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Objective: The aim of this study was to evaluate the prognostic potential of

combining clinical features and radiomics with multiple machine learning (ML)

algorithms in pancreatic ductal adenocarcinoma (PDAC).

Methods: A total of 116 patients with PDAC who met the eligibility criteria were

randomly assigned to a training or validation cohort. Seven ML algorithms,

including Supervised Principal Components, stepwise Cox, Random Survival

Forest, CoxBoost, Least absolute shrinkage and selection operation (Lasso),

Ridge, and Elastic network, were integrated into 43 algorithm combinations.

Forty-three radiomics models were constructed separately using radiomics

features extracted from arterial phase (AP), venous phase (VP), and combined

arterial and venous phase (AP+VP) images. The concordance index (C-index) of

each model was calculated. The model with the highest mean C-index was

identified as the best model for calculating the radiomics score (Radscore).

Univariate and multivariate Cox analyses were used to identify independent

prognostic indicators and create a clinical model for prognosis prediction. The

multivariable Cox regression was used to combine Radscore with clinical

features to create a combined model. The efficacy of the model was evaluated

using the C-index, calibration curves, and decision curve analysis (DCA).

Results: The model based on the Lasso+StepCox[both] algorithm constructed

using AP+VP radiomics features showed the best predictive ability among the 114

radiomics models. The C-indices of the model in the training and validation

cohorts were 0.742 and 0.722, respectively. Based on the results of the univariate

and multivariate Cox regression analyses, sex, Tumor-Node-Metastasis (TNM)

stage, and systemic inflammation response index were included to build the
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clinical model. The combined model, incorporating three clinical factors and AP

+VP-Radscore, achieved the highest C-indices of 0.764 and 0.746 in the training

and validation cohorts, respectively. In terms of preoperative prognosis

prediction for PDAC, the calibration curve and DCA showed that the combined

model had a good consistency and greatest net benefit.

Conclusion: A combined model of clinical features and AP+VP-Radscore

screened using multiple ML algorithms has an excellent ability to predict the

prognosis of PDAC and may provide a noninvasive and effective method for

clinical decision-making.
KEYWORDS

pancreatic ductal adenocarcinoma, machine learning, inflammatory marker,
radiomics, prognosis
1 Introduction

Pancreatic cancer is the seventh leading cause of malignant

tumor-associated mortality worldwide and is generally associated

with insidious onset and poor prognosis (1). It has the lowest 5-year

overall survival (OS) rate (9%) among all malignancies (2).

Pancreatic ductal adenocarcinoma (PDAC) is the most common

kind of cancer that develops in the exocrine cells of the pancreas,

accounting for approximately 95% of all pancreatic malignancies

(3). Surgical resection at an early stage is a unique treatment

strategy that allows a clinical cure. However, at the time of

diagnosis, only 15–20% of patients are suitable for surgical

treatment (4). Five-year OS of tumor removal is < 10%, but

adjuvant chemotherapy after resection doubles the 5-year

survival to approximately 16-21% (5). Identifying patients with

PDAC at heightened risk is a significant challenge, allowing for

disease prognosis anticipation and prompt adjustment of

treatment plans.

The American Joint Committee on Cancer (AJCC) Tumor-

Node-Metastasis (TNM) staging system is the primary prognostic

evaluation tool for pancreatic cancer. Despite receiving the same

treatment, the clinical outcomes of patients with PDAC at the same

AJCC stage may differ (6). Therefore, there is an urgent need to

identify reliable markers for direct prognostic stratification and

individualized care. There is increasing evidence that factors other

than the intrinsic histopathological features of the tumor, such as

host-related factors, may impact patients’ clinical outcomes (7).

Inflammation linked to cancer has been proposed as the seventh

hallmark of cancer (8). Numerous epidemiological studies have

suggested that inflammation may play a significant role in the

initiation and progression of PDAC (9). Recent studies on the

tumor microenvironment (TME) have highlighted the role of

immune cell infiltration in PDAC development, metastasis, and

evasion (10, 11). Increased levels of inflammatory indicators, such
02
as the systemic inflammation response index (SIRI) and systemic

immune-inflammatory index (SII), have been associated with

poorer prognosis in PDAC (12, 13). Integrating TNM stage and

inflammatory markers may have significant value in accurately

predicting patient survival. Therefore, the role of inflammatory

markers in predicting prognosis should not be ignored.

