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Elemental biomapping of human
tissues suggests toxic metals
such as mercury play a role in
the pathogenesis of cancer
Roger Pamphlett1* and David P. Bishop2
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Toxic metals such as mercury, lead, and cadmium have multiple carcinogenic

capacities, including the ability to damage DNA and incite inflammation.

Environmental toxic metals have long been suspected to play a role in the

pathogenesis of cancer, but convincing evidence from epidemiological studies

that toxic metals are risk factors for common neoplasms has been difficult to

gain. Another approach is to map the location of potentially toxic elements in

normal human cells where common cancers originate, as well as in the cancers

themselves. In this Perspective, studies are summarized that have used elemental

biomapping to detect toxic metals such as mercury in human cells. Two

elemental biomapping techniques, autometallography and laser ablation-

inductively coupled-mass spectrometry imaging, have shown that multiple

toxic metals exist in normal human cells that are particularly prone to

developing cancer, and are also seen in neoplastic cells of breast and

pancreatic tumors. Biomapping studies of animals exposed to toxic metals

show that these animals take up toxic metals in the same cells as humans. The

finding of toxic metals such as mercury in human cells prone to cancer could

explain the increasing global incidence of many cancers since toxic metals

continue to accumulate in the environment. The role of toxic metals in cancer

remains to be confirmed experimentally, but to decrease cancer risk a

precautionary approach would be to reduce emissions of mercury and other

toxic metals into the environment from industrial and mining activities and from

the burning of fossil fuels.
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1 Introduction

Most cancers appear to result from interactions between genetic

variations and injurious environmental agents (1). Advances have

been made in identifying germline and somatic gene variants that

increase cancer risk, but finding convincing cancer-promoting

environmental toxic agents (toxicants) for most cancers has

proven difficult. Reasons for this include: (1) the increasing

number of potential environmental agents that could play a role

in cancer pathogenesis, with over 350,000 chemicals and mixtures

of chemicals registered (2); (2) exposure to toxic agents may have

been years before the cancer developed, during which time the

toxicant was removed from the tissue (a “hit and run” scenario); (3)

multiple synergistically-acting toxic agents may need to be involved

before cancer develops (3, 4), i.e., a “poly-environmental”

combination of risk factors; (4) most people are unaware of

which toxic agents they have been exposed to. All of these make

studies looking for toxic metals as risk factors for cancer challenging

to undertake and interpret (3, 5, 6).

Some groups have looked for toxicants within tumor samples,

usually using bulk chemistry methods (7–12). The difficulty here is

that tumors are often supplied by new blood vessels that are

permeable to circulating toxicants, which would normally only

have limited access to the original tissue. The finding of toxicants

in tumor tissue may therefore be a secondary phenomenon not

related to cancer initiation. Animal experiments have given insights

as to how exposure to some toxicants could give rise to cancer (13,

14), but the number of toxicants tested has been small, and young

genetically-identical animals are often employed. It is difficult to

design animal studies to examine how exposure to multiple

toxicants over many years, in a genetically variable population,

could result in cancers affecting humans.

Metal toxicants suspected to be involved in cancer pathogenesis

include lead, cadmium, mercury, arsenic, and chromium (3–6, 13,

15–19). These metals are found globally in air, water, and soil (20),

and exhibit many of the complex mechanisms that underlie cancers.

These mechanisms include somatic mutation-inducing DNA

damage (13, 17, 18, 21–24), impaired DNA repair (13, 24–26),

inflammation and oxidative stress (13, 17, 24, 27, 28), epigenetic

changes (4, 24, 29–32), changes to apoptosis with increased cell

survival and proliferation (14, 17, 33, 34), and damage to cellular

organelles and membranes such as mitochondria (35, 36), the Golgi

apparatus (37, 38), lysosomes (39, 40), and nuclear envelopes (37,

41). Other toxic metal cancer-promoting mechanisms include

alterations to microtubules (13, 42), increased angiogenesis (43,

44), damaged RNA (45, 46), and immune changes (47, 48). Recently

published reviews of the carcinogenic potentials of toxic metals

emphasize that multiple injurious modes of these metals can act

together, and that synergistic actions come into play when several

toxic metals are present (Supplementary Table 1). A model of toxic

metal-promoted carcinogenesis is proposed, illustrating the

extensive range of mechanisms that could be involved (Figure 1).

