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Purpose: To construct and validate a computed tomography (CT) radiomics

model for differentiating lung neuroendocrine neoplasm (LNEN) from lung

adenocarcinoma (LADC) manifesting as a peripheral solid nodule (PSN) to aid

in early clinical decision-making.

Methods: A total of 445 patients with pathologically confirmed LNEN and LADC

from June 2016 to July 2023 were retrospectively included from five medical

centers. Those patients were split into the training set (n = 316; 158 LNEN) and

external test set (n = 129; 43 LNEN), the former including the cross-validation

(CV) training set and CV test set using ten-fold CV. The support vector machine

(SVM) classifier was used to develop the semantic, radiomics and merged

models. The diagnostic performances were evaluated by the area under the

receiver operating characteristic curve (AUC) and compared by Delong test.

Preoperative neuron-specific enolase (NSE) levels were collected as a

clinical predictor.

Results: In the training set, the AUCs of the radiomics model (0.878 [95% CI:

0.836, 0.915]) and merged model (0.884 [95% CI: 0.844, 0.919]) significantly

outperformed the semantic model (0.718 [95% CI: 0.663, 0.769], p both<.001). In

the external test set, the AUCs of the radiomics model (0.787 [95% CI: 0.696,

0.871]), merged model (0.807 [95%CI: 0.720, 0.889]) and semantic model (0.729

[95% CI: 0.631, 0.811]) did not exhibit statistical differences. The radiomics model

outperformed NSE in sensitivity in the training set (85.3% vs 20.0%; p <.001) and

external test set (88.9% vs 40.7%; p = .002).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1420213/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1420213/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1420213/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1420213/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1420213/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1420213&domain=pdf&date_stamp=2024-06-17
mailto:shanfei@shphc.org.cn
https://doi.org/10.3389/fonc.2024.1420213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1420213
https://www.frontiersin.org/journals/oncology


Abbreviations: AUC, Area under the receiver operating

Confidence interval; CT, Computed tomography; CV,

Interquartile ranges; LADC, Lung adenocarcinoma; LNEN

neoplasm; NSE, Neuron-specific enolase; OR, Odds ratio

nodule; RFE, Recursive feature elimination; SCLC, Small

Support vector machine; VOIs, Volumes of interest.
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Conclusion: The CT radiomics model could non-invasively, effectively and

sensitively predict LNEN and LADC presenting as a PSN to assist in treatment

strategy selection.
KEYWORDS

radiomics, lung neuroendocrine neoplasm, lung adenocarcinoma, peripheral solid
pulmonary nodule, tomography, X-ray computed
1 Introduction

Lung neuroendocrine neoplasm (LNEN) encompasses a

spectrum of tumors that originate from pulmonary neuroendocrine

cells, including small cell lung cancer (SCLC), large cell

neuroendocrine carcinoma and carcinoid tumor. LNEN accounts

for approximately 20% of pulmonary primary malignant tumors and

its incidence is constantly increasing (1, 2). However, lung

adenocarcinoma (LADC) as the predominant histological type,

mainly arises from the alveolar epithelial cells of small bronchial

mucosa, representing approximately 40% of pulmonary primary

malignant tumors (3, 4). LADC is often treated with surgery and

early-stage cases even could be cured by lobectomy. Moreover,

segmentectomy is recommended for LADC with diameter ≤ 2cm

(5, 6). However, LNEN, particularly in poorly differentiated cases

with rapid growth, often demonstrates heightened metastatic

potential upon detection, leading to more advanced stage of the

disease and less benefit from surgery or localized treatment (1, 7–9).

For early-stage patients with LNEN detected on chest computed

tomography (CT) scans, surgical resection is recommended after

ruling out distant metastasis though positron emission tomography/

computed tomography and brain magnetic resonance imaging and

confirming negative mediastinal lymph nodes on pathology (10–14).

Furthermore, lobectomy is preferred over sublobectomy (14).

Consequently, the different biological behaviors of LNEN and

LADC significantly impact treatment strategies and prognosis, and

early diagnosis is crucial to guide treatment and improve prognosis.

