
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Wei Zhao,
Beihang University, China

REVIEWED BY

Ge Ren,
Hong Kong Polytechnic University, Hong
Kong SAR, China
Gaolong Zhang,
Beihang University, China
Luyao Yang,
Beihang University, China
in collaboration with reviewer GZ

*CORRESPONDENCE

Zhenyu Yang

zhenyu.yang893@dukekunshan.edu.cn

RECEIVED 18 April 2024

ACCEPTED 26 July 2024
PUBLISHED 14 August 2024

CITATION

Zhang R, Zhu H, Chen M, Sang W, Lu K, Li Z,
Wang C, Zhang L, Yin F-F and Yang Z (2024)
A dual-radiomics model for overall survival
prediction in early-stage NSCLC patient using
pre-treatment CT images.
Front. Oncol. 14:1419621.
doi: 10.3389/fonc.2024.1419621

COPYRIGHT

© 2024 Zhang, Zhu, Chen, Sang, Lu, Li, Wang,
Zhang, Yin and Yang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 14 August 2024

DOI 10.3389/fonc.2024.1419621
A dual-radiomics model for
overall survival prediction in
early-stage NSCLC patient using
pre-treatment CT images
Rihui Zhang1, Haiming Zhu1, Minbin Chen2, Weiwei Sang1,
Ke Lu3, Zhen Li4, Chunhao Wang3, Lei Zhang1,
Fang-Fang Yin1 and Zhenyu Yang1*

1Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China, 2Department
of Radiotherapy & Oncology, The First People’s Hospital of Kunshan, Kunshan, Jiangsu, China,
3Deparment of Radiation Oncology, Duke University, Durham, NC, United States, 4Radiation
Oncology Department, Shanghai Sixth People’s Hospital, Shanghai, China
Introduction: Radiation therapy (RT) is one of the primary treatment options for

early-stage non-small cell lung cancer (ES-NSCLC). Therefore, accurately

predicting the overall survival (OS) rate following radiotherapy is crucial for

implementing personalized treatment strategies. This work aims to develop a

dual-radiomics (DR) model to (1) predict 3-year OS in ES-NSCLC patients

receiving RT using pre-treatment CT images, and (2) provide explanations

between feature importanceand model prediction performance.

Methods: The publicly available TCIA Lung1 dataset with 132 ES-NSCLC patients

received RT were studied: 89/43 patients in the under/over 3-year OS group. For

each patient, two types of radiomic features were examined: 56 handcrafted

radiomic features (HRFs) extracted within gross tumor volume, and 512 image

deep features (IDFs) extracted using a pre-trained U-Net encoder. They were

combined as inputs to an explainable boosting machine (EBM) model for OS

prediction. The EBM’s mean absolute scores for HRFs and IDFs were used as

feature importance explanations. To evaluate identified feature importance, the

DR model was compared with EBM using either (1) key or (2) non-key feature

type only. Comparison studies with other models, including supporting vector

machine (SVM) and random forest (RF), were also included. The performance was

evaluated by the area under the receiver operating characteristic curve

(AUCROC), accuracy, sensitivity, and specificity with a 100-fold Monte Carlo

cross-validation.

Results: The DR model showed highestperformance in predicting 3-year OS

(AUCROC=0.81 ± 0.04), and EBM scores suggested that IDFs showed

significantly greater importance (normalized mean score=0.0019) than HRFs

(score=0.0008). The comparison studies showed that EBM with key feature type

(IDFs-only demonstrated comparable AUCROC results (0.81 ± 0.04), while EBM

with non-key feature type (HRFs-only) showed limited AUCROC (0.64 ± 0.10).

The results suggested that feature importance score identified by EBM is highly

correlated with OS prediction performance. Both SVM and RF models were

unable to explain key feature type while showing limited overall AUCROC=0.66 ±
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0.07 and 0.77 ± 0.06, respectively. Accuracy, sensitivity, and specificity showed a

similar trend.

Discussion: In conclusion, a DRmodel was successfully developed to predict ES-

NSCLC OS based on pre-treatment CT images. The results suggested that the

feature importance from DR model is highly correlated to the model

prediction power.
KEYWORDS

early-stage non-small cell lung cancer, overall survival, explainable AI, radiomics, deep
learning, radiation therapy
Introduction
Lung cancer is the leading cause of cancer death worldwide (1, 2).