The sequence in which these events occur could be important. For
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example, it has been proposed that early epigenetic changes in pre-

cancerous lesions that allow for cell proliferation would favor

subsequent genetic mutations in these cells (32, 49).

Many previous studies have looked at the possible roles of toxic

metals in cancer; a recent review found 820 studies on heavy metals

and cancer risk published between 2000 and 2022 alone (6). What

remains lacking to support the toxic metal hypothesis for cancer is

evidence that metal toxicants are present early in the cells in which

neoplasms originate. In this Perspective, an overview of selected

elemental bioimaging studies of human tissues is presented,

concentrating on normal tissues (to look for underlying

predispositions to cancer initiation) and including some

neoplasms (to look for factors promoting tumor progression).

Mercury is mainly used throughout the Perspective as an example

of a toxicant that could play a role in carcinogenesis, since human

exposure to mercury is common from both inhaled mercury vapor

and ingested methylmercury (especially from eating large predatory

fish) (50), the tissue distribution of mercury in experimentally-

exposed animals has been well studied (51–56), both mercury vapor

and methylmercury are metabolized in the body to toxic divalent

mercury cations that accumulate in cells (57), mercury has many of

the toxic effects suspected to underlie carcinogenesis (13, 18, 21),

and mercury i s the major tox ic meta l de tec ted by

autometallography, the technique that is used for elemental

mapping of large numbers of tissue samples (58–60). Therefore,

in this Perspective we will focus on studies that have looked at the

cellular distribution of mercury (as a typical toxic metal) in human

cells to see if these give clues to cancer pathogenesis.
2 Elemental biomapping of
human tissues

2.1 Elemental biomapping techniques

Two techniques that can be used to examine the distribution of

toxic elements in human cells are autometallography (AMG) and

laser ablation-inductively coupled-mass spectrometry imaging (LA-

ICP-MSI). (1) Autometallography is a physical development

amplification technique (based on that first used in photography)

that enables inorganic mercury, silver, or bismuth bound to

selenides or sulfides in tissues to convert added silver ions (from

silver nitrate or lactate) into black metallic silver, which then visibly

coats even a few atoms of these metals (58–63) (referred to here as
AMGTM). Autometa l lography can be combined with

immunohistochemistry (64–67) or electron microscopy (58, 61)

to detect AMGTM in specific cells. (2) LA-ICP-MSI is a multi-

elemental imaging technique that uses a laser to sample histological

sections, with the ablation plume swept into an ICP-MS (68). When

analyzed alongside matrix-matched calibration standards,

quantitative images are reconstructed from the data. LA-ICP-MSI

is a powerful technique for detecting the roles metals play in cancer

(69), however is not as sensitive as AMG, the detection limit being
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0.05–0.81 mg per g (70). Other elemental imaging techniques are not

covered in this review due to their specialized requirements. For

example, synchrotron X-ray fluorescence microscopy measures

concentrations of elements within cells but is limited to very

small areas of frozen tissue (71). NanoSIMS is a sensitive high

resolution imaging technique, but the ultra-thin samples need a

high vacuum and cannot be applied to stored histological

sections (72).
2.2 Human cells containing metal toxicants

Studies of autopsy-sampled tissues of 170 people with a variety

of clinicopathological conditions [one exposed to mercury (73)], as

well as surgical samples of normal tissue adjacent to neoplastic

tissue, show that toxic metals are commonly present in selective

groups of human cells (64–67, 74–79). Human cells that contained

toxic metals were seen most often in the kidney, pancreas, thyroid,

nervous system, anterior pituitary, breast, ovary, adrenal gland,

liver, retina, and in endothelial cells in many organs.
Frontiers in Oncology 03
2.2.1 Kidney
Autometallography of human kidneys showed AMGTM

predominantly in the cortex in renal proximal tubule cells

(sparing glomeruli and distal tubule cells) (Figures 2A, B), and in

the medulla in Henle thin loops (not in collecting ducts) (66, 80).