CT, as the preferred method for chest diseases, plays a crucial

role in non-invasive diagnosis in lung cancer. In the clinic, LNEN

typically presents as a central mass with rapid growth, while LADC

often manifests as a peripheral nodule with different ground-glass

component. In contrast to the typical manifestations, LNEN

appearing as a peripheral solid nodule (PSN) is exceedingly rare

and shares similar radiological findings with LADC. Moreover, both

LNEN and LADC, manifesting as a PSN, are primarily observed in
characteristic curve; CI,

Cross-validation; IQR,
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the early stages and typically lack associated clinical symptoms or

signs (15). Therefore, the preoperative differential diagnosis of

LNEN and LADC appearing as a PSN is quite challenging.

Although radiologists could distinguish LNEN from LADC by

analyzing their CT radiological findings to some extent, but the

evaluation of radiological findings is subjective and prone to

interobserver variation (16). Additionally, preoperative serum

neuron-specific enolase (NSE) is also a prevalent tumor marker

for non-invasive clinical prediction of LNEN. However, its

predictive power is limited due to its relatively low sensitivity,

ranging from 30% to 72.5% (17–20).

Radiomics, a non-invasive, quantitative and objective prediction

method, can extract feature information from digital images to assist

in clinical decision-making (21–23). Previous studies have

demonstrated that radiomics could effectively differentiate between

LNEN and other cancers (24–26). However, research concerning the

differential diagnosis of peripheral LNEN and LADC is scarce, with

existing studies being conducted at a single center and lacking

independent external validation (19, 27). Therefore, the objective of

this study was to develop a radiomics model using preoperative chest

thin-section non-contrast CT to discriminate LNEN from LADC

presenting as a PSN. Subsequently, independent external validation

was performed to further explore its robust and generalization.
2 Materials and methods

The institutional review boards of five participating centers

(Zhongshan Hospital [center 1], Shanghai Sixth People’s Hospital

Affiliated to Shanghai Jiao Tong University School of Medicine

[center 2], Zhongshan-Xuhui Hospital of Fudan University [center

3], Fudan University Shanghai Cancer Center [center 4], Affiliated

Hospital of North Sichuan Medical College [center 5]) approved

this retrospective multicenter study. Written informed consent was

waived for the retrospective nature of this study.
2.1 Study patients

Patients from five medical centers who underwent needle

biopsy or surgical resection for primary LNEN (between June

2016 and July 2023) were considered for this retrospective study.
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The inclusion criteria were as follows: (a) pathological confirmation

of primary LNEN, (b) chest thin-slice (≤ 2mm) non-contrast CT

within eight weeks before needle biopsy or surgery, (c) lesions

located below the lung segment bronchus, (d) lesions with a long

axis of ≤ 3cm in the maximum cross-section, (e) solid lesions. The

exclusion criteria were as follows: (a) receiving other treatments

before pathological confirmation, (b) multifocal cases, (c) poor-

quality CT images. The detailed process of recruitment is presented

in Figure 1.

Patients from center 1–3 comprised the training set for model

training and internal validation, while those in center 4 and 5 served

as the external test set for external validation. The inclusion and

exclusion criteria for LADC were the same as those for LNEN,

except for the pathological diagnosis. Due to the predominance of

male cases in LNEN, LADC patients in center 1–3 included in the

training set were matched 1:1 by sex and age to minimize differences

between groups and better train models. To evaluate the

generalization of models in proximity to the real world, LADC

cases twice as many as LNEN were chronologically collected in the

external test set from center 4 and 5. Collection process was stopped

once the number of LADC cases reached twice that of LNEN. Data

collection spanned from July 2018 to May 2023 at center 4 and 5.
2.2 CT study protocols

Patients underwent chest thin-slice (slice thickness ranging

from 1.00 to 2.00 mm) non-contrast CT within 8 weeks before

needle biopsy or surgery. Detailed imaging protocols are explained

in Supplementary Table S1.
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2.3 Clinical characteristics and radiological
signs assessment

Clinical data, including sex, age, and preoperative NSE levels (if

available), were collected from the electronic medical record system.