Radiomics is a new methodology that transforms medical

images into extractable data by quantitatively extracting high-

throughput characteristics (14). Computed tomography (CT) is

currently the most commonly used imaging technique for

pancreatic cancer (15). Based on contrast-enhanced CT (CECT),

radiomics guidance for clinical decision-making can utilize patients’

clinical information more completely without increasing their

financial burden. Machine learning (ML), a branch of artificial

intelligence, is widely applied in disease prediction (16). The

application of various ML algorithms for disease risk prediction

has become a hotspot in medical big data research (17). The

integration of ML techniques with radiomics has shown

considerable efficacy in predicting cancer prognosis (18). This

technology offers precise, dynamic, and nonintrusive approaches

to personalized medicine. Multiple studies have indicated that

radiomics can accurately predict the prognosis of various cancers

including hepatocellular carcinoma (19), breast cancer (20), and

colorectal cancer (21). There are no reports on the use of radiomics

and various ML algorithms for prognosticating PDAC, although

both ML and radiomics have been widely used for disease

prognostication. Therefore, comparing different ML models based

on radiomics could yield valuable insights.

The aim of this study was to conduct a comparative analysis of

seven ML algorithms to build and validate CECT-based radiomics

models for predicting PDAC prognosis. Furthermore, the radiomics

score and clinical features were integrated to create a nomogram,

strengthen the predictive capacity, and potentially contribute to

follow-up plans and personalized therapy.
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2 Materials and methods

2.1 Patients

This retrospective study included patients with PDAC who

underwent surgical resection at the Hepatobiliary and Pancreatic

Surgery Department of the First Affiliated Hospital of Fujian

Medical University between January 2015 and May 2023. The

inclusion criteria were: (1) pancreatic ductal adenocarcinoma

confirmed by postoperative pathology. (2) patients who

underwent abdominal CECT within one month before surgery.

Exclusion criteria were: (1) lack of complete clinical, pathological,

and follow-up data; (2) simultaneously combined with other

malignant tumors or combined with multiorgan dysfunction

syndrome; (3) received preoperative antitumor treatment; (4)

clinical evidence of infection or the use of anti-inflammatory or

immunosuppressive medications; (5) patients who died within 30

days after surgical treatment due to complications; (6) without

available digital imaging and communications in medicine

(DICOM) image data or poor CECT image qualities such as

blurred images or images with artifacts. For patients who

underwent multiple preoperative CECT scans within one month

before surgery, only the scan closest to the surgery date was used.

This approach ensures that the imaging data most accurately

represents the tumor’s status immediately prior to surgery. For

patients with multiple preoperative laboratory test results, the data

closest to the date of the selected CT scan were used. To ensure

consistent application of the inclusion and exclusion criteria, two

researchers independently reviewed the data for each patient. In

cases of disagreement, a consensus was reached through discussion

with a third researcher, ensuring uniform application of the patient

selection criteria. A total of 116 PDAC cases were included and

randomly separated into training and validation cohorts using the

computer random number technique at a 2:1 ratio. This research
Frontiers in Oncology 03
was approved by the local Institutional Review Board and adhered

to the Declaration of Helsinki guidelines. Figure 1 shows the patient

recruitment process and the inclusion and exclusion criteria.
2.2 Clinical data and follow up

Clinical data for this study were obtained from the electronic

health record system, including age, sex, tumor location, TNM

stage, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9

(CA19-9), complete blood cell count, and biochemistry

examination. Inflammatory and other indicators analyzed in this

study were calculated using the blood tests mentioned above,

including the SII, SIRI, albumin to fibrinogen ratio (AFR),

aspartate aminotransferase/platelet ratio index (APRI), platelet to

lymphocyte ratio (PLR), and prognostic nutritional index (PNI). All

formulas are listed in Supplementary Table 1.

The primary outcome measure investigated in this study was

OS, defined as the duration from the first diagnosis to either death

or completion of the follow-up period. Follow-up was conducted by

retrieving medical records from inpatients, outpatient visits, or

telephone conversations. The follow-up period ranged from one

to 97 months, with an average of 18.34 months, ending in

September 2023.
2.3 CT image acquisition

Every patient underwent CT using either the Toshiba Aquilion

One 320-slice spiral CT or the Toshiba Aquilion PRIME 80-slice

spiral CT machine. Three-phase enhancement scans were

performed in each patient. A high-pressure syringe was employed

to inject the contrast material via the elbow vein at a 3.0 ml/s flow

rate. Subsequently, 30 ml of normal saline was injected at 3.0 ml/s.
FIGURE 1

Flowchart depicting the patient selection process.
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Images were captured in the arterial, portal venous, and equilibrium

phases at 30, 60, and 120 s, respectively, after injection of the

contrast material. The following scanning settings were used: tube

voltage, 120 kV; tube current, 230 mAs; rotation time, 0.35 seconds;

and slice thickness, 5 mm.
2.4 Region of interest segmentation and
feature extraction

