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Background:Malignant pleural effusion (MPE) is a common clinical problem that

requires cytological and/or histological confirmation obtained by invasive

examination to establish a definitive diagnosis. Radiomics is rapidly evolving

and can provide a non-invasive tool to identify MPE.

Objectives: We aimed to develop a model based on radiomic features extracted

from unenhanced chest computed tomography (CT) images and investigate its

value in predicting MPE.

Method: This retrospective study included patients with pleural effusions

between January 2016 and June 2020. All patients underwent a chest CT

scanning and medical thoracoscopy after artificial pneumothorax. Cases were

divided into a training cohort and a test cohort for modelling and verifying

respectively. The Mann-Whitney U test and the least absolute shrinkage and

selection operator (LASSO) were applied to determine the optimal features. We

built a radiomics model based on support vector machines (SVM) and evaluated

its performance using ROC and calibration curve analysis.

Results: Twenty-nine patients with MPE and fifty-two patients with non-MPE

were enrolled. A total of 944 radiomic features were quantitatively extracted

from each sample and reduced to 14 features for modeling after selection. The

AUC of the radiomics model was 0.96 (95% CI: 0.912-0.999) and 0.86 (95% CI:

0.657~1.000) in the training and test cohorts, respectively. The calibration curves

for model were in good agreement between predicted and actual data.

Conclusions: The radiomics model based on unenhanced chest CT has good

performance for predicting MPE and may provide a powerful tool for doctors in

clinical decision-making.
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1 Introduction

Malignant pleural effusion (MPE) is a common medical

problem caused by both primary and secondary pleural

malignancies. Mesothelioma is the predominant primary pleural

malignancy, which is associated with a history of asbestos exposure

and is a rare tumor. Secondary malignant pleural effusions are

mainly caused by pleural metastases from lung and breast cancer

and account for 50-65% of malignant pleural effusions (1).

Epidemiological information is limited, but there are an estimated

50,000 new diagnoses of MPE in the UK each year and over 125,000

hospitalized patients with MPE in the United States per year (2, 3). It is

expected that there will be approximately 4,820,000 new cancer cases in

China in 2022 and the main types of cancer will be lung, colorectal,

stomach, liver and breast cancers (4). An increasing number of cancer

cases leads to a higher incidence of MPE. The presence of MPE

indicates that the tumor has spread or progressed to advanced stages,

and the median survival of patients is only 3 to 12 months from the

time of diagnosis (5). Selecting the optimal management strategy to

minimize invasiveness and discomfort in patients with advanced

cancer, correct identification of MPE is necessary.

A definitive diagnosis of MPE requires cytological and/or

histological confirmation (2). Therefore, in patients with suspected

MPE, various invasive techniques have to be used in order to obtain

sufficient tissue samples to definitively make the diagnosis (1)..

Unfortunately, not all patients are fit to undergo the procedure due

to complications. In this situation, diagnostic workup relies heavily on

medical history and imaging. Chest CT is the primary imaging test for

MPE, which can show abnormal changes in the pleura and provides a

reliable basis for diagnosis. The presence of nodular pleural thickening,

mediastinal pleural thickening, parietal pleural thickening > 1 cm, and

circumferential pleural thickening in CT images are supportive of

malignant diseases (2). However, in clinical practice, even if CT is

interpreted by 2 experienced radiologists, one in three patients with

MPE is still missed (6). Radiomics is a sophisticated image analysis

technology with rapid development. It helps to improve diagnosis and

can provide a powerful tool for modern medicine by extracting

quantitative medical image features and capturing the characteristics

of tissues and lesions (7–9). Herein, we aimed to identify patients with

MPE by CT image radiomics analysis.
2 Methods

2.1 Study population

This study was approved by the Ethical Committee of Beijing

Luhe Hospital, Capital Medical University (2021-LHKY-094-02).