The NSE levels were standardized into dichotomous variables by a

cutoff value of 16.30 ng/ml to be a clinical predictor for LNEN (NSE

level ≥ 16.3 ng/ml). The volumes of interest (VOIs) were firstly

automatically segmented by a deep learning network provided by

the commercial software uAI Research Portal (United Imaging

Intelligence Co., Ltd, China) (28). Subsequently, these VOIs were

successively checked by a junior radiologist (XYL, with 2 years of

experience in chest imaging) and a senior radiologist (FS, with 22 years

of experience in chest imaging) and corrected if necessary. The

radiological signs were initially evaluated by XYL and then reviewed

by FS. The seven evaluated radiological signs (Figure 2) were as follows:

(a) outer 1/3 lung zone, (b) upper lobe of right lung, (c) lobulation, (d)

spiculation, (e) pleural indentation, (f) air bronchogram, (g) vascular

convergence sign. The outer 1/3 lung zone refers to dividing each lung

into three equal parts using concentric circles starting from the hilus

and selecting the outermost third of the lung, which is another method

for differentiating central from peripheral types.
2.4 Radiomics feature extraction

To minimize noise interference and normalize the background

information prior to imaging, we transformed the grayscale images

using a window level of -600 HU and a window width of 1200 HU.

The image voxel dimensions were resampled to 1×1×1 mm (x-, y-,
FIGURE 1

Flow diagram of the patient selection from five medical centers. LNEN, lung neuroendocrine neoplasm; LADC, lung adenocarcinoma; CV, cross-
validation; SCLC, small cell lung cancer; LCNEC, large cell neuroendocrine carcinoma. Center 1 indicates Zhongshan Hospital, Center 2 indicates
Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center 3 indicates Zhongshan-Xuhui Hospital of
Fudan University, Center 4 indicates Fudan University Shanghai Cancer Center, Center 5 indicates Affiliated Hospital of North Sichuan
Medical College.
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and z-axes), with an voxel array shift of 1000 and an image

discretization bin width of 25. The open-source Python package

PyRadiomics (version 3.1.0; http://pyradiomics.readthedocs.io/) was

employed to extract radiomics features from chest thin-slice non-

contrast CT.We explored eight types of images for feature extraction:

Original; Wavelet; LoG with sigma values of 1, 2, 3, 4, 5; Square;

SquareRoot; Logarithm; Exponential; Gradient. Each type of images

was extracted with seven types of features: shape-based; first-order;

second-order: grey level cooccurrence matrix (GLCM), grey level

dependence matrix (GLDM), grey level size zone matrix (GLSZM),

grey level run length matrix (GLRLM), neighborhood gray-tone

difference matrix (NGTDM). In total, 1781 features were extracted

for per patient.
2.5 Model development

The model construction process, illustrated in Figure 3, employed

the open-source Python package scikit-learn (version 0.24.2; https://

scikit-learn.org/stable/) for data processing and model construction.

Firstly, each extracted feature underwent Z-score normalization to

ensure comparability. Secondly, the recursive feature elimination

(RFE) method was applied for feature selection. Subsequently, the

training set was split into cross-validation (CV) training set and CV

test set by the ten-fold CVmethod to train and internally validate the
Frontiers in Oncology 04
radiomics model based on the SVM classifier. The trained optimal

model parameters obtained from ten-fold CV were then fitted to the

training set to check for overfitting. Additionally, the radiomics

model was externally validated in the external test set to evaluate

its generalization.

In the training set, univariable and multivariable logistic

regression analysis were employed to identify independent risk-

factors of LNEN and LADC among standardized radiological signs.

These risk-factors were then used to develop a semantic model. The

merged model incorporated the radiological signs applied in the

semantic model and radiomics scores from the radiomics model to

investigate whether the combination of radiological signs and

radiomics information can improve predictive performance.