Renal tubule cell AMGTM started appearing in the third decade of

life (in 66% of people aged 21–40 years) and peaked at 84% of

people aged 61–80 years (77, 80). LA-ICP-MSI indicated that the
AMGTM most commonly present was mercury, and demonstrated

mixtures of cadmium, lead, nickel, and silver in kidneys (Figure 2C)

(66). Clear cell carcinoma, the most common type of renal cancer, is

thought to arise from the proximal tubules (81), the cells in the

kidney that most often harbored toxic metals.

2.2.2 Pancreas
Pancreatic islets, and nearby acinar and ductal cells, readily take

up xenobiotics due to their high blood flow and fenestrated

capillaries (82). Autometallography showed AMGTM in normal

pancreatic islet cells, often in peripheral islet cells and those

adjacent to microvessels (Figure 2D), in 16% of people without
FIGURE 1

Proposed pathway of toxic metal exposure leading to cancer. Upper section: Toxic metal exposure arises from repeated episodes or from a constant
source, with the cellular burden of toxic metals increasing during aging. Major consequences are somatic mutations, inflammation, and epigenetic
changes, while toxic metal-induced alterations to intracellular processes and organelles (in white italics) can also promote carcinogenesis. Lower
section: Examples of toxic metal exposures resulting in two of these mechanisms, somatic mutations and inflammation. (1) Toxic metals enter a
progenitor cell and produce (2) a cancer-initiating mutation. (3) Daughter cells carrying the initiating mutation take up further toxic metals which
produce driver mutations (4). (5) Circulating toxic metals initiate tumor-promoting inflammation. (6) Toxic metals within tumor cells produce
subclone mutations.
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FIGURE 2

Toxic metals in the human kidney, pancreas, and breast. (A) A normal kidney has abundant AMGTM in proximal tubule cells (arrow). No mercury is
seen in glomeruli (G) or in distal tubules (arrowhead). AMG/hematoxylin (66). (B) AMG with CD10 immunostaining shows red proximal tubule cells
containing black mercury grains (arrows). No mercury is seen in CD10-negative distal tubules (arrowhead), or in a glomerulus (G) whose cells stain
lightly with CD10. AMG/CD10/hematoxylin (66). (C) LA-ICP-MSI shows mercury, lead, cadmium and iron in kidney cortex or medulla, but not nickel
or silver (66). Scale = counts per second (proportional to abundance). CO: cortex, ME: medulla (within dashed outlines). (D) A pancreas with AMGTM
in peripheral (arrow) and internal islet cells. Scattered periductal cells (open arrowheads), one enlarged in the upper right inset, contain AMGTM.
Lower left inset: an acinar cell contains AMGTM (closed arrowhead). AMG/hematoxylin (65). (E) Individual and groups of pancreatic carcinoma cells
contain AMGTM (arrows). AMG/hematoxylin. (F) Normal breast tissue, with fine grains of AMGTM (open arrows) attached to the luminal surface of
lobule epithelial cells, and particulate AMGTM in scattered epithelial cells (closed arrows). The lumen of one lobule (right) contains black AMGTM-
stained secretion (artefactually shrunken); in the left lobule the secretion has fallen out during processing. AMG/hematoxylin (76). (G) LA-ICP-MSI of
(AMGTM-containing) normal breast lobules showing mercury (red/green) in the luminal secretion and epithelium, and iron and nickel (green) in the
epithelium (76). (H) Breast cancer with numerous neoplastic ductules containing black luminal AMGTM. Enlarged view shows AMGTM in neoplastic
duct cells, with AMGTM grains (arrow) attached to the nuclear membrane. AMGTM is present in the ductule lumen (asterisk). AMG/hematoxylin (76).
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pancreatic cancer and in 53% with pancreatic cancer (65). AMGTM