All patients provided written informed consent. The inclusion

criteria were as follows: (1) malignant pleural effusion patients

were confirmed by pathological examination; (2) nonmalignant

pleural effusion cases were followed up for 1~2 years and no

malignant changes occurred; and (3) complete chest CT images

after artificial induced pneumothorax. The exclusion criteria were

as follows: (1) low-quality or incomplete CT images after
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artificially induced pneumothorax; and (2) para malignant

pleural effusions. A total of 29 patients with MPE (12 males and

17 females; age range, 26-83 years; mean age, 63.14 ± 13.45 years)

and 52 patients without MPE (38 males and 14 females; age range,

18-85 years; mean age, 52.98 ± 20.13 years) in the respiratory ward

of our hospital between January 2016 and June 2020 were

included. All cases were divided into a training cohort and a test

cohort using the stratified random resampling method at a ratio of

4:1. The training cohort was used to tune the parameters and

develop the prediction model, while the test cohort was utilized to

evaluate the predictive performance of the model. All clinical

results were extracted from the patients’ electronic medical

records in the hospital information system.
2.2 CT scanning

All patients were evaluated and signed informed consent forms

before examination. Artificially induced pneumothorax was formed

by injecting filtered air into the affected thoracic cavity. The induced

pneumothorax volume was 300 ml. During CT scanning, the

patient maintained a healthy lateral position. All CT scans were

obtained by using a Philips 16-slice spiral CT machine. Scanning

parameters: tube voltage 80 kV, tube current Auto mA, matrix 512

× 512, rotation time 0.5 s, pitch 0.938 mm, slice thickness of 5 mm,

and slice spacing of 5 mm. The scanning scope covered the whole

lung field.
2.3 Radiomics workflow

The core steps of radiomics analysis included ROI

segmentation, feature extraction, feature selection and predictive

model building (shown in Figure 1).

2.3.1 ROI segmentation
We used the open-source software 3D-slicer (version 4.11,

http://www.slicer.org) as the analysis platform. All visible layers of

wall pleura exposed to pneumothorax were selected as the regions of

interest (ROI), as it is difficult to accurately identify localized diffuse

pleural lesions with the naked eye. Regions of interest were

manually delineated slice-by-slice by an experienced respiratory

physician and a radiologist on lung window background (level,

−500 HU; width, 1,300 HU) axial CT images (shown in Figure 2).

Consensus was reached by discussion in case of disagreement.

2.3.2 Radiomic feature extraction and selection
All images were normalized before extraction. We used the in-

house software “pyradiomics” package based on Python (version

3.7.1, http://www.python.org) to extract radiomic features from

ROIs. Meaningless data in the list of radiomic features were deleted

manually. A total of 944 high-dimensional features were extracted

from each patient. The features consisted of four categories: (a)

shape features: n = 14; (b) first-order statistical features: n = 18; (c)

textural features derived from texture matrices including gray-level
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cooccurrence matrix (GLCM), gray-level dependence matrix

(GLDM), gray-level run length matrix (GLRLM), gray-level size

zone matrix (GLSZM), neighborhood gray tone difference matrix

(NGTDM): n=24 + 14 + 16 + 16 + 5 = 75; and (d) transformed

features: wavelet-decomposed features in frequency channels LHL,

LLH, HHH, HLH, HLL, HHL, LHH and LLL: n=[18 + 75]×8 = 744;

Laplacian of Gaussian (LoG) filtered features: n=18 + 75 = 93.

Feature selection comprised two steps: the Mann-Whitney U test

and the least absolute shrinkage and selection operator (LASSO)

method. The optimized hyperparameter l was settled using 10-fold

cross-validation and the robust and nonredundant features were

selected based on the determined optimal l. Finally, we obtained 14
optimum features.
Frontiers in Oncology 03
2.3.3 Building the radiomics model
We developed a radiomics model using the support vector

machine (SVM). The radial basis function (RBF) was applied to

solve the nonlinear problem, and GridSerchCV was used to find the

best (C, g) for the kernel, where ‘C’ is the cost parameter and ‘g’ is

the coefficient parameter in the RBF.
2.4 Evaluation of model performance and
statistical analysis