For the analysis, the DICOM format was used after obtaining

the preoperative CECT scans of all participants from the Picture

Archiving and Communication Systems. One radiologist (reader 1)

used the 3D Slicer (version 4.10.2) to manually delineate the region

of interest (ROI) around the tumor margins on the arterial phase

(AP) and venous phase (VP) CECT images. The images from

50 patients were randomly selected and the radiomics features

of each ROI were extracted to calculate the intra- and inter-

observer reliabilities. The ROI was segmented by reader 1 and

a hepatobiliary surgeon (reader 2), who was blinded to the

clinical information, to evaluate inter-observer reliability. The

segmentations were repeated by reader 1 after one month to

evaluate the intra-observer reliability. Before acquiring the

radiomics characteristics, the scans were resampled to a voxel size

of 1 × 1 × 1 mm3 to mitigate potential interference arising from

variations in the equipment and scanning conditions. The

“pyradiomics” package was used to extract radiomics characteristics

from ROI to comply with the requirements outlined by the Image

Biomarker Standardization Initiative (22).
2.5 Feature selection and radiomics
model building

Z-score normalization was applied because of the varying

means and variances across the different characteristics. The

radiomics model was deve loped using reproducible ,

nonredundant, and informative candidate imaging features. First,

the intraclass correlation coefficient (ICC) was used to assess the

repeatability of the radiomics features within and between

observers. The features selected for further investigation had ICCs

>0.75. Next, univariate Cox regression analysis was performed to

identify radiomics features that may have predictive value in the

training cohort. To compare different ML algorithm effects and

acquire a radiomics model with greater prediction ability, seven ML

techniques were utilized, including supervised principal

components (SuperPC), stepwise Cox, random survival forest

(RSF), CoxBoost, least absolute shrinkage and selection operation

(Lasso), ridge, and elastic network (Enet). One method selects the

features, while another is used to construct the predictive model.

The final prognostic model was deemed invalid if it included less

than two features. Ultimately, 43 ML algorithm combinations were

integrated (Supplementary Table 2). After computing the

concordance index (C-index) for each model, the model with the

highest mean C-index value was determined to be the most ideal

model. For subsequent analysis, the best prognostic radiomics score
Frontiers in Oncology 04
(Radscore) was screened from the models constructed for the AP,

VP, and combined arterial and venous phase (AP+VP).
2.6 Clinical model and combined
model construction

Clinical and combined models were developed and compared

with the radiomics models. Univariate and multivariate Cox

analyses were used to identify independent prognostic indicators

and create a clinical model for prognosis prediction. Using

multivariable Cox regression, the Radscore was combined with

independent prognostic markers to create a combined model.
2.7 Model evaluation

The C-index was used to assess the accuracy of the clinical,

Radscore, and combined models. To assess the generalizability and

stability performance of the model, 5-fold cross-validation was

utilized. The dataset was randomly divided into five subsets. Four

subsets were used for model training, while the remaining subset

served as the validation set. This process was repeated five times to

ensure that each subset was used as the validation set once. The

predictive performance was evaluated by computing the mean and

standard deviation of the C-index through 5-fold cross-validation.

Using the combined model, a prognostic nomogram that enabled

the quantitative assessment of individual patient survival was

devised. Furthermore, a dynamic nomogram was constructed to

simplify calculations and assist in clinical decision-making. The

receiver operating characteristic (ROC) curves at the one- and two-

year periods, which further assess the nomogram’s discriminating

capacity, are produced using the survival forecast scores obtained

from the nomogram. To assess the agreement between the predicted

and observed survival probabilities of the combined model, a

calibration curve was constructed by applying a bootstrap

approach with 1000 repeats. Predicted probabilities were divided

into approximately three equal groups and compared to observed

outcomes. The 45-degree line represents perfect calibration,

indicating perfect prediction accuracy when the calibration curve

aligns with this line. The prognostic performance of the combined

model was compared with that of the clinical and radiomics models

using decision curve analysis (DCA). The clinical value of the

combined model was examined by quantitatively calculating the

net benefit at various threshold probabilities. The net benefit is

calculated by subtracting the proportion of false positives (weighted

by the threshold probability) from the proportion of true positives.

The horizontal axis of the decision curve represents the risk

threshold, while the vertical axis displays net benefit. The ‘all’ line

assumes all patients receive treatment, while the ‘none’ line assumes

no patients are treated. A greater area under the decision curve

indicates higher clinical utility. The optimal cut-off value for the

ROC curve was determined by maximizing the Youden index.

Based on the optimal cut-off, individuals in the training and

validation groups were classified into high- and low-risk

categories using their nomogram scores. Kaplan-Meier survival
frontiersin.org
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curves were generated to compare survival outcomes between the

two risk groups, and the log-rank test was used to assess statistically

significant differences in survival between the high- and low-

risk categories.
2.8 Statistical analysis

Statistical analyses were conducted using R software (version

4.3.1) and SPSS software (version 23.0). Continuous variables were

analyzed using either the Wilcoxon rank test or the t-test. The Chi-

square test or Fisher’s exact test was used to perform statistical

comparisons of categorical variables. The “survival” package was

used to perform Kaplan-Meier and multivariate Cox survival

analyses. The calibration and ROC curves were plotted applying

the “ rms” and “survivalROC” packages. The DCA was constructed

applying the “ggDCA” package. Statistical significance was set at

P < 0.05.
3 Results

3.1 Patient characteristics

Based on the inclusion and exclusion criteria, 116 patients with

PDAC were included in this study, with 76 and 40 patients in the

training and validation cohorts, respectively. The median follow-up

period for all patients was 468.5 days (range: 35–2912 days).