in islets was confined to insulin-producing ß-cells (77), the cell of

origin of insulinomas. AMGTM was also seen in acinar cells

(Figure 2D) in 24% of people with pancreatic cancer, but not in

people without pancreatic cancer. Periductal cells containing
AMGTM (Figure 2D) were present in 11% of people with

pancreatic cancer, but not in people without tumors. Islet cells,

periductal cells and acinar cells are all potential candidates for

pancreatic progenitor cells (83, 84) where mutations could initiate

pancreatic cancer. LA-ICP-MSI showed the AMGTM in the pancreas

was most often mercury (Supplementary Figure 1A). Other metals

detected in the pancreas were cadmium, chromium, lead, and nickel

(65). AMGTM was seen in some groups of pancreatic cancer cells

(Figure 2E), and so could promote further mutations leading to

tumor clones.

2.2.3 Thyroid
Autometallography showed AMGTM in the cytoplasm of thyroid

follicle epithelial cells (Supplementary Figure 1B) of 4% of people

aged 1–29 years, 9% aged 30–59 years, and 38% aged 60–104 years

(85). The density of AMGTM varied both within and between

samples. No thyroid cancer was present in any sample. LA-ICP-

MSI indicated that mercury was likely to be the cause of most
AMGTM positivity (Supplementary Figure 1C). Other metals seen in

thyroid follicle epithelium were cadmium, lead, and nickel (85).

Most thyroid carcinomas are derived from thyroid follicle

epithelium (81).
2.2.4 Nervous system
Cells in the human nervous system that contained AMGTM were

astrocytes, oligodendrocytes, neurons, pericytes, pinealocytes,

choroid plexus cells, and white blood cells (67, 74, 75, 80, 86, 87).

Astrocytes were the cells most frequently containing AMGTM, often

with dense staining of cell bodies and astrocytic processes

(Supplementary Figure 1D), and involving all four types of

astrocytes. Astrocyte-derived tumors (astrocytoma and

glioblastoma multiforme) are the most common glial tumors (81).

Oligodendrocytes often contained AMGTM (Supplementary

Figure 1D), especially those in grey matter. Oligodendrogliomas

are the second most common glial tumor. Neurons in the locus

ceruleus in the brain stem had a marked age-related tendency to

take up and retain toxic metals, with AMGTM starting to be seen in

the 20–29 years group (22% of people), and peaking at 67% of

people in the 60–69 years group, indicating that toxic metals are

commonly taken up by adult brains (71, 88). The locus ceruleus

helps maintain the blood-brain-barrier, so toxic metals in this

nucleus could impair this barrier and allow other toxicants to

pass into the central nervous system to initiate tumors. Other

neurons in the brain were less likely than glial cells to take up
AMGTM, and neuronal tumors in adults are less common than glial

tumors (81). Other nervous system cells that contained AMGTM

(and their associated tumors) were pericytes (Supplementary

Figure 1D) (hemangiopericytoma), pinealocytes (pineal gland

tumor), choroid plexus cells (papilloma), and white blood cells

(primary CNS lymphoma). LA-ICP-MSI indicated that mercury
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and silver were likely to be the metals responsible for the nervous

system AMGTM, though only one person had a known exposure to

mercury. LA-ICP-MSI of the locus ceruleus showed neurons harbor

different combinations of toxic metals (88), which enables this

nucleus to be used to estimate previous exposures to

metal toxicants.