The discriminatory performance of the radiomics model was

evaluated by receiver operating characteristic (ROC) analysis.
FIGURE 1

Flow diagram of radiomics analysis in these analyses. Core steps of radiomics analysis.
FIGURE 2

ROI segmentation. (A), A 62-year-old male with PE, diagnosed as tuberculous pleurisy. (B), A 67-year-old male with PE, diagnosed as malignant
pleural mesothelioma. 1, Images of pleural lesions under medical thoracoscopy. 2, CT images of patients after artificial pneumothorax. 3, Regions of
interest segmented on the CT under lung window. 4, The regions of interest obtained after segmentation.
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The area under the curve (AUC), accuracy, sensitivity and

specificity were calculated in both the training cohort and test

cohort. The calibration curves and Hosmer and Lemeshow test were

plotted to assess the goodness-of-fit of the model. All statistical

analyses were performed by using SPSS (version 25.0). Continuous

variables with a normal distribution are illustrated as the mean ±

standard deviation. The reported statistical significance levels were

all two sided, with statistical significance set at.05.
3 Results

3.1 General information of patients

A total of 81 patients were included in this study, of whom 29

(35.80%) were diagnosed with MPE and 52 (64.20%) were diagnosed

with non-MPE. The 29 patients with MPE included 4 (13.79%) cases

of malignant pleural mesothelioma, 1 (3.45%) case of malignant

lymphoma and 24 (82.76%) cases of metastatic tumor of the pleura

(19 lung adenocarcinoma, 3 breast cancer, 1 lung squamous cell

carcinoma, 1 gastric cancer). The 52 patients with non-MPE included

27 cases (51.92%) of parapneumonic effusions, 24 (46.15%) cases of

tuberculous pleural effusions, and 1 (1.92%) case of pleural empyema.
3.2 Radiomics analysis

Following the image-preprocessing procedure, 944 unenhanced

CT radiomic features were extracted from each sample. One hundred

ninety-two features were selected using the Mann-Whitney U test,

while 14 effective predictors with nonzero coefficients were chosen after

LASSO (shown in Figures 3A, B). The corresponding coefficients were

evaluated (shown in Figure 3C). Heatmap of fourteen features are

shown in Figure 3D. The prediction model was constructed using

SVM.We set the range of C as [2–2, 24] and the range of g as [–3, 1] and

selected the optimal mode parameters (C, g) as (2.777, 0.018) using

GridSerch. Subsequently, a radiomics model was created.
3.3 Performance of the radiomics model

The radiomics model yielded AUCs of 0.96 (95% CI: 0.912-

0.999) and 0.86 (95% CI: 0.657~1.000) in the training and test

cohorts, respectively (shown in Figure 4). The accuracy, sensitivity

and specificity of the model for the training and test cohorts are

shown in Table 1. The calibration curve of the model demonstrated

good agreement between the predicted and observed MPE in the

training and test cohorts (shown in Figure 5). The Hosmer–

Lemeshow test yielded nonsignificant differences (P> 0.05).
4 Discussion

In this study, we developed a model based on radiomic features

extracted from unenhanced chest CT for the noninvasive prediction

of MPE. The model performed satisfactorily in both the training
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cohort (AUC, 0.96) and the test cohort (AUC, 0.86) and had good

calibration. The results demonstrated that radiomics model can be a

reliably tool to help clinically predict MPE.