Additionally, SVM classifier and ten-fold CV were utilized in

both the construction and internal validation of the semantic

model and merged model. External validation of both these two

models were performed in the external test set.
2.6 Statistical analyses

Continuous variables were presented as medians and

interquartile ranges (IQR), analyzed using the Mann-Whitney U

test for group comparisons. Categorical variables were presented as

frequencies and percentages, and their group comparisons were
FIGURE 2

Radiological signs of four types of lung tumor. (A) A 74-year-old man with lung adenocarcinoma in the medial segment of the middle lobe of the
right lung, exhibiting signs of lobulation, spiculation, air bronchogram, and pleural indentation. (B) A 58-year-old man with lung large cell
neuroendocrine carcinoma in the apical segment of the upper lobe of the right lung, displaying lobulation, spiculation and pleural indentation.
(C) A 58-year-old man with lung carcinoid tumor in the anterior basal segment of the lower lobe of the right lung, demonstrating lobulation, air
bronchogram, and vascular convergence sign. (D) An 81-year-old man with small cell lung cancer in the posterior segment of the upper lobe of the
right lung, presenting signs of lobulation, spiculation, and vascular convergence sign. Spiculation (red arrow), air bronchogram (yellow arrow), pleural
indentation (blue arrow), vascular convergence sign (green arrow).
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conducted by Pearson’s chi-squared test or McNemar test.

Univariable and multivariable logistic regression analysis were

conducted to identify risk-factors with odds ratio (OR) and 95%

confidence interval (CI). A nomogram was constructed for the

merged model. The model performance was evaluated using the

area under the receiver operating characteristic curve (AUC) and

compared using the Delong method. For the cases with NSE levels,

the McNemar test was also used to compare the diagnostic

performance metrics (e.g., accuracy, sensitivity, specificity) of the

radiomics model and NSE in distinguishing LNEN from LADC.

Calibration curve was plotted to compare the predicted values with

the observed values. Decision curve analysis was used to assess

clinical utility. Statistical analysis was performed with Python

(version 3.9.12; https://www.python.org/), R software (version 4.2.2;

https://www.r-project.org/) and SPSS software (version 25.0). A two-

sided P value less than 0.05 was considered statistically significant.
3 Results

3.1 Patients characteristics

Among the 201 patients with primary LNEN, 122 cases were

SCLC, 41 cases were large cell neuroendocrine carcinoma and 38

cases were carcinoid tumor. Additionally, 244 patients with primary

LADC were included in this study. A total of 445 patients (median

age, 64 years [IQR, 57–69 years]; 345 men) were included, with 316

(158 LNEN) in the training set and 129 (43 LNEN) in the external

test set. Furthermore, among the 445 patients included in this study,

254 patients had NSE examinations (median age, 64 years [IQR, 58–

69 years]; 189 men): 161 (75 LNEN) in the training set and 93 (27

LNEN) in the external test set. All baseline characteristics are

detailed in Table 1; Supplementary Table S2.
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Compared with the LADC group, the LNEN group exhibited

significantly lower occurrences in the outer 1/3 lung zone, lobulation,

spiculation, and pleural indentation in both the training set and

external test set (p <.05 for all) (Table 1). However, the statistical

difference of air bronchogram was only observed in the training set

(p <.001), but not in the external test set (p = .108). There was no

statistical difference in the seven radiological signs between the

training set and external test set (Supplementary Table S3).
3.2 Model construction

Three models were developed in this study to distinguish LNEN

from LADC in patients with a PSN: a radiomics model, a semantic

model and a merged model. Sixteen radiomics features (14 second-

order features, 1 first-order feature, 1 shape-based feature) filtered by

RFE were applied to build a radiomics model employing the SVM

classifier (Figure 4A). The LNEN group exhibited higher radiomics

scores than the LADC group in both the training (median, 0.982 [IQR:

0.392, 1.824] vs -1.000 [IQR: -1.682, -0.328]; p <.001) and external test

set (median, 1.246 [IQR: 0.438, 2.102] vs -0.227 [IQR: -1.169, 0.467];

p <.001) (Supplementary Figure S1).