2.2.5 Anterior pituitary
Autometallography showed AMGTM in anterior pituitary cells

(Supplementary Figure 1E) in 33% of people aged 2–20 years, and

increased in frequency on aging, reaching a peak of 88% of people in

the 61–80 years group (64). Growth-hormone containing

somatotrophs were the cells most often containing AMGTM

(Supplementary Figure 1F). LA-ICP-MSI showed mercury in

regions of the pituitary that had AMGTM (Supplementary

Figure 1G), with no other toxic metals being seen in the pituitary

(64). Growth hormone-secreting somatotroph adenomas are a

common type of pituitary tumor (81).

2.2.6 Breast
Breast cancer samples removed at surgery showed AMGTM in

normal breast tissue apart from the tumor, with AMGTM seen in

intraductal secretions and luminal epithelial cells in 55% of

samples (76) (Figure 2F). LA-ICP-MSI detected mercury in

samples that contained AMGTM (Figure 2G), and found other

metals such as nickel, iron, aluminum, chromium and cadmium in

some samples (76). Neoplastic cells containing AMGTM

(Figure 2H) were seen in 23% of breast cancers. The female

breast may be particularly susceptible to cancer because metal

transporters ferry toxicants like mercury from the circulation

through breast epithelial cells to enter luminal secretions (76).

Epithelial progenitor cells undergoing mitoses during an episode

of mercury exposure would be at risk for genotoxic damage from

mercury, and mercury-rich luminal secretions would expose

epithelial cells to mercury long-term (76).

2.3.7 Other organs
In the ovary AMGTM was seen attached to nuclei of epithelial

cells and in the zona pellucida (Supplementary Figure 1H) (77).

Fallopian tube tissue [where some ovarian cancers arise (81)] was

not available for analysis. Other human organs where AMGTM or

LA-ICP-MSI detected toxic metals have been found (and common

tumors arising at these sites) are the liver (77) hepatocytes

(hepatocellular carcinoma) and portal tracts (biliary carcinoma),

the adrenal gland (78) cortex (adrenal adenoma) and medulla

(phaeochromocytoma), and the retina (79) (retinoblastoma).
3 Discussion

There are two key points of this Perspective. (1) Many types of

normal human cells contain toxic metals such as mercury, which

increase during aging. (2) The human cell types containing toxic

metals are those susceptible to neoplasia. The finding of toxic metals

in human cells can help explain the increasing incidence of some
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cancers, the increase of cancer incidence with aging, and

multiple cancers.

Studies of age-adjusted cancer incidences over time indicate

that some cancers are increasing in incidence (89, 90). Furthermore,

the incidence of colorectal, breast, kidney, pancreas, and uterine

cancer is increasing in younger age groups (91, 92). One possible

reason for increases in cancer incidence could be increasing

atmospheric, water and soil pollution with carcinogenic toxic

elements (2). For example, increased atmospheric pollution with

mercury from burning fossil fuels and artisanal gold mining (20, 93)

leads to increased human mercury intake, both with mercury vapor

inhalation and with methylmercury ingestion of mercury-

contaminated fish (94), with global fish consumption now

outstripping human population growth (95).

The incidence of most adult cancers increases with increasing

age (81), so it is of interest that the prevalence of people with
AMGTM in cells of the kidney, thyroid, anterior pituitary, pancreas,

adrenal medulla, and brain neurons also increases during aging

(77). Another potential reason for the later age of onset of most

adult cancers is that cellular methylmercury is slowly demethylated

in the body to more toxic inorganic mercury (96), so the genotoxic

potential of intracellular mercury increases with increasing age. A

puzzling phenomenon is the decrease in mortality for many cancers

in advanced older age (97, 98), which could contribute to the

plateau of mortality in advanced age (99, 100). One reason for

this could be that the proportion of people having detectable
AMGTM in cancer-prone cells falls over the age of 80 years (77),

so people who have been exposed to less metal toxicant during their

lives could be less likely to develop cancer later in life.