It is a challenge to establish a diagnosis of MPE on the basis of

minimizing invasiveness and discomfort for the patient. CT imaging is

one of the most valuable noninvasive tests for patients with suspected

MPE and is widely used in clinical practice. CT-based identification of

malignant pleural disease or malignant pleural effusion has a sensitivity

of 65% to 72% and a specificity of 78% to 98% (10–12). As shown

above, the sensitivity of conventional radiographic assessment of

tumors in identifying malignant pleural disease is unsatisfactory,

which is probably related to its heavy reliance on visual

interpretation. Radiomics enables digital decoding of radiographic

images into quantitative features, allowing extraction of more

detailed characteristics, even information that is undetectable by

humans (8). It combines image processing and data mining

techniques and is a new interdisciplinary discipline used to solve

medical problems. A great deal of research has been carried out in

the diagnosis of malignant tumors such as lung, breast, and prostate

cancers based on radiomics, and has shown great potential and broad

application prospects. The main causes of MPE are lung malignancies,

breast carcinoma and malignant mesothelioma, and our study is

consistent with this finding (1, 5). There are few studies on the

identification of MPE via radiomics methods and we retrieved only 1

relevant article. This study built a model based on CT images of 315

patients with pleural effusion. The AUC of the model was 0.876 and

0.774 in the training and test groups, respectively (13). Even though the

research conducted in the area of imaging-based radiomics to identify

MPEs is inadequate, extensive studies have been conducted on the

diseases that most commonly lead to MPEs, such as lung cancer and

breast cancer. These studies have shown that CT-based radiomics

performs well in identifying malignant lesions in the lungs (14–18) and

in recognizing dry pleural spread in non-small cell lung cancer and

visceral pleural invasion in lung adenocarcinoma (19–21). Recent

studies have also shown the great potential of radiomics in

differentiating benign and malignant breast lesions (22).MPM is the

main primary malignant tumor causing MPE, and genomic studies

have shown that MPM is dominated by inactivation of tumor-

suppressor genes. Up to 70% of MPM patients have mutations in

the BAP1 and CDKN2A genes (23). Studies associated with the

recognition of MPM based on radiomics are lacking. While, a study

by Liu Lei et al. (24) showed that a 3D radiomic model based on

unenhanced CT imaging has good predictive performance for BAP1

mutation status inMPM. Therefore, we believe that radiomicsmight be

helpful in the clinical diagnosis of mesothelioma. Based on these

findings, we conducted a preliminary study on the value of

predicting MPEs based on radiomics. Encouragingly, the findings are

promising. Our study demonstrates that radiomics exhibits superior

sensitivity and good specificity in predicting MPE compared to

conventional CT assessment. Our study has several limitations. First,

it was a single-center retrospective study with possible selection bias.

Second, the sample size included in the study was small. Third, the

radiomics model we developed has not yet been externally validated,

and its generalizability and applicability need to be further verified.

Nonetheless, this preliminary study still suggest that CT-based

radiomics could be useful in predicting MPE. It will provide
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FIGURE 3

Fourteen radiomics features selected. (A), Adjusting the parameter l to minimize the binomial deviation of the model fitting loss value, in order to
select the best radiomics characteristics. (B), The distribution of LASSO coefficients of radiomics. (C), The weights of features contributed in the
model built. (D), The correlation heatmap of the fourteen features selected.
FIGURE 4

The receiver operator characteristic (ROC) curves of the radiomics model in the training cohort (A) and test cohort (B). AUC, area under the receiver
operator characteristic curve. .
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clinicians with a noninvasive way to narrow down the differential

diagnosis in the first place, and if malignant exudates are suggested

using our model, we will do our best to find a basis of malignant

exudates. This area is worthy of further research. In the future, we will

conduct studies with large sample sizes and combine radiomic features

with clinical features to build deep learning models to obtain more

credible evidence.

In summary, the radiomics model based on CT have initially

shown good performance in predicting MPE and may hold promise

in providing clinicians with a powerful noninvasive diagnostic tool

to make more accurate decisions.
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TABLE 1 Predictive and diagnostic values of radiomics model.

AUC (95% CI) ACC SEN SPE PPV NPV

Training cohort 0.96 (0.912, 0.999) 0.891 0.739 0.976 0.944 0.870

Test cohort 0.86 (0.657, 1.000) 0.882 0.833 0.909 0.833 0.909
AUC, area under the receiver operating characteristic curve; CI, confidence interval. ACC, accuracy; SEN, Sensitivity; SPE, sensitivity; PPV, positive predictive value; NPV, negative
predictive value.
FIGURE 5