Non-small cell lung cancer (NSCLC) is the most common type,

accounting for 80% of all lung cancers (3). Early-stage NSCLC (ES-

NSCLC) refers to stages I and II of the disease (4), and over one-fifth of

NSCLC cases were detected at ES-NSCLC (5). Surgery is the current

standard-of-care treatment strategy for ES-NSCLC (3, 6, 7), while only

approximately 70% of ES-NSCLC patients receive surgical treatment

(8, 9). The remaining patients opt out of surgery due to medical or

technical inoperability or personal preferences (10, 11). Radiation

therapy (RT) has emerged as a standard noninvasive alternative to

surgical resection (10). RT has been showing promising results in

treating ES-NSCLC with high safety and efficiency (11). Nonetheless,

the reported 3-year overall survival (OS) rate following RT varies

widely, typically ranging from39%±10% (12–14). Therefore, accurate

OS prediction is thus crucial for personalizing medical treatment and

informing decisions for optimizing therapeutic strategies.

Medical image-based OS prediction has been recently intensively

studied and shown promising accuracy (15–17). Techniques such as

radiomics and deep learning analyze image data to identify patterns

that may be associated with underlying physiological and pathological

conditions. Radiomic analysis, in particular, is a widely used non-

invasive imaging quantification method (18). Typically, radiomics first

determines the volume-of-interest (VOI), e.g., tumor in OS prediction

tasks, and extracts the features that are defined based on experts’

domain knowledge to quantitatively capture the intensity, shape, size or

volume, and texture information of VOIs, namely handcrafted

radiomic features (HRFs) (17, 19). The extracted HRFs can be

considered as the potential biomarkers that reflect patient underlying

pathophysiology, and the classic machine learning classifiers can be

employed to establish the correlations between OS and HRFs (20, 21).

Several pilot studies have shown that the radiomic analysis based on the

pre-treatment CT has the potential to accurately predict OS in ES-

NSCLC following RT treatment (22, 23). Deep learning is a new

approach for image quantification and characterization (24). Deep

learning networks, which consist of multi-layer feed-forward neural
02
networks, can be trained end-to-end in a supervised manner using

medical images paired with observed OS data (19, 25). Through

hierarchical progressive operations on the images, deep learning

networks learn the high-level abstractions that capture the intrinsic

representation of the image linking the input image to the outcome

(26). These hidden high-level abstractions can also be explicitly derived

from the trained deep learning models as the image deep features

(IDFs) (26, 27). Deep learningmethods have successfully demonstrated

their effectiveness in OS prediction in ES-NSCLC following RT

treatment (28, 29).

As HRFs are manually defined to capture specific characteristics

within VOIs (17, 19), and IDFs are learned automatically from image

data to discover complex patterns that may not be easily defined

manually (19, 25), the combination of HRFs and IDFs has been

recently investigated as a popular research direction (25, 30).

Combining HRFs and IDFs can leverage the strengths of both

approaches and has been shown to enhance the overall predictive

accuracy and robustness of models (19, 31–33). As different image

feature sources can be combined and fed into the model, the

explanation and identification of key features are thus crucial for

explaining the OS prediction mechanisms, optimizing feature

extraction, and potentially improving model performance (34, 35).

However, few studies have focused on evaluating the importance of

each radiomic feature source and quantitatively explaining their

contributions to the final prediction performance. The ML models

producing state-of-the-art results possess a black-box nature; they use

non-linear and nested fashion to process data, making them

challenging to explain straightforwardly to humans (36). Although

several explainability techniques have been proposed, including Local

Interpretable Model-agnostic Explanations (LIME) (37), and Shapley

Additive exPlanations (SHAP) (38), these explainability techniques

each exhibit distinct limitations (39). For instance, LIME-generated

explanationsmay be highly sensitive tominor variations in input data,

potentially leading to inconsistent and unreliable explanations for the

instance (39–41). SHAP has a high computational complexity, often

requiring the use of various approximations of Shapley values, which

may result in misleading explanations (38, 42). Recently, explainable

boostingmachine (EBM)has emerged asa promisingalternative. EBM
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isdesigned to trainona single feature ata time ina round-robin fashion

using a low learning rate (43, 44). As such, the effect of co-linearity

between features canbemitigated, and theoptimal feature functioncan

be learned independently for each feature. Therefore, EBMmaintains

comparable prediction accuracy to state-of-the-art ML models while

providing transparency in its decision-making process (43, 45).