People with AMGTM in one organ usually have toxic metals in

several other organs as well (77). This raises the possibility that

exposure to metal toxicants could contribute to the occurrence of

concurrent multiple primary tumors, in conjunction with genetic

susceptibilities to these cancers (101).

Exposing experimental animals to toxic metals (usually mercury)

and then biomapping the metal location with autometallography has

given valuable insights into the types of cells taking up toxic metals.

(1) Autometallography has shown AMGTM within the same cell types

in animals as contain AMGTM in humans (Supplementary Table 2).

For example, in animals exposed to mercury, silver or bismuth,
AMGTM was seen in the same pattern as human cells in the kidney

(63, 102–109), pancreas (62, 102, 104, 109), thyroid (103, 104, 110),

nervous system (37, 63, 102–104, 109, 111–114), pituitary (102, 104,

109, 110, 115, 116), ovary (62, 104), liver (47, 102–106, 117), adrenal

gland (58, 62, 102, 104), retina (111), white cells (47, 62, 102, 104),

and endothelial cells (47, 58, 103, 104, 112, 118, 119). Even exposure

to low levels of mercury from a few dental amalgam fillings in non-

human primates resulted in the widespread cellular uptake of

mercury (102). (2) Autometallography combined with electron

microscopy showed AMGTM from mercury or silver exposure in

lysosomes, mitochondria, Golgi apparatus, endothelial basement

membrane, and nuclear membrane, as well as within nuclear

euchromatin and nucleoli (37, 47, 58, 62, 63, 87, 102, 104, 112, 114,

116, 120–128), all subcellular sites implicated in neoplasia (129)

(Supplementary Table 2). (3) Mercury vapor and methylmercury

pass readily through the placenta and enter the developing fetus (52,
Frontiers in Oncology 06
55). After gestational exposure to mercury vapor, AMGTM was found

in neonatal mouse renal tubule cells, liver periportal cells, synovial

cells, chondrocytes, retinal cells, optic nerve glial cells, and fibroblast

progenitor cells (111, 117), indicating toxic metals can be taken up

preferentially by developing cells (Supplementary Table 2). These

findings suggest that prenatal toxic metal exposure could plant the

seed for later carcinogenesis, either via mutations or epigenetic

changes in developing cells, and could contribute to the

pathogenesis of early-onset cancers such as retinoblastoma, optic

nerve glioma, and soft tissue sarcomas (81).

Some human autopsy tissue is not available for elemental

analysis because of limited routine organ sampling. Here small

animal autoradiography using radiolabeled isotopes is useful, since

it has shown the widespread organ uptake (including the colon,

esophagus, lacrimal and salivary glands, bone marrow, fat, and

muscle) of different forms of mercury, and the length of time

mercury persists within organs (51–55) (Supplementary Table 2).

Autoradiography can map the routes inhaled mercury vapor takes

through the body (via the lungs, blood, kidneys, liver, bile duct, and

gastrointestinal tract), and that ingested methylmercury takes (via

the gastrointestinal tract, blood, liver, bile duct, and colon) (56).

Mercury therefore passes through many of the organs where

cancers frequently arise (Supplementary Figure 2).

Future projects on the role of toxic metals in cancer could be: (1)

Since toxic metals can be transported across the placenta into the fetus

(130), animal studies could be used to find if AMGTM is present in a

wide range of fetal stem or progenitor cells (131). (2) Elemental

biomapping of biopsied tissues not routinely sampled at autopsy, such

as the fallopian tubes, could be undertaken. (3) DNA damage has been

reported for metals other than mercury, including cadmium (132,

133) and silver (134). Toxicity synergy exists for several metals (3, 135)

so exposure to multiple toxic metals may bemore potent in promoting

carcinogenesis than single metals alone (4). Future experimental

studies therefore need to examine the carcinogenic effect of multiple

metal toxicants. (4) Toxicologists could take a leaf out of the genetics

playbook (where whole genome or exome sequencing has largely

replaced searches for individual gene variants) by greatly expanding

the range of potentially toxic elements to be biomapped in tissues. (5)

Potentially-toxic metals acting alone are unlikely to be the sole cause of

most cancers, since in humans many organs contain AMGTM in later

adult life (77), whereas cancers arise in only a proportion of these. It is

likely that genetic susceptibilities to environmental toxicants are

present in a majority of cancers, so combined next-generation

genetic analyses and extensive toxic element biomapping will be

needed to uncover these interactions (1).

