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Introduction: The early detection of esophageal cancer is crucial to enhancing

patient survival rates, and endoscopy remains the gold standard for identifying

esophageal neoplasms. Despite this fact, accurately diagnosing superficial

esophageal neoplasms poses a challenge, even for seasoned endoscopists.

Recent advancements in computer-aided diagnostic systems, empowered by

artificial intelligence (AI), have shown promising results in elevating the diagnostic

precision for early-stage esophageal cancer.

Methods: In this study, we expanded upon traditional red–green–blue (RGB)

imaging by integrating the YOLO neural network algorithm with hyperspectral

imaging (HSI) to evaluate the diagnostic efficacy of this innovative AI system for

superficial esophageal neoplasms. A total of 1836 endoscopic images were

utilized for model training, which included 858 white-light imaging (WLI) and

978 narrow-band imaging (NBI) samples. These images were categorized into

three groups, namely, normal esophagus, esophageal squamous dysplasia, and

esophageal squamous cell carcinoma (SCC).

Results: An additional set comprising 257 WLI and 267 NBI images served as the

validation dataset to assess diagnostic accuracy. Within the RGB dataset, the

diagnostic accuracies of the WLI and NBI systems for classifying images into

normal, dysplasia, and SCC categories were 0.83 and 0.82, respectively.

Conversely, the HSI dataset yielded higher diagnostic accuracies for the WLI

and NBI systems, with scores of 0.90 and 0.89, respectively.
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Conclusion: The HSI dataset outperformed the RGB dataset, demonstrating an

overall diagnostic accuracy improvement of 8%. Our findings underscored the

advantageous impact of incorporating the HSI dataset in model training.

Furthermore, the application of HSI in AI-driven image recognition algorithms

significantly enhanced the diagnostic accuracy for early esophageal cancer.
KEYWORDS

Esophageal Cancer, Hyperspectral imaging, Dysplasia, SSD, YOLOv5, Narrow-
band imaging
1 Introduction

Esophageal cancer ranks as the seventh most prevalent cancer

and the sixth leading cause of cancer-related deaths worldwide. In

2021, it accounted for 1 in every 18 cancer fatalities (1). Esophageal

squamous cell carcinoma (ESCC) is the predominant type of

esophageal cancer, constituting over 80% of cases in Asia, Africa,

and South America (1, 2). The early detection of superficial

esophageal cancer is vital for enhancing patient survival because

early-stage diagnoses allow for curative treatments. Notably, nearly

80% of patients with early-diagnosed ESCC have a survival rate

extending beyond five years. This rate plummets to below 20% for

patients diagnosed at advanced stages (3, 4).

However, in clinical settings, identifying superficial esophageal

neoplasms remains a challenge for endoscopists using standard

esophagogastroduodenoscopy. Reports indicate a 10%–40% miss

rate for early esophageal cancer detection using white-light imaging

(WLI) in conventional upper endoscopy (5). Although various

enhanced imaging techniques such as narrow-band imaging

(NBI) and magnified endoscopy have been introduced to improve

early cancer diagnosis, the diagnostic accuracy significantly depends

on the endoscopist’s experience and training (6).

The advent of artificial intelligence (AI) and deep-learning

algorithms such as convolutional neural networks (CNNs) has led to

the creation of several computer-aided systems for the detection and

diagnosis of ESCC (7). Notably, Guo et al. implemented the SegNet

architecture to devise a computer-assisted diagnosis (CAD) system

capable of autonomously identifying precancerous conditions and early

ESCC (8). Additionally, the Single Shot MultiBox Detector (SSD)

algorithm has been used to develop CAD systems, demonstrating

robust diagnostic capabilities in the detection and differentiation of

ESCC (9–11). Furthermore, AI frameworks developed using SSD or

GoogLeNet have been utilized to ascertain the invasion depth of

esophageal cancer (12, 13). The SSD, along with the Bilateral

Segmentation Network, has also been applied for the real-time

diagnosis of esophageal cancer by using video datasets (14, 15).