This work developed a dual-radiomics (DR) model based on EBM

to (1) predict 3-year OS in ES-NSCLC patients undergoing RT using

pre-treatment CT images, and (2) provide explanations to the

relationship between feature importance and prediction performance.

In this work, 1) the handcrafted radiomic features (HRFs) extracted

from gross tumor volume (GTV) and 2) image deep features (IDFs)

extracted by a pre-trained Convolutional Neural Network (CNN)

model were combined, and a novel EBM classifier was adopted for

OS prediction as well as direct feature importance explanation.
Materials and methods

Imaging data

This work resorted to 132 RT patients with ES-NSCLC from the

publicly available The Cancer Imaging Archive Lung1 (TCIA

Lung1) dataset (46).

All patients underwent an FDG PET-CT scan for RT treatment

planning. A spiral CT covering the entire thoracic region was acquired

for each patient, with a resolution of 0.97 (mm) × 0.97 (mm) × 3 (mm,

slice thickness). The GTV delineations for all patients were performed

by experienced radiation oncologists on fused PET-CT images. The

standard clinical delineation protocol with fixed window level settings

of both CT (lung W1700; L-300, mediastinum W600; L40) and PET

scan (W30000; L15000) was used for delineation (46). Figure 1 displays

a representative CT slice for several patients, each with the GTV

delineations superimposed on it. All pre-treatment CT images and

corresponding GTVmasks were resampled to 1 × 1 × 1 mm3 isotropic

voxel size for the following radiomic analysis and modelling. Based on

the survival outcome (46), 89 and 43 patients were identified as under

and over the 3-year OS group, respectively. All methods concerning the

acquisition and usage of this dataset were in accordance with relevant

guidelines and regulations.
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DR model design

The overall design of the proposed DR model is shown in

Figure 2, which includes three key steps: (1) IDF extraction, (2) HRF

extraction, and (3) EBM modelling for OS prediction.

IDFs extraction
The workflow for extracting image deep features (IDFs) is

illustrated in Figure 2A. The input for this process was a GTV-

centered 20×20×20 cm³ cube, which encompassed the GTV and

surrounding tissue. Given the intricate and repetitive nature of

patient anatomy of medical images, deep learning models are able to

autonomously learn generic anatomical representations through

self-supervision (30, 47). In this study, a publicly available pre-

trained Models Genesis CNN U-Net encoder was employed (30).

Models Genesis leverages self-supervised learning techniques to

understand and extract anatomical features across multiple medical

image datasets and has been reported to achieve state-of-the-art

results in various medical image reorganization tasks (30, 48, 49).

Specifically, the encoder includes four convolutional blocks, each

comprising two convolutional layers followed by a max pooling

layer. This architecture reduces the spatial dimension of the input

image while increasing the feature information, resulting in a 512-

channel deep image feature tensor representation. A global average

pooling layer was then employed to average out each feature

channel, forming the 512-dimensional feature vector. Therefore,

by utilizing the pre-trained weights from Models Genesis to

initialize the U-Net encoder, raw images were encoded into 512-

dimensional feature vectors as IDFs. In addition, we utilized the

CNN U-Net encoder that was trained from scratch to investigate

the impact of different IDF extraction methods, i.e., pre-trained

encoder vs. encoder trained from scratch. The entire deep feature

extraction workflow was implemented in TensorFlow environment

version 2.6.0.

HRFs extraction
Figure 2B illustrates the HRF extraction workflow. The 3D GTV

volumes were first segmented from the pre-treatment CT images for

all patients as the VOI. Compared to the 3D cube used in the IDFs

extraction, the segmented GTV volume contains only the GTV itself
FIGURE 1

Representative slices from three Lung1 patients, with delineated GTV overlaid. The brighter areas on the figure represent the GTVs.
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following standard radiomic processing workflow (26, 50, 51). For

each patient, 56 HRFs were extracted to capture the intensity and

texture characteristics within the segmented GTV. These HRFs

(Table 1) can be categorized into three groups according to their

distinct joint density functions: 18 intensity-based features, 22 gray-

level co-occurrence matrix (GLCM)-based features, and 16 gray-

level run length matrix (GLRLM)-based features. Following the

standard radiomic analysis pipeline (26, 50, 51), the intensity-based

features were extracted using the raw GTV images; the second-

order features (i.e., GLCM-based and GLRLM-based features) were

derived from discretized images, which were obtained by employing

a fixed bin number (=32) discretization to the resampled GTV

images. The radiomic calculation was performed based on our in-

house radiomics calculation platform using MATLAB (MATLAB

R2022a; MathWorks, Natick, MA) (52). The entire feature

extraction workflow has been fully calibrated against the image

biomarker standardization initiative (IBSI) (53, 54).