Univariable and multivariable logistic regression analysis

conducted in the training set revealed that lobulation (OR = 0.099

[95% CI: 0.013, 0.765]; p = .027), spiculation (OR = 0.440 [95% CI:

0.255, 0.759]; p = .003), pleural indentation (OR = 0.516 [95%

CI: 0.286, 0.930]; p = .028), and air bronchogram (OR = 0.109 [95%

CI: 0.025, 0.488]; p = .004) were independent risk-factors (Table 2).

The semantic model utilized lobulation, spiculation, pleural

indentation and air bronchogram to build an SVM model. These

four radiological signs were then combined with the radiomics

scores to create an SVM-based merged model (Figure 4B).
FIGURE 3

Workflow for feature pre-processing, feature selection and model building. LNEN, lung neuroendocrine neoplasm; LADC, lung adenocarcinoma;
VOIs, volumes of interest; RFE, recursive feature elimination; SVM, support vector machine; AUC, area under the receiver operating characteristic
curve; DCA, decision curve analysis.
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3.3 Performance of models and NSE for
differentiating LNEN from LADC

In the ten-fold CV analysis in the training set, the radiomics

model and merged model had higher AUCs than the

semantic model (Table 3). The semantic model, radiomic model

and merged model recorded AUCs of 0.707 (95% CI: 0.648, 0.762),

0.879 (95% CI: 0.836, 0.919) and 0.887 (95% CI: 0.845, 0.925) in the

CV training set, respectively. In the CV test set, AUCs were 0.708

(95% CI: 0.531, 0.863) for the semantic model, 0.852 (95% CI: 0.699,

0.972) for the radiomics model and 0.878 (95% CI: 0.738, 0.983) for

the merged model. The optimal model parameters derived from the

ten-fold CV were implemented on the training set without

overfitting for all three models.

In the training set, the AUCs of both the radiomics model (0.878

[95% CI: 0.836, 0.915]; p <.001) and merged model (0.884 [95% CI:

0.844, 0.919]; p <.001) significantly outperformed the semantic model

(0.718 [95% CI: 0.663, 0.769]). However, the AUCs of both the

radiomics model (0.787 [95% CI: 0.696, 0.871], p = .351) and

merged model (0.807 [95% CI: 0.720, 0.889], p = .183) did not

exhibit statistical differences compared to the semantic model (0.729

[95% CI: 0.631, 0.811]) in the external test set. The performance of all

the models is shown in Table 4. The receiver operating characteristic

curves, calibration curves and clinical decision curves are provided in

Figures 5, 6. The calibration curves showed the radiomics model with

the best performance between the predicted probability and the actual

probability. Decision curves showed that three models could achieve

net benefit within a reasonable range of threshold probabilities.

Notably, in 254 patients (102 LNEN) with NSE examination,

the radiomics model demonstrated superior sensitivity than NSE in
Frontiers in Oncology 06
both the training set (64 of 75 [85.3%] vs 15 of 75 [20.0%]; p <.001)

and external test set (24 of 27 [88.9%] vs 11 of 27 [40.7%]; p = .002)

for distinguishing between LNEN and LADC. The performance of

the radiomics model and NSE is shown in Table 5.
4 Discussion

The existing limited studies primarily focus on cases presenting

with masses and the differential diagnosis of peripheral SCLC and

LADC in single-center studies (19, 27). We developed and

internally validated a radiomics model using preoperative chest

thin-section non-contrast CT to discriminate LNEN from LADC

manifested as a PSN and performed external validation to assess the

performance of the model. The AUCs of the radiomics model were

0.878 in the training set and 0.787 in the external test set,

respectively. Furthermore, in 254 patients with NSE examination,

the radiomics model exceled NSE in sensitivity in both the training

set (85.3% vs 20.0%, p <.001) and external test set (88.9% vs 40.7%,

p = .002). The satisfactory predictive performance of the CT

radiomics model implied its potential for non-invasively,

quantitatively, objectively and sensitively discriminate between

LNEN and LADC manifesting as a PSN, thereby aiding in

treatment guidance.