Specifically, the training cohort had a median follow-up of 481

days (range:82–2912 days), while the validation cohort had a

median of 456 days (range: 35–2643 days). A total of 58 patients

died during follow-up. There was no significant difference in the OS

between the training and validation cohorts (P = 0.847,

Supplementary Figure 1). The demographic information and

clinicopathological characteristics are summarized in Table 1.

There were no significant variations in the factors between the

two cohorts.
3.2 Feature selection and radiomics
model establishing

From the ROI, 1,316 radiomics characteristics were obtained in

the AP image, 1,316 in the VP image, and 2,632 in the AP+VP

image. The radiomics characteristics with ICC>0.75 in the AP, VP,

and AP+VP were 655, 787, and 1,442, respectively. Univariate Cox

analysis of AP, VP, and AP+VP radiomics features showed 181,

232, and 413 radiomics features, respectively, associated with

prognosis. Next, the radiomics features identified by univariate

Cox analysis that were associated with pancreatic cancer

prognosis were incorporated into the integration algorithm.

Forty-three combinations of algorithms were applied to construct

predictive models in the training group. Notably, 42, 35, and 37

models were built using the radiomics characteristics of the AP, VP,

and AP+VP images, respectively.
Frontiers in Oncology 05
The model constructed using the Lasso+StepCox[both]

algorithm demonstrated a better prognostic prediction capacity in

the AP models (Figure 2A). The Lasso+StepCox[both] model

achieved C-indices of 0.734 and 0.711 in the training and

validation cohorts, respectively. The model that exhibited the

most favorable prognostic prediction performance among those

developed using VP characteristics was produced using the

CoxBoost+Ridge algorithm (Figure 2B). The C-indices of the

CoxBoost+Ridge model in the training and validation cohorts

were 0.726 and 0.702, respectively. Among the models developed

using AP+VP characteristics, the Lasso+StepCox[both] algorithm

produced the most accurate prognostic predictions (Figure 2C). The

C-indices of the model were 0.742 and 0.722 in the training and

validation sets, respectively. The model based on AP+VP radiomics

characteristics, built using the Lasso+StepCox[both] algorithm, had
TABLE 1 Clinical features of the two cohorts’ patients.

Variables Training
cohort (n=76)

Validation
cohort (n=40)

p
value

Age 63.61 ± 9.85 59.73 ± 10.56 0.052

BMI 21.52 ± 3.02 21.88 ± 2.82 0.528

Sex 0.094

Male 39(51.32) 27(67.50)

Female 37(48.68) 13(32.50)

Diabetes 0.200

Absent 46(60.53) 29(72.50)

Present 30(39.47) 11(27.50)

Tumor
location

0.131

Head 49(64.47) 20(50.00)

Body
and tail

27(35.53) 20(50.00)

TNM stage 0.798

Stage I 29(38.16) 12(30.00)

Stage II 31(40.79) 20(50.00)

Stage III 10(13.16) 5(12.50)

Stage IV 6(7.89) 3(7.50)

CEA 3.39(2.12-5.72) 3.40(2.18-5.86) 0.919

CA19-9 159.60(30.92-501.50) 178.00(36.51-653.45) 0.951

TBIL 14.95(8.90-124.60) 18.55(9.10-80.10) 0.765

AFR 12.21 ± 3.10 11.37 ± 3.49 0.188

APRI 0.36(0.20-0.91) 0.43(0.21-0.73) 0.807

PLR 146.91(117.10-200.55) 149.35(113.12-184.83) 0.697

PNI 47.91 ± 4.96 48.98 ± 5.41 0.287

SIRI 0.81(0.60-1.36) 0.65(0.48-1.33) 0.189

SII 548.94(398.21-791.45) 449.34(319.32-730.91) 0.082
front
BMI, body mass index; TBIL, total bilirubin.
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the most effective prognostic prediction performance among the

models developed with AP, VP, and AP+VP features. Figure 2D

shows a Wayne diagram of the number of models constructed from

the radiomics features of the AP, VP, and AP+VP images. Eight

features with nonzero coefficients were chosen using Lasso from the

training group (Figures 3A, B). Four radiomics features and their

coefficients associated with pancreatic cancer prognosis were

obtained using StepCox[both] regression analysis (Figure 3C).
3.3 Clinical model and combined
model construction