OS prediction with EBM implementation
Figure 2C summarizes the EBM implementation for OS

prediction. For each patient, a 512-dimensional IDF vector was

directly concatenated with a 56-dimensional HRF vector, resulting

in a single 568-dimensional feature vector. The obtained vector was

utilized as the input x for an EBM. Specifically, EBM is an inherent

explainable model based upon Generalized Additive Models

(GAMs) (45), which can be mathematically formed as:

Ey =   b0 +o​fi(xi) (1)

where b0 represents the bias term.

In contrast to linear and multiple linear regression models,

GAMs do not assume a linear relationship between predictor

features x and the response variable y. Instead, the prediction of y

involves learning an intercept b0 along with functions that describe

the non-linear relationship between the y and each predictor feature
Frontiers in Oncology 04
xi. The coefficients in a multiple linear regression model are

replaced with learned functions fi that are not restricted to linear

relationships. As suggested by Equation 1, the separated functions

are learned for each predictor feature xi independently, allowing for

the separate explanation of the importance of each predictor feature

xi. Therefore, the mean value of the sum of fi(xi)j j across all samples,

referred to as the EBM’s mean absolute score, can directly quantify

the importance of predictor feature xi. A link function was adopted

to give the final binary OS prediction results. The EBM was

implemented in Python environment with the InterpretML

library (43).

The OS prediction performance was evaluated using the area

under the receiver operating characteristic curve (AUCROC),

accuracy, sensitivity, and specificity with a 100-fold Monte Carlo

cross-validation. In the 100-fold Monte Carlo cross-validation, the

model underwent independent training with 100 different versions

of randomly assigned training and test sets, adhering to an 80%-

20% split (i.e., 34 over 3-year and 71 under 3-year samples for

training; 9 over 3-year and 18 under 3-year samples for test). The

EBM’s mean absolute scores were calculated as feature importance

for both HRFs and IDFs feature sources, respectively. The key

feature source was identified by the higher mean importance score.

The student’s t-tests were also conducted to compare the

importance scores of HRFs and IDFs derived from EBM. All

calculations were performed on a computation workstation

equipped with a 16-core Intel Core i7-13700KF CPU at 3.4 GHz,

16 GB of RAM, and an Nvidia GeForce RTX 4070 graphics card.
Comparison study

To investigate the prediction performance and the feature

importance explanation of the DR model, another two classic

machine learning-based models were investigated:
FIGURE 2

The overall design of the DR model, including three key steps: (A) IDFs extraction workflow using a pre-trained CNN-based encoder; (B) HRFs
extraction that extracts 56 radiomic feature from segmented GTV; (C) EBM implementation for OS prediction (i.e., over 3-year OS or under).
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1. Supporting vector machine (SVM) model: the prediction

model based on SVM with linear kernel function using the

combination of 512 IDFs and 56 HRFs. The linear kernel

SVM distinguishes different categories by finding a

maximal margin hyperplane in the input feature space

(55). Such the linear modeling approach can be expressed

using a common functional form, y =oN
i=1cixi + b (56),

where ci is the coefficient and b is an offset constant. The
tiers in Oncology 05
coefficients ci were used as estimators of feature importance

to identify the key feature source.

2. Random forest (RF) model: the prediction model based on

RF using the combination of 512 IDFs and 56 HRFs. The

key feature source in the RF model was estimated using

Mean Decrease Impurity (MDI) (57, 58). The MDI

calculates the contribution of each feature to the

homogeneity of the nodes and leaves by averaging the
TABLE 1 Fifty-six radiomic features included in this study.
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decrease in impurity caused by splits on that feature across

all trees in the forest, thereby providing a rough estimation

of the feature’s overall importance.
To assess the effectiveness of feature importance explanations, the

following comparison experiments were subsequently performed:
1. For the DR model, the model performance was compared

with (1) EBM model with key feature source (identified by

mean EBM score) as input, and (2) EBM with the rest

feature source as input.