Calibration curves of the radiomics model in the training cohort (A) and test cohort (B). The y axis represents the actual event probability, the x axis
represents the predicted event probability. The 45° dotted line represents the perfect prediction of an ideal model and the dotted lines represents
the performance of the radiomics model, a closer fit to the dotted line represents a better prediction. The calibration curves indicate good
calibration of the model in the training and test cohorts.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1419343
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xing et al. 10.3389/fonc.2024.1419343
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Oncology 07
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant
pleural effusion: from bench to bedside. Eur Respir Rev. (2016) 25:189–98. doi: 10.1183/
16000617.0019-2016

2. Rahman NM, Ali NJ, Brown G, Chapman SJ, Davies RJO, Downer NJ, et al. Local
anesthetic thoracoscopy: British Thoracic Society Pleural Disease Guideline 2010.
Thorax. (2010) 65 Suppl 2:ii54–60. doi: 10.1136/thx.2010.137018

3. Taghizadeh N, Fortin M, Tremblay A. US hospitalizations for Malignant pleural
effusions: data from the 2012 national inpatient sample. Chest. (2017) 151:845–54.
doi: 10.1016/j.chest.2016.11.010

4. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and
United States, 2022: profiles, trends, and determinants. Chin Med J. (2022) 135:584–90.
doi: 10.1097/CM9.0000000000002108

5. Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJBTS Pleural Disease
Guideline Group. Management of a Malignant pleural effusion: British Thoracic
Society Pleural Disease Guideline 2010. Thorax. (2010) 65 Suppl 2:ii32–40.
doi: 10.1136/thx.2010.136994

6. Kaul V, McCracken DJ, Rahman NM, Epelbaum O. Contemporary approach to
the diagnosis of Malignant pleural effusion. Ann Am Thorac Soc. (2019) 16:1099–106.
doi: 10.1513/AnnalsATS.201902-189CME

7. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

8. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al.
Artificial intelligence in cancer imaging: Clinical challenges and applications. CA:
Cancer J Clin. (2019) 69:127–57. doi: 10.3322/caac.21552

9. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM,
Granton P, et al. Radiomics: extracting more information from medical images using
advanced feature analysis. Eur J Cancer (Oxford England: 1990). (2012) 48:441–6.
doi: 10.1016/j.ejca.2011.11.036

10. Leung AN, Müller NL, Miller RR. CT in differential diagnosis of diffuse pleural
disease. AJR Am J Roentgenol. (1990) 154:487–92. doi: 10.2214/ajr.154.3.2106209

11. Hallifax RJ, Haris M, Corcoran JP, Leyakathalikhan S, Brown E, Srikantharaja D,
et al. Role of CT in assessing pleural Malignancy prior to thoracoscopy. Thorax. (2015)
70:192–3. doi: 10.1136/thoraxjnl-2014-206054

12. Basso SMM, Lumachi F, Del Conte A, Sulfaro S, Maffeis F, Ubiali P. Diagnosis of
Malignant pleural effusion using CT scan and pleural-fluid cytology together. A
preliminary case-control study. Anticancer Res. (2020) 40:1135–9. doi: 10.21873/
anticanres.14054
13. Cai F, Cheng L, Liao X, Xie Y, Wang W, Zhang H, et al. An integrated clinical
and computerized tomography-based radiomic feature model to separate benign from
Malignant pleural effusion. Respiration; Int Rev Thorac Dis. (2024) 103(7):406–16.
doi: 10.1159/000536517

14. Lin X, Jiao H, Pang Z, Chen H,WuW,Wang X, et al. Lung cancer and granuloma
identification using a deep learning model to extract 3-dimensional radiomics features in
CT imaging. Clin Lung Cancer. (2021) 22:e756–66. doi: 10.1016/j.cllc.2021.02.004

15. Chen C-H, Chang C-K, Tu C-Y, Liao W-C, Wu B-R, Chou K-T, et al. Radiomic
features analysis in computed tomography images of lung nodule classification. PloS
One. (2018) 13:e0192002. doi: 10.1371/journal.pone.0192002