Univariate Cox regression analysis was used to identify the

clinical characteristics associated with OS in patients with PDAC

(Table 2). Univariate analysis demonstrated that sex, TNM stage,

and SIRI were significantly correlated with the overall survival of

patients with PDAC in the training group. Subsequently,

multivariate Cox regression analysis included significant variables

identified in the univariate analysis. The findings show that sex

(hazard ratio, HR=2.157(1.025-4.538), P=0.043), TNM stage

(HR=1.821(1.269-2.613), P=0.001), and SIRI(HR=1.291(1.003-

1.663), P=0.048) were identified in the multivariable analysis as

independent indicators of survival for patients with PDAC

(Table 2). A clinical model was created using independent

prognostic factors, and clinical scores were determined for each

patient. The AP+VP-Radscore was integrated with clinical
Frontiers in Oncology 06
variables, such as sex, TNM stage, and SIRI, to create a

combined model.
3.4 Model evaluation

The combined model outperformed the clinical model and AP

+VP-Radscore in predicting OS for PDAC, achieving the highest C-

indices of 0.764 (95%CI: 0.683-0.846) and 0.746 (95%CI: 0.617-

0.875) in the training and validation cohort, respectively (Table 3).

The model’s generalization performance was evaluated using a 5-

fold cross-validation approach. The combined model showed

robust predictive performance in both the training (mean C-

index ± standard deviation [SD], 0.751 ± 0.020) and validation

(mean C-index ± SD, 0.752 ± 0.081) cohorts. Additionally,

the C-index for each fold of the training and validation cohorts

for the clinical, radiomics, and the combined model can be

found in Supplementary Table 3. The combined model was

visualized to form a nomogram (Figure 4A). To facilitate use by

researchers and clinicians, an online dynamic nomogram (https://

yuehuang.shinyapps.io/PDAC_OS_Nomogram/) was constructed

based on the combined model (Figure 4B). Figures 5A–D displays

the combined model for predicting one- and two-year OS (AUC =

0.760 and 0.809, respectively, in the training group; AUC = 0.830

and 0.741, respectively, in the validation group). Calibration curves

of the combined model exhibited a high level of concordance

between the predicted and observed survival probabilities
FIGURE 2

Predictive models were constructed in different phases of CECT, and the C-index was subsequently computed for each model. The transition from
green to yellow signifies a progressive increase in the C-index value. Each column denotes a cohort, and each row denotes a model. (A) Arterial
phase. (B) Venous phase. (C) Arterial phase + venous phase. (D) Wayne diagram of the number of models.
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FIGURE 3

Selection of radiomics features using Lasso regression. (A) The model’s tuning parameters (lambda value) are chosen using the minimal criteria
through ten-fold cross-validation. (B) Radiomics features’ Lasso coefficient profiles. (C) Information about the four features employed in this
investigation and their respective feature weights.
TABLE 2 Conducting both univariate as well as multivariate Cox analyses on the clinical characteristics.

Characteristics Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 1.027(0.991-1.064) 0.140

BMI 0.888(0.780-1.011) 0.072

Sex 2.740(1.348-5.569) 0.005 2.157(1.025-4.538) 0.043

Diabetes 1.652(0.856-3.190) 0.135

Tumor location 1.201(0.576-2.503) 0.625

TNM stage 1.927(1.334-2.784) <0.001 1.821(1.269-2.613) 0.001

CEA 0.997(0.983-1.012) 0.733

CA19-9 1.001(1.000-1.002) 0.059

TBIL 1.001(0.998-1.004) 0.469

AFR 0.977(0.875-1.092) 0.683

APRI 1.082(0.976-1.200) 0.133

PLR 1.000(0.996-1.004) 0.976

PNI 0.972(0.909-1.040) 0.415

SIRI 1.320(1.043-1.670) 0.021 1.291(1.003-1.663) 0.048

SII 1.000(1.000-1.001) 0.437
F
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(Figures 5E, F). According to the DCA curves, the combined model

provided a higher net benefit than the clinical model or AP+VP-

Radscore within a reasonable threshold probability range (Figure 6).

Patients were divided into high and low nomogram score groups

based on the cut-off value corresponding to the maximum Youden

index. In the training cohort, patients with higher nomogram scores

had a significantly poorer prognosis compared to those with lower

nomogram scores, and this finding was validated in the validation

cohort (Figure 7).
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4 Discussion

In this study, multiple CECT-based radiomics models were

established and validated to predict PDAC prognosis. Among the

114 radiomics models, the AP+VP radiomics model constructed

using the Lasso + StepCox [both] algorithm performed best in

predicting PDAC prognosis. By integrating clinical and radiomics

features, the combined model outperformed the single clinical or

radiomics models in terms of predictive performance. The

combined model achieved acceptable results for both the training

and validation cohorts. To the best of our knowledge, this is the first

study to compare multiple ML algorithms combined with clinical

features and radiomics features to predict PDAC prognosis.