2. For the SVM model using both IDFs and HRFs, the

performance was compared with (1) SVM model with

key feature source (identified by mean SVM coefficient)

as input, and (2) SVM with the rest feature source as input.

3. For the RF model using both IDFs and HRFs, the model

performance was compared with (1) RF model with key

feature source (identified by mean RF MDI) as input, and

(2) RF with the rest feature source as input.
For all the above comparison experiments, AUCROC, accuracy,

sensitivity, and specificity evaluation matrices with 100-fold Monte

Carlo cross-validation were also employed. The student’s t-tests

were employed to measure the performance differences with a

significance level of 0.01 when applicable.
tiers in Oncology 06
Results

Table 2 provides the evaluation metrics results of comparative

studies. The DR model demonstrated superior performance in

predicting 3-year OS, with a mean AUCROC = 0.81, mean

sensitivity = 0.75, mean specificity = 0.82, and mean accuracy =

0.80. EBM with IDFs only showed a comparable AUCROC and

specificity to the DR model, and its sensitivity and accuracy were

reduced at 0.73 and 0.79, respectively. EBM with HRFs only showed

limited results, with a mean AUCROC = 0.64, mean sensitivity =

0.65, mean specificity = 0.61, and mean accuracy = 0.62. Both RF-

based models and SVM-based models demonstrated the same

trends, i.e., models with combined IDFs and HRFs outperforming

models with IDFs or HRFs only. The RF model incorporating both

HRFs and IDFs, alongside the RF with IDFs only, achieved the

second-highest mean AUCROC (=0.77), while they exhibited limited

sensitivity, measured at 0.30 and 0.29, respectively. All SVM-based

models showed limited performances. Figure 3 compares the ROC

curves derived from (A) RF-based models, (B) SVM-based models,

(C) EBM-based models, and our DR model. In Figure 3, green lines

represent the models with HRFs only, red lines represent models

with IDFs only, and blue lines represent models with combined

features. Table 3 shows the P-value results of the AUCROC

comparison results, where marker “*” indicates the statistical

significance (i.e., P-value<0.01).
TABLE 2 AUCROC, sensitivity, specificity, and accuracy results of comparative studies.

RF-based SVM-based EBM-based

HRFs only IDFs only Combined HRFs only IDFs only Combined HRFs only IDFs only DR model

AUCROC 0.66 ± 0.07 0.77 ± 0.05 0.77 ± 0.06 0.52 ± 0.13 0.64 ± 0.05 0.66 ± 0.07 0.64 ± 0.04 0.81 ± 0.04 0.81 ± 0.04

Sensitivity 0.21 ± 0.06 0.29 ± 0.15 0.30 ± 0.13 0.36 ± 0.09 0.34 ± 0.15 0.25 ± 0.09 0.65 ± 0.21 0.73 ± 0.12 0.75 ± 0.10

Specificity 0.89 ± 0.06 0.96 ± 0.04 0.96 ± 0.04 0.72 ± 0.08 0.77 ± 0.07 0.81 ± 0.06 0.61 ± 0.09 0.82 ± 0.04 0.82 ± 0.04

Accuracy 0.67 ± 0.04 0.74 ± 0.05 0.75 ± 0.05 0.60 ± 0.06 0.64 ± 0.06 0.62 ± 0.05 0.62 ± 0.06 0.79 ± 0.04 0.80 ± 0.03
Bold values represent the best statistically significant AUCROC results.
FIGURE 3

ROC curves of 100-fold Monte Carlo cross-validation from (A) RF-based models; (B) SVM-based models; (C) EBM-based models and our DR model.
Green lines represent the models with HRFs only. Red lines represent models with IDFs only. Blue lines represent models with combined IDFs
and HRFs.
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EBM scores suggested that IDFs held significantly greater

importance (normalized average score = 0.0019) than HRFs

(0.0008). This discrepancy in feature importance was reflected in

the comparative analyses: the EBM model utilizing solely IDFs

achieved a comparable AUCROC to the DRmodel, whereas the EBM

with HRFs only exhibited a markedly reduced AUCROC. In contrast,

models based on RF and SVM achieved limited performance

compared to the DR model. The importance scores derived from

RF and SVM suggested that IDFs (0.0017/0.0016 in RF/SVM)

showed lower importance than HRFs (0.0027/0.0031), which is

not aligned with the model performance. This inversion contradicts

the observed model performance trends. Table 4 shows the P-value

results for comparing importance scores of IDFs and HRFs derived

from RF, SVM, and EBM, where marker “*” indicated the statistical

significance (i.e., P-value<0.01).

