approach, we integrated clinicopathological data with

radiomic features in our model. Bove et al. (27) developed a

predictive model by combining clinical and radiomic features,

reporting an AUC of 88.6%. However, they did not extend to a

detailed analysis of specific ultrasonographic features. Our method,

which uses LASSO for feature selection, aligns with theirs, allowing

for precise feature selection that enhances both the interpretability

and performance of the model.
FIGURE 6

The cross validation of model performance. (A) Receiver operator curves (ROC) of the clinical-radiomic model in the test cohort. (B) Averaged ROC
evaluated by cross-validation.
TABLE 2 Diagnostic efficacy of the support vector machine model in predicting axillary lymph node metastasis.

set AUC sensitivity specificity accuracy
negative
predictive

value

positive
predictive

value

Training Set 0.882
87.5%
(56/64)

75.0%
(63/84)

80.4%
(119/148)

88.7%
(63/71)

72.7%
(56/77)

Test
Set

0.853
79.2%
(19/24)

77.5%
(31/40)

78.1%
(50/64)

86.1%
(31/36)

67.9%
(19/28)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1415584
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ouyang et al. 10.3389/fonc.2024.1415584
In this study, the LASSO algorithm combined with 5-fold cross-

validation was employed for feature selection, followed by 3-round

5-fold cross-validation to evaluate the model’s performance. The

results demonstrate that the model maintained stable performance

across multiple data splits, with minimal fluctuation in the test set

AUC and an average AUC of 0.799, indicating strong predictive

ability for lymph node metastasis risk. Compared to a single train-

test split, cross-validation effectively reduced the risk of overfitting

and enhanced the robustness and generalizability of the model.

Notably, we also found that features such as Ki-67, RunEntropy,

and ZoneEntropy have high correlation coefficients but low weights,

whereas other indicators such as Busyness, SRHGLE, and

BoundingBox2 have lower correlations but higher weights. This

indicates both connections and differences between correlation

coefficients and weight coefficients. Correlation coefficient reflects

the degree of linear or nonlinear relationship between features and

the target (28). And correlation metrics usually do not incorporate

inter-feature relationships but independently assess the association

of each feature with the target. Weight coefficient represents the

importance of each feature in classification or regression tasks. And

its weights reflect the contribution of each feature to separating

different categories or predicting the target variable (29). The

indicators with high weights but low correlations may due to

complex interactions between features, multicollinearity or

overfitting. The reason why some indicators exhibit high

correlation but low weights can be attributed to factors such as

redundancy, noise, and etc.

Nevertheless, we should acknowledge several limitations in our

study. Firstly, Since blood flow signals are susceptible to instrument

and operator. We excluded this indicator from the construction of

the model. Secondly, our study still faces certain technical

challenges, such as the quality and interpretability of grayscale

ultrasound images, which could impact the accuracy and stability

of the model. Additionally, our research lacks external validation

from other datasets, warranting further multicenter, large-sample

studies to validate the reliability and effectiveness of the model.

Future research directions include, but are not limited to, the

following: further optimizing the methodology for constructing

predictive models, exploring additional combinations of imaging

and clinicopathological features to improve model accuracy and

stability; conducting multicenter, large-sample external validation

studies to assess the generalizability and applicability of this model;

and investigating other factors influencing breast cancer metastasis,

such as gene expression and microenvironmental factors, to refine

risk prediction models and offer comprehensive decision support

for clinical practice.
5 Conclusions

Our findings underscore the significance of features such as

tumor size and type, as well as advanced radiomic metrics (e.g.,

Imc1, SZNUN, Minimum) in predicting metastatic risk. This study

successfully established a model for predicting lymph node
Frontiers in Oncology 10
metastasis risk by analyzing the clinical and ultrasound radiomics

features of breast cancer patients. Our combined predictive model

provides more comprehensive and precise diagnostic information,

enhancing the potential for personalized treatment.
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