As precision medicine advances, precise prediction of patient

prognosis has been recognized as a fundamental element in

tailoring treatment to individuals and enhancing patient

outcomes. In a number of tumors, intratumor heterogeneity has

been found to be prevalent and is associated with clinical outcomes
FIGURE 4

Construction of nomogram and dynamic nomogram. (A) Nomogram of the combined model for predicting the OS in patients with PDAC.
(B) A dynamic nomogram for predicting the OS in patients with PDAC.
TABLE 3 Model performance in training and validation cohorts.

Model Training cohort Validation cohort

C-index 95% CI C-index 95% CI

Clinical model 0.705 0.612-0.798 0.628 0.517-0.739

AP+VP-Radscore 0.742 0.653-0.831 0.722 0.591-0.853

Combined model 0.764 0.683-0.846 0.746 0.617-0.875
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FIGURE 5

ROC and a calibration curve were used to assess the combined model’s predictive accuracy for 1- and 2-year OS in the training and validation
cohorts. The combined model’s 1- (A) and 2-year (B) ROC curves for the training cohort. The combined model’s 1- (C) and 2-year (D) ROC curves
for the validation cohort. The calibration curves of the combined model for the training (E) and validation cohorts (F).
FIGURE 6

DCA was performed on each patient with PDAC to assess the clinical applicability of the combined model in predicting one- and two-year OS when
compared to the clinical model and AP+VP-Radscore. The DCA curves of the clinical model, AP+VP-Radscore, and the combined model for
predicting one- (A) and two-year (B) OS in the training cohort. The DCA curves of the clinical model, AP+VP-Radscore, and the combined model for
predicting one- (C) and two-year (D) OS in the validation cohort.
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(23). However, routine clinical examinations provide limited

information concerning intratumor heterogeneity. Radiomics, as a

noninvasive technique, can investigate potential phenotypic

information concealed in images that is not apparent to the

human eye, thus improving diagnosis and assisting in

individualized treatment strategies. There have been many

investigations into the use of radiomics to estimate survival rates

in many cancer types such as esophageal neuroendocrine

carcinoma, hepatocellular carcinoma, colorectal cancer, and clear

cell renal cell carcinoma (19, 21, 24, 25). Compared with

conventional radiological features, radiomics may provide

thorough details about intratumor heterogeneity that radiologists

may not be able to observe with the naked eye. Radiomics partially

addresses constraints associated with conventional radiology. CECT

is a commonly utilized method for evaluating PDAC (26). Previous

studies have found that CT texture features are associated with

survival outcomes in PDAC (27–31). These studies only considered

textural features; however, other radiomics features were neglected,

which may not maximize the benefits of radiomics. For instance, a

previous study developed a model to predict OS using texture

features combined with CA19-9, achieving a C-index of 0.69 (31).

Although this study provided valuable insights, the model primarily

focused on texture features, potentially overlooking other important

radiomic characteristics. In contrast, our AP+VP radiomics model

incorporates more comprehensive radiomic features, which may

help capture additional predictive information, resulting in a higher

C-index of 0.722. Most prior investigations on the prognosis of

PDAC solely focused on segmenting the tumor image with the

largest cross-sectional area to gather radiomics features, which

failed to completely depict the tumor heterogeneity (29, 32).

Compared to 2D segmentation, 3D segmentation provides more

comprehensive information about the tumor. In previous studies,

feature selection and modeling algorithms were primarily

determined by scholars based on their preferences and knowledge

gaps (31–33). To address this limitation, seven ML algorithms that
Frontiers in Oncology 10
can be used to build radiomics models were gathered. In total, 43

ML algorithm combinations were eventually integrated. In the

study by Wang et al. (33), their Rad-score achieved a C-index of

0.675 (95% CI: 0.594-0.755) in the validation cohort. Additionally,

our AP+VP radiomics model demonstrated a higher C-index of

0.722 (95% CI: 0.591-0.853) in the validation cohort. This

improvement may be attributed to our approach of building and

comparing multiple ML algorithms, which enhanced the predictive

accuracy of the model. Park et al.’s study (34) used thin-slice CT

and a comprehensive ROI delineation that included the background

pancreas, capturing more information about the tumor and

surrounding tissues. Their model demonstrated excellent

performance in prognosis prediction, with a C-index of 0.7414,

indicating a high predictive ability. While our study did not utilize

thin-slice CT or include the background pancreas in the ROI, it

incorporated clinical variables such as inflammatory markers,

alongside 43 ML algorithm combinations. The C-index reached

0.764 in the training cohort and 0.746 in the validation cohort.

Although the difference in C-index compared to Park et al.’s model

is modest, the use of multiple ML algorithms and inflammatory

markers contributed to improving the predictive performance of the

combined model in prognosis prediction. Unlike previous studies,

we segmented the tumors layer-by-layer and extracted complete

radiomics features to thoroughly investigate tumor heterogeneity. A

total of 114 radiomics models were developed using dimensionality

reduction techniques and classifiers. The efficacy of each model was

compared, and the optimum algorithm combination was

determined. This was the highlight of this study.