Supplementary Table S1 in the Supplementary Materials

summarized the prediction results based on the IDFs training

from scratch. The EBM model with the combination of IDFs

(trained from scratch) and HRFs achieved a mean AUCROC =

0.75, a mean sensitivity = 0.77, a mean specificity = 0.79, and a mean

accuracy = 0.79. The EBM using only IDFs (trained from scratch)

obtained a mean AUCROC = of 0.77, a mean sensitivity = 0.80, a

mean specificity = 0.80, and a mean accuracy = 0.80. Both these two

models were inferior to our DR model, and EBM with IDFs (from

Model Genesis) also outperformed the EBM with IDFs (trained

from scratch). Supplementary Table S2 in the Supplementary

Materials provides the 95% confidence interval of AUCROC for all

comparative models.
Discussion

In this study, we successfully developed a DR model to predict

the OS of ES-NSCLC patients following RT based on pre-treatment

CT images. Compared to the previous image-based ES-NSCLC OS
Frontiers in Oncology 07
prediction tasks (59, 60), our DR model achieved high prediction

performance with a mean AUCROC of 0.81, sensitivity of 0.75,

specificity of 0.82, and accuracy of 0.80. It also outperformed all

comparative models (i.e., SVM-based models, RF-based models,

and EBM-based models) in this study. The proposed DR model

integrates both HRFs and IDFs, where (1) HRFs are manually

created at a lower level of abstraction based on expert knowledge

and predefined rules to capture specific and interpretable

characteristics of the GTV (17, 19), and (2) IDFs automatically

learn high-level abstractions through multiple layers of processing

to capture intricate patterns in the GTV (25, 30). The prediction

results suggested that the combination of features from different

sources may leverage the strengths of both approaches and provide

a more comprehensive description of image characteristics. It is

worth mentioning that there are few existing studies that

investigated ES-NSCLC patients from the TCIA Lung1 dataset.

Consequently, there are no existing results that can be directly

compared with our work. Although higher AUCROC values can be

observed in other NSCLC OS prediction studies (24, 32, 33, 59–61),

the comparisons between the state-of-the-art results for NSCLC OS

prediction and our DR model should be interpreted with caution

due to differences in cancer stages and datasets.

In this study, direct feature concatenation was employed to

combine the HRFs and IDFs. Unlike more complex fusion methods

such as feature transformation (62) or neural network-based fusion

(63), direct concatenation preserves the transparency of the feature

space. As EBM quantitatively evaluates each feature’s contribution

using mean absolute score, each component of the concatenated

vector thus directly corresponds to a specific feature source.

Additionally, since decision trees partition the feature space based

on simple thresholding rules (64), direct concatenation can be

computationally efficient. The reliability of the feature importance

has been proven by comparison studies. The DR model identified

IDF as the key feature source, attributing to it a higher normalized

average importance score (=0.0019) compared to HRF (scored

0.0008), and the P-value for the importance scores of IDFs and

HRFs derived from EBM is 0.00. This discrepancy in feature

importance is consistent with the model prediction performance,

i.e., EBM with IDFs only achieved a comparable average AUCROC

(=0.81) to the DR model, while EBM with HRFs only achieved a

limited average AUCROC (=0.64). In contrast, RF and SVM models

suggested an inverse feature importance, with IDFs registering

lower importance scores (0.0017/0.0016 for RF/SVM, respectively)

compared to HRFs (0.0027/0.0031) and the P-values for the

importance scores of IDFs and HRFs derived from RF and SVM

are both 0.00. Such results contradict the observed model
TABLE 3 P-values of AUCROC results of the DR model compared to the RF-based models, SVM-based models, and EBM-based models in Monte Carlo
cross-validation.