Preoperative histological biopsy is a commonly used invasive

method for identifying histological type of lung cancer when

diagnosis is challenging. However, this method is invasive and

highly dependent on the operators’ experience for successful

diagnosis. Compared with the localized sampling of biopsy, CT

screening non-invasively offers comprehensive information about
TABLE 1 Baseline patient characteristics in the training set and external test set.

Characteristic

Training Set
(n=316)

P value

External Test Set
(n=129)

P value
LNEN
(n=158)

LADC
(n=158)

LNEN
(n=43)

LADC
(n=86)

Age (y) †

65.0
(60.0, 69.0)

65.0
(60.0, 69.0) NA

58.0
(53.0, 66.0)

64.0
(56.0, 71.0) .025*

Sex (male) 131 (82.9) 131 (82.9) NA 34 (79.1) 49 (57.0) .014*

Outer 1/3 lung
zone (present) 77 (48.7) 104 (65.8) .005* 14 (32.6) 49 (57.0) .009*

RU (present) 49 (31.0) 47 (29.7) .897 18 (41.9) 22 (25.6) .060

Lobulation (present) 139 (88.0) 157 (99.4) <.001* 38 (88.4) 85 (98.8) .008*

Spiculation (present) 34 (21.5) 77 (48.7) <.001* 10 (23.3) 39 (45.3) .015*

Pleural
indentation (present) 29 (18.4) 68 (43.0) <.001* 5 (11.6) 39 (45.3) <.001*

Air
bronchogram (present) 2 (1.3) 20 (12.7) <.001* 1 (2.3) 11 (12.8) .108

Vascular convergence
sign (present) 53 (33.5) 62 (39.2) .380 10 (23.3) 32 (37.2) .111
Unless otherwise indicated, data are numbers of patients, and data in parentheses are percentages. LNEN, lung neuroendocrine neoplasm; LADC, lung adenocarcinoma; RU, upper lobe of right
lung; NA, not applicable.
†Data are medians, with interquartile ranges in parentheses.
*P-values are statistically significant.
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B

A

FIGURE 4

Selected Features for the construction of the radiomics model and merged model. (A) Feature weight map of the radiomics model. (B) Nomogram
of the merged model for differentiating neuroendocrine neoplasm from adenocarcinoma in patients with a peripheral solid pulmonary nodule.
LNEN, lung neuroendocrine neoplasm.
TABLE 2 Logistic regression analysis of variables for their association with LNEN and LADC in the training set.

Characteristic

Univariable
Analysis

P value

Multivariable
Analysis

P valueOR OR

Outer 1/3 lung zone (present vs absent) 0.494 (0.314, 0.777) .002* 0.693 (0.412, 1.164) .166

RU (present vs absent) 1.062 (0.657, 1.715) .807 NA NA

Lobulation (present vs absent) 0.047 (0.006, 0.353) .003* 0.099 (0.013, 0.765) .027*

Spiculation (present vs absent) 0.288 (0.176, 0.471) <.001* 0.440 (0.255, 0.759) .003*

Pleural indentation (present vs absent) 0.298 (0.178, 0.496) <.001* 0.516 (0.286, 0.930) .028*

Air bronchogram (present vs absent) 0.088 (0.020, 0.385) .001* 0.109 (0.025, 0.488) .004*

Vascular convergence sign (present
vs absent) 0.782 (0.494, 1.237) .293 NA NA
F
rontiers in Oncology
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Data in parentheses are 95% CIs. LNEN, lung neuroendocrine neoplasm; LADC, lung adenocarcinoma; OR, odds ratio; RU, upper lobe of right lung; NA, not applicable.
*P-values are statistically significant.
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the lesion. In our study, LNEN presenting as a PSN was less with

lobulation, spiculation, pleural indentation and air bronchogram,

which was consistent with previous studies on differential diagnosis

of peripheral SCLC and LADC (19, 20, 29). This consistency

possibly is attributed to the fact that LNEN all originates from

pulmonary neuroendocrine cells and LNEN included in our study

were predominantly SCLC. The semantic model developed by

radiological findings in this study achieved AUCs of 0.718 and

0.729 in the training set and external test set, respectively, which

indicated CT radiological findings could help differentiate LNEN

from LADC appearing as a PSN to some extent. The differences of

radiological findings between LNEN and LADC may be associated

with the propensity of LADC to involve local regions and induce

changes in surrounding pulmonary structures.