Among the AP, VP, and AP+VP radiomics models, the AP

+VP-Radscore constructed by combining the LASSO and StepCox

algorithms had the highest average C-index (0.732). LASSO uses L1

regularization to effectively select radiomic features related to

prognosis from high-dimensional data, while also helping to

prevent overfitting. This is particularly important in radiomics

research, where the large number of features and potential
FIGURE 7

Training and validation cohorts used the Kaplan–Meier analysis and the log-rank test to measure the nomogram’s capacity for risk stratification.
The Kaplan–Meier curves depicting the OS rates of the low-risk and high-risk groups were compared in the training (A) and validation (B) cohorts.
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multicollinearity can complicate analysis. The StepCox model,

known for its robust performance in survival analysis, efficiently

assesses the relationship between features and survival time. By

integrating LASSO for feature selection and StepCox for model

construction, we simplified the model while retaining key variables

that contribute significantly to prognosis, thus improving the

model’s stability and predictive performance. This algorithm

combination not only provides strong interpretability but also has

the potential to support clinical decision-making, highlighting the

significance of radiomic features in cancer prognosis.

The AP+VP radiomics model predicted the OS with the highest

C-indices among the AP, VP, and AP+VP radiomics models. A

possible reason for this result is that the combined AP and VP

radiomics features would contain more information about tumor

heterogeneity than single-phase images. Several edge detection

techniques are often used to conduct in-depth picture analysis

and studies, including wavelet filters and the Laplacian of

Gaussian (LoG) filters (35). The wavelet and LoG features have

been shown to provide detailed information about tumor

heterogeneity (36). Wavelet transformation has favorable

properties for capturing local features and providing high-

dimensional radiomics features that may not be visible to the

human eyes. Wavelet functions provide strong antinoise

properties at large scales and robust image detail extraction

properties at smaller scales. Hence, it is possible to attain a

harmonious equilibrium between noise suppression and

extraction of picture edge features. In contrast to subjective

assessments by radiologists and low-dimensional features, the

utilization of wavelet features offers a greater wealth of

information about the biological behavior and heterogeneity

observed in different tumor types, such as intrahepatic

cholangiocarcinoma (37), renal cell carcinoma (38), and prostate

cancer (39). Previous research has shown that wavelet

characteristics may measure intratumor heterogeneity and

correlate with prognosis (40). Jiao et al. observed a correlation

between wavelet characteristics and poor outcomes in individuals

with early stage lung cancer (41). This highlights the significance of

wavelet filters in radiomics investigations. The LoG comprises

Laplacian and Gaussian kernels. The Laplacian kernel exhibits

sensitivity towards areas characterized by rapid variations in

intensities, accentuating specific textural details in the original

image, and enhancing edges. Applying a Gaussian smoothing

filter prior to the Laplacian operation is typically necessary to

minimize the image’s sensitivity to noise. In the Cox analysis

using the step method, we found that the features from the image

transform type of the LoG-AP_log.sigma.2.0.mm.3D_gldm_

DependenceNonUniformityNormalized was an independent

prognostic variable for PDAC (P < 0.05). Findings from this

study indicate that feature filtering by LoG enhances the

identification of high-risk patients with poor prognosis in PDAC.

The filtering method effectively captures heterogeneity in spatial

pixel distributions, enhancing the biological relevance of radiomic

features. We observed a significant correlation between the

radiomic features AP_original_shape_Maximum2DDiameterSlice
Frontiers in Oncology 11
and PDAC prognosis. This feature demonstrates the size of the

tumor region in AP images. Many studies have identified tumor size

as an independent risk factor for PDAC prognosis. According to

previous research, the early detection of small pancreatic

adenocarcinomas (tumor size < 4.0 cm) is vital for improving

prognosis (42). One study indicated that tumor size is an

autonomous prognostic factor after surgical treatment (43). One

potential explanation for this phenomenon is that larger tumors are

more likely to invade adjacent tissues and metastasize to regional

lymph nodes.

Local immune responses and systemic inflammation are

important in the initiation and progression of several solid

malignancies (7). Systemic inflammation involves cytokines, small

inflammatory proteins, and immune cells, which circulate and are

measurable in the bloodstream (44). Tumor-secreted proteins can

influence the bone marrow microenvironment, leading to enhanced

production of myeloid cells. During inflammation, it is possible to

release neutrophil precursors, including myelocytes and

promyelocytes, thereby increasing circulating granulocytes (45).

Neutrophils can assist tumor cells in evading immune monitoring

and adhering to metastatic organs (46). Furthermore, they

contribute to cancer-related angiogenesis by secreting

proangiogenic factors (47). Neutrophils release substantial

quantities of nitric oxide and reactive oxygen species, which

contribute to T-cell activation disorders (48). Circulating

monocytes are a source of tumor-assisting macrophages (TAMs),

which may be attracted to the tumor site and facilitate cancer cell

proliferation and migration (49). Furthermore, they promote

programmed cell death of activated T-cells and expedite tumor

neovascularization (50). To a certain degree, the monocyte levels in

the peripheral circulation may indicate the abundance of TAMs.