Model
1

DR

Model
2

RF-
HRFs only

RF-
IDFs only

RF-
combined

SVM-
HRFs only

SVM-
IDFs only

SVM-
combined

EBM-
HRFs only

EBM-
IDFs only

P-value 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.49
“*” marks the statistically significant difference (i.e., P-value < 0.01).
TABLE 4 P-values for comparing importance scores of IDFs and HRFs
derived from RF, SVM, and EBM.

Group
I

Importance scores
of IDFs from RF

Importance scores
of IDFs from SVM

Importance scores
of IDFs from EBM

Group
II

Importance scores
of HRFs from RF

Importance scores
of HRFs from SVM

Importance scores
of HRFs from EBM

P-
value

0.00* 0.00* 0.00*
“*” marks the statistically significant difference (i.e., P-value < 0.01).
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performance trends, i.e., RF/SVM with IDFs only outperformed the

RF/SVM with HRFs only. For the SVM model with linear kernel,

feature coefficients were utilized to explain feature importance. The

coefficients of individual features still might provide a misleading

representation of their actual importance due to the relevance and

interaction among features (36). For the RF model, MDI was used

to assess feature importance. RF splits nodes based on decreases in

feature impurity (65). If noise features coincidentally reduce

impurity in specific data subsets, they can receive undeservedly

high MDI scores (36, 57). This can introduce a systematic bias in

the explanation of feature importance, potentially misleading the

assessment (57). The feature importance explanation results

suggested that the DR model based on EBM has demonstrated its

effectiveness in explainability and can be potentially generalized in

other multi-feature fusion studies for enhancing explanatory power.

In this work, the public available Model Genesis model was

adopted as the pre-trained weights of the CNN U-Net encoder (30).

The Model Genesis was trained using a large and diverse LUNA

2016 dataset (66) to learn broader and more generalized feature

representations (25, 30). The pre-trained weight has been reported

to show the state-of-the art performance on various medical image

analysis tasks, including reducing false positives in detecting lung

nodules (NCC) and pulmonary embolism (ECC) (30). To

investigate the impact of the pre-trained encoder, the CNN U-Net

encoder trained from scratch was also explored. The results

suggested that EBM using IDFs that were trained from scratch

showed limited performance, and the performance of EBM using

the combination of IDFs (trained from scratch) and HRFs was also

inferior to our DR model. Due to the limited sample size of our

dataset, the model trained from scratch may have failed to learn

strongly discriminative features effectively. Future investigation on

other CNN or transformer-based pre-trained model are also needed

to test the impact of deep learning image encoders. This study

selected a subgroup of 132 patients with ES-NSCLC from the TCIA

Lung1 dataset, rather than including all patients. The OS of patients

with advanced or locally advanced NSCLC involves multiple

factors, such as patient conditions (67), complications (e.g.,

second tobacco-caused neoplasms (67), chemotherapy-induced

bone marrow failure (68)), treatment modalities (69), etc. The

current TCIA Lung1 dataset lacks details on treatment procedures

(e.g., lack of chemotherapy information). Therefore, OS modeling

for advanced or locally advanced NSCLC can be challenging (70–

73). Our analysis was finally restricted to the 132 patients with ES-

NSCLC and primarily focused on technical development.

Meanwhile, the choice of chemotherapy has been reported to

depend on the patient’s genetics, cancer stage, and gender (74–

77), and its administration could potentially impact patient OS

outcomes (78–80). The lack of detailed chemotherapy information

in the TCIA Lung1 dataset (i.e., unspecified details about which

patients received chemotherapy) limits our ability to fully explain its

impact on survival rates. Further research with comprehensive

information (including chemotherapy, immunotherapy, etc.) is

needed to test our model on patients with ES-NSCLC, advanced,

or locally advanced NSCLC. Furthermore, the data distribution was

33% of patients with OS over 3 years and 67% with OS under 3
Frontiers in Oncology 08
years; no severe data imbalance was observed in this task. Therefore,

we did not include class-balancing approaches during the training

process. In future work, class-balancing approaches can be explored

to determine if they can further enhance model performance.
Conclusion

In this work, we successfully developed a DR model to predict

ES-NSCLC OS based on pre-treatment CT images, and the results

suggested that feature importance from DR model is highly

correlated to model prediction power. The proposed methodology

can be generalized to other employing multi-feature fusion models

to evaluate feature importance.
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