Radiomics is considered as a digital biopsy approach for predicting

tumor biological characteristics (30–32). A previous study using a CT-

based radiomics model successfully differentiated peripheral SCLC

from LADC with AUCs yielding 0.858 and 0.836 in the training set

and validation set, respectively (19). Our radiomics model based on

preoperative chest thin-slice non-contrast CT displayed satisfactory
Frontiers in Oncology 08
performance in distinguishing between LNEN and LADC presenting

as a PSN, with AUCs of 0.879 and 0.852 for the CV training set and CV

test set, respectively. Furthermore, this radiomics model still achieved

an acceptable AUC of 0.787 in the external test set. The 14 filtered

second-order texture features (e.g., gradient-glcm-SumSquares,

exponential-glrlm-RunLengthNonUniformity) of our radiomics

model may potentially reflect the difference in the uniformity of

lesion density (33), which might be related to the fact that SCLC

exhibits greater homogeneity in comparison with LADC (20, 34). In

addition, the radiomics method offered a quantitative and objective

assessment approach, especially when combined with automatic three-

dimensional segmentation rather than manual segmentation and two-

dimensional segmentation (35–37). Therefore, the radiomics model

could potentially mitigate misdiagnosis from inexperienced radiologists

and enhance diagnostic reliability in comparison with the subjectivity

and variability of the semantic model based on radiological signs

evaluated by radiologists (38, 39). Additionally, the performance of the

merged model had improved on the benchmark of the radiomics

model, suggesting that radiological signs may enhance diagnostic

performance to some extent (40), but further validation with a larger
TABLE 3 Mean AUCs and accuracies of models in CV training set and CV test set.

Semantic model Radiomics model Merged model

AUC † Accuracy (%) AUC † Accuracy (%) AUC † Accuracy (%)

CV
Training Set

0.707
(0.648, 0.762) 68.3

0.879
(0.836, 0.919) 82.9

0.887
(0.845, 0.925) 84.1

CV Test Set
0.708
(0.531, 0.863) 67.1

0.852
(0.699, 0.972) 81.0

0.878
(0.738, 0.983) 83.9
Unless otherwise indicated, data are the means derived from the 10-fold cross-validation. AUC, area under the receiver operating characteristic curve; CV, cross validation.
†Data in parentheses are 95% CIs.
TABLE 4 Diagnostic performance of models for differentiating LNEN from LADC.

AUC † Accuracy (%) Sensitivity (%) Specificity(%) PPV (%) NPV (%) P value ‡

Semantic model

Training Set
0.718
(0.663, 0.769)

68.4
(216/316)

69.6
(110/158)

67.1
(106/158)

67.9
(110/162)

68.8
(106/154) Ref

External Test Set
0.729
(0.631, 0.811)

71.3
(92/129)

74.4
(32/43)

69.8
(60/86)

55.2
(32/58)

84.5
(60/71) Ref

Radiomics model

Training Set
0.878
(0.836, 0.915)

83.9
(265/316)

83.5
(132/158)

84.2
(133/158)

84.1
(132/157)

83.6
(133/159) <.001*

External Test Set
0.787
(0.696, 0.871)

67.4
(87/129)

83.7
(36/43)

59.3
(51/86)

50.7
(36/71)

87.9
(51/58) .351

Merged model

Training Set
0.884
(0.844, 0.919)

84.2
(266/316)

82.9
(131/158)

85.4
(135/158)

85.1
(131/154)

83.3
(135/162) <.001*

External Test Set
0.807
(0.720, 0.889)