Lymphocytes play an important role in the immune system, acting

as a primary defense against cancer cells. They inhibit tumor growth

by secreting cytokines, like interferons and tumor necrosis factor

(51). A reduction in peripheral lymphocytes weakens the host’s

anticancer immune response, leading to a higher risk of tumor cell

spread. These cell types combine to form the SIRI, capturing the

intricate interactions involving inflammatory and immune cells

within the TME. Recent reports have shown that the SIRI can

potentially be a prognostic indicator for survival outcomes across

various tumor types (7, 52, 53). In this study, SIRI served as an

independent prognostic marker for PDAC. SIRI has demonstrated

the potential to improve prognostic accuracy in patients with PDAC

and assist physicians in post-surgical monitoring and

treatment planning.

Several studies have shown that sex is a non-negligible factor in

the prognosis of patients with PDAC. Studies have shown that sex

correlates with pancreatic cancer prognosis (54). Akira et al.

identified being male as an independent predictive variable for

PDAC prognosis (55). Similarly, findings from this study indicated

that sex is an independent predictive factor for OS in PDAC.

Nutritional status has been shown to correlate with disease

prognosis and is essential in patients with cancer (56, 57).

Preoperative malnutrition is significantly correlated with
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suboptimal postoperative wound healing and increased occurrence

of complications (58). The PNI is used to evaluate nutritional and

immunological conditions in individuals undergoing surgery.

Previous studies have shown that the PNI is an independent

factor for OS rates among individuals who have undergone

surgical resection for PDAC (59). However, this investigation

found no significant association between PNI and PDAC

prognosis, likely due to differences in the populations included in

this study. A prospective investigation with a large patient

population is required to validate the predictive value of PNI

in PDAC.

The current gold standard for predicting prognosis of PDAC is

the TNM classification system developed by the AJCC (60). The

findings of this study demonstrated that TNM stage was an

independent predictive variable using multivariate Cox regression

analysis. TNM stage classification focuses on the anatomic level of

the lesion; however, individuals with the same stage may have

varied prognoses (61). This drawback has the potential to result in

either excessive or insufficient treatment. The integration of clinical

features and imaging data is necessary to improve individualized

prognostic prediction and application of precision therapy. The

degree of tumor heterogeneity, which is closely reflected in imaging

data, is a crucial sign of a tumor’s proliferative and metastatic

potential. In this study, we mine the imaging data through

radiomics. In terms of clinical data, we incorporated demographic

factors, inflammatory markers, and nutritional indicators to

comprehensively assess host-related characteristics and their

potential influence on tumor progression and prognosis. Finally,

we developed a combined model that integrated clinical features

with CECT radiomics features. The validation findings

demonstrated that compared with other models, the combined

model performed better in terms of prognosis prediction. The

forecasting efficacy of the combined model outperformed that of

the clinical model (C-index: 0.746 versus 0.628). It may be related to

the fact that more information about tumor heterogeneity and host-

related factors was obtained by combining clinical and CECT image

features. Subsequently, the improved net clinical benefit of the

combined model was validated using DCA curves. These results

suggest that models combining the AP+VP-Radscore and clinical

features enhance the prediction accuracy of single radiomics or

clinical models. A nomogram was developed to enhance the

accuracy of individual patient prognostic predictions by offering a

personalized prediction method. Improving individual outcomes

prediction will facilitate patient counseling, tailoring treatment

plans to their specific conditions, and effectively scheduling

patient follow-up.

However, this study has some limitations. First, this

investigation was conducted at a single center, without external

validation, which may limit the generalizability of the findings. We

will further validate these findings with external validation in future

studies. Second, the sample size was relatively small, which reduced

the credibility and generalizability of the model. A large-scale

cohort is required to validate these findings. Third, this was a

retrospective study, and patients with incomplete data were

excluded, which may have introduced selection bias. Fourth, due
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to the limited number of patients who survived beyond 3 and 5

years in this study, we did not conduct an in-depth analysis of the 3-

year and 5-year survival predictions. Larger sample sizes and longer

follow-up periods will be needed in future studies to validate the

model’s applicability for long-term survival predictions. Fifth,

tumor segmentation was conducted using images with thick slices

(5 mm), which may have excluded some finer characteristics. Sixth,

only AP and VP images were included in this study; delayed-phase

and unenhanced images were not analyzed. Finally, the correlation

between radiomics characteristics and genomic or proteomics data

still needs to be investigated. Hence, it is necessary to conduct

additional prospective studies using a more diverse dataset to verify

these findings.

In conclusion, the prognosis of PDAC can be predicted based

on CECT radiomics features and clinical features combined with

multiple ML algorithms. This may be an accurate and noninvasive

approach for predicting PDAC prognosis, contributing to clinical

decision-making.
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