In conclusion, human elemental biomapping shows that

potentially-carcinogenic toxic metals are present in many of cells

from which common tumors arise. The increasing global incidence

of many tumors could be associated with increasing toxic metal

pollution from anthropogenic toxic metal pollution of the

atmosphere, water and soil. More work is needed to confidently

assign the roles of toxic metals to common cancers, in particular

looking for gene-toxic metal interactions. However, a precautionary

approach to reduce the incidence of cancers would be to reduce

toxic metal-emitting industrial and mining activities and the

burning of fossil fuels.
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SUPPLEMENTARY FIGURE 1

Toxic metals in the human pancreas, thyroid, brain, pituitary, and ovary. (A)
LA-ICP-MSI shows the location of pancreatic islets demonstrated by zinc
imaging (left panel). Mercury (red/green) is seen in the same islets (right panel)

that contained AMGTM (65). (B) A normal thyroid with dense AMGTM in most

thyroid follicle epithelial cells. Inset: magnified view showing AMGTM (arrows)
within the cytoplasm of thyroid follicle epithelial cells. AMG/hematoxylin (85).

(C) LA-ICP-MSI shows mercury (red/green) in thyroid follicle epithelium that
contained AMGTM (85). (D) Cerebral white matter where the cell bodies of

brown-stained fibrous astrocytes contain dense black AMGTM (open
arrowheads). AMGTM grains are seen in astrocyte processes (closed

arrowheads) which end on blood vessels (BV). Right inset: a cortical
oligodendrocyte contains perinuclear AMGTM (arrowhead). Left inset: AMGTM

in brain pericytes (closed arrowheads) and an endothelial cell (open

arrowhead). AMG/glial fibrillary acidic protein (AMG/Luxol fast blue in left
inset) (67, 75). (E) Anterior pituitary cells containing AMGTM granules. AMG/

hematoxylin (64). (F) Anterior pituitary growth hormone-stained (red)
somatotrophs contain AMGTM granules (closed arrows), but not cells

without growth hormone (open arrows). AMG/growth hormone/
hematoxylin (64). (G) LA-ICP-MSI shows mercury (red/yellow) in a region of

the anterior pituitary with AMGTM-containing cells (right lower panel), but not

in an AMGTM-free region (right upper panel) (64). Scale = counts per second
(proportional to abundance). (H) Normal ovarian follicle with AMGTM grains

attached to nuclei of epithelial cells (arrowhead in enlargement), in the zona
pellucida (arrow), and in round profiles (asterisk) in the antrum. AMG/

hematoxylin (77).

SUPPLEMENTARY FIGURE 2

Cellular pathways in the body of mercury vapor (Hg0) and methylmercury
(MeHg+). (A) Inhaled Hg0 is taken up by the lungs, and absorbed by plasma,

red blood cells, and cells in multiple organs, where conversion to toxic
inorganic mercury (Hg2+) takes place. Excretion of Hg2+ is via the kidney

and urine, and via the liver, bile duct, and gastrointestinal tract (GIT) and
excreted through the feces. (B) Ingestion of dietary MeHg+ by the GIT leads

to MeHg+ being taken up by the blood and then either (i) passes into cells of

multiple organs where it is slowly converted to Hg2+, or (ii) is re-circulated
into the GIT by the hepato-biliary pathway. MeHg+ in the colon is rapidly

converted to Hg2+ by colonic flora and excreted in the feces. In both
pathways toxic Hg2+ is deposited or passes through many of the cells that

are prone to cancer.
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