16. Choi W, Oh JH, Riyahi S, Liu C-J, Jiang F, Chen W, et al. Radiomics analysis of
pulmonary nodules in low-dose CT for early detection of lung cancer.Med Phys. (2018)
45:1537–49. doi: 10.1002/mp.12820

17. Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in
lung cancer. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft.
(2020) 196:879–87. doi: 10.1007/s00066-020-01625-9

18. da Silva GLF, Valente TLA, Silva AC, de Paiva AC, Gattass M. Convolutional
neural network-based PSO for lung nodule false positive reduction onCT images.Comput
Methods Programs Biomed. (2018) 162:109–18. doi: 10.1016/j.cmpb.2018.05.006

19. Pena E, Ojiaku M, Inacio JR, Gupta A, Macdonald DB, ShabanaW, et al. Can CT
and MR shape and textural features differentiate benign versus Malignant pleural
lesions? Acad Radiol. (2017) 24:1277–87. doi: 10.1016/j.acra.2017.03.006

20. Yang M, Ren Y, She Y, Xie D, Sun X, Shi J, et al. Imaging phenotype using
radiomics to predict dry pleural dissemination in non-small cell lung cancer. Ann Trans
Med. (2019) 7:259. doi: 10.21037/atm.2019.05.20

21. Yuan M, Liu J-Y, Zhang T, Zhang Y-D, Li H, Yu T-F. Prognostic Impact of the
Findings on Thin-Section Computed Tomography in stage I lung adenocarcinoma with
visceral pleural invasion. Sci Rep. (2018) 8:4743. doi: 10.1038/s41598-018-22853-1

22. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast
cancer classification and prediction. Semin Cancer Biol. (2021) 72:238–50. doi: 10.1016/
j.semcancer.2020.04.002

23. Dacic S. Pleural mesothelioma classification-update and challenges. Modern
Pathol. (2022) 35:51–6. doi: 10.1038/s41379-021-00895-7

24. Xie X-J, Liu S-Y, Chen J-Y, Zhao Y, Jiang J, Wu L, et al. Development of
unenhanced CT-based imaging signature for BAP1 mutation status prediction in
Malignant pleural mesothelioma: Consideration of 2D and 3D segmentation. Lung
Cancer. (2021) 157:30–9. doi: 10.1016/j.lungcan.2021.04.023
frontiersin.org

https://doi.org/10.1183/16000617.0019-2016
https://doi.org/10.1183/16000617.0019-2016
https://doi.org/10.1136/thx.2010.137018
https://doi.org/10.1016/j.chest.2016.11.010
https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.1136/thx.2010.136994
https://doi.org/10.1513/AnnalsATS.201902-189CME
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.3322/caac.21552
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.2214/ajr.154.3.2106209
https://doi.org/10.1136/thoraxjnl-2014-206054
https://doi.org/10.21873/anticanres.14054
https://doi.org/10.21873/anticanres.14054
https://doi.org/10.1159/000536517
https://doi.org/10.1016/j.cllc.2021.02.004
https://doi.org/10.1371/journal.pone.0192002
https://doi.org/10.1002/mp.12820
https://doi.org/10.1007/s00066-020-01625-9
https://doi.org/10.1016/j.cmpb.2018.05.006
https://doi.org/10.1016/j.acra.2017.03.006
https://doi.org/10.21037/atm.2019.05.20
https://doi.org/10.1038/s41598-018-22853-1
https://doi.org/10.1016/j.semcancer.2020.04.002
https://doi.org/10.1016/j.semcancer.2020.04.002
https://doi.org/10.1038/s41379-021-00895-7
https://doi.org/10.1016/j.lungcan.2021.04.023
https://doi.org/10.3389/fonc.2024.1419343
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	The value of computed tomography-based radiomics for predicting malignant pleural effusions
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 CT scanning
	2.3 Radiomics workflow
	2.3.1 ROI segmentation
	2.3.2 Radiomic feature extraction and selection
	2.3.3 Building the radiomics model

	2.4 Evaluation of model performance and statistical analysis

	3 Results
	3.1 General information of patients
	3.2 Radiomics analysis
	3.3 Performance of the radiomics model

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