68.2
(88/129)

83.7
(36/43)

60.5
(52/86)

51.4
(36/70)

88.1
(52/59) .183
Unless otherwise indicated, data are percentages, with proportions of patients(numerator/denominator) in parentheses. Ref, reference; LNEN, lung neuroendocrine neoplasm; LADC, lung
adenocarcinoma; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
†Data in parentheses are 95% CIs.
‡P value was calculated with the Delong test and indicates the significance level of the comparison of AUCs with the semantic model as the reference in the corresponding data set.
*P-values are statistically significant.
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sample size remains necessary. Besides, the inclusion of manually

evaluated radiological signs in the merged model also made it less

convenient and objective than the radiomics model.

NSE, a commonly used clinical predictor for LNEN,

demonstrated a sensitivity of 72.5% in a cohort of 80 peripheral
Frontiers in Oncology 09
SCLC cases, half of which were in advanced stages (19). However, this

sensitivity decreased to 52.4% in a smaller cohort of 21 SCLC cases

presenting as a peripheral nodule (20). Moreover, the sensitivity was

only 39.2% in resectable lung carcinoid tumor (41). This suggests that

NSE expression may increase with more advanced stages and higher-
BA

FIGURE 5

Receiver operating characteristic curve analysis of models for differentiating lung neuroendocrine neoplasm from adenocarcinoma in the training set
(A) and external test set (B). AUCs are reported with 95%CIs in parentheses. AUC, area under the receiver operating characteristic curve.
B

C

D

E

F

G H

A

FIGURE 6

Calibration and clinical utility of the models for differentiating lung neuroendocrine neoplasm from adenocarcinoma. Calibration curves of the
semantic model (A, B), radiomics model (C, D) and merged model (E, F) in the training set and external test set, respectively. Decision Curves of the
models in the training set (G) and external test set (H), respectively.
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grade LNEN. Regrettably, only 254 patients (102 LNEN) in our study

had NSE levels available, possibly due to the rarity of LNEN

presenting as a PSN which leads clinicians to overlook it and not

perform NSE examination. In this study, the sensitivity of NSE was

notably low, only 20.0% for the training set and 40.7% for the external

set, potentially due to the predominance of early-stage cases and the

inclusion of lung carcinoid tumor cases. Compared with NSE, the

radiomics model exhibited statistically significant superior sensitivity

of 85.3% and 88.9% for the training set and external test set,

respectively, across a cohort of 254 patients undergoing NSE

testing. These findings suggest that the radiomics model offered a

substantial improvement in suggesting LNEN over NSE, positioning

it as a promising non-invasive predictive tool. Consequently, this

radiomics model could facilitate subsequent positron emission

tomography/computed tomography, brain magnetic resonance

imaging and/or needle biopsy examination for clinical diagnosis

and staging, guiding the selection of optimal treatment strategies.

Our study also had several limitations. Firstly, the retrospective

nature of this study may induce selection bias, despite efforts have been

made to match LNEN with LADC based on sex and age in the training

set to minimize differences between groups, which may also affect

models’ performance to some extent. Furthermore, prospective studies

are necessary to validate the generalizability of ourmodel. Secondly, the

sample size in our study was relatively limited. Although we have

collected 202 cases of peripherally LNEN data from five centers, a

larger sample size is required for further validation and data-driven

deep learning. Thirdly, enlargement of mediastinal or hilar lymph node

was not included, as our study mainly focused on the characteristics of

the nodule itself. Finally, the radiomics features in this study were solely

extracted from unenhanced chest CT images.While chest non-contrast

CT scans are straightforward and low-cost, further studies using chest

enhanced CT images are needed to identify subtler invisible variations

in uniformity of density, thereby improving diagnostic accuracy.
Frontiers in Oncology 10
In conclusion, the CT radiomics model demonstrated effective

performance in distinguishing between LNEN and LADC in

patients with a PSN. Therefore, the radiomics model may serve as

a non-invasive, quantitative, objective and sensitive approach for

differentiating peripheral LNEN from LADC.
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