Hyperspectral imaging (HSI) is a superior imaging technique

that surpasses traditional red–green–blue (RGB) imaging by

providing richer information. Its exceptional spectral resolution

under 10 nm, along with distinctive spectral signatures for various
02
substances, offers significant advantages in image recognition (16).

The clinical utility of HSI in gastrointestinal cancer surgeries has

notably increased, aiding in tasks such as detecting anastomotic

leaks, identifying optimal anastomotic sites, and delineating colon-

cancer margins (17).

Innovative strides have been made with the development of an

HSI-based computer-aided diagnosis (CAD) system by Ma et al.,

which enhances the diagnostic precision for head and neck

squamous cell carcinoma on histological slides (18). Similarly,

Lindholm et al. adopted an HSI-CNN framework to distinguish

between malignant and benign pigmented and non-pigmented skin

tumors (19).

Previous research has explored various imaging modalities, but

studies on the application of HSI technology in AI systems for

esophageal cancer assessment are few (7).

Our research team has developed a CAD system that leverages

HSI spectral data and the SSD algorithm for the detection and

differentiation of esophageal squamous neoplasms. Our findings

indicate that the diagnostic accuracy is enhanced by 5% using HSI

spectral data compared with models based on RGB images (20, 21).

While HSI has been used for diagnosing colon, head and neck

cancers, and skin tumors, applying it to esophageal cancer poses

unique challenges due to the internal location and complex tissue

structure. Unlike surface-level cancers, esophageal neoplasms,

especially early-stage dysplasia, require precise spectral

differentiation. Our innovative approach converts white-light

images (WLI) into narrow-band imaging (NBI) similar to the

Olympus endoscope using HSI data, enabling the detection of

subtle tissue changes. Integrating the YOLOv5 algorithm with

HSI enhances diagnostic accuracy, particularly in detecting early

dysplasia, offering a significant improvement over existing methods

in similar studies. In the current work, our objective was to develop

and validate an innovative CAD system by utilizing a deep-learning

model known as You Only Look Once (YOLO) in conjunction with

HSI technology. Additionally, we assessed its performance relative

to models trained on RGB images. Our hypothesis posits that the

integration of HSI can enhance the diagnostic capabilities of the

CAD system when utilizing CNNs beyond the SSD algorithm. To

address the need for enhanced diagnostic precision in esophageal

cancer, this study hypothesizes that integrating HSI can improve
frontiersin.org
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detection accuracy beyond what is achieved with current imaging

methods and AI algorithms. Unlike traditional imaging approaches,

HSI captures spectral data across multiple wavelengths, allowing for

detailed tissue characterization and identification of subtle

differences in tissue composition. Although AI-based diagnostic

tools in gastroenterology have shown promising results, they face

limitations, such as difficulty in distinguishing early-stage lesions

and reliance on narrowband imaging. Many studies have

highlighted these limitations, underscoring the need for more

advanced imaging modalities. By combining HSI with machine

learning, this study aims to overcome these challenges, providing a

comprehensive, multi-spectral approach that could improve

diagnostic outcomes in esophageal cancer and set a new standard

for AI-assisted imaging in gastroenterology.
2 Material and methods

2.1 Dataset

This study utilized endoscopic images from 16 individuals,

comprising 7 patients with esophageal squamous cell carcinoma

(ESCC), 9 with squamous dysplasia, and 10 healthy subjects as

controls, for neoplastic and normal esophageal imagery. While the

sample size of 16 individuals may seem limited, the detailed spectral

data captured by hyperspectral imaging (HSI) compensates for this

limitation, offering rich diagnostic information per individual.

Previous studies using similar sample sizes in HSI research have

demonstrated reliable outcomes. Future work will expand the

dataset, but this study demonstrates the feasibility of our

approach. Pathological assessments were performed to categorize
Frontiers in Oncology 03
the esophageal neoplasms. Following the removal of images that

were unmarked, blurred, or out of focus, a dataset of 1836 images

was compiled for model training. This dataset included 858 white-

light imaging (WLI) and 978 narrow-band imaging (NBI) pictures.

Specifically, the WLI collection contained 219 SCC images, 159

squamous dysplasia images, and 480 normal esophagus images. The

NBI set included 222 SCC images, 306 squamous dysplasia images,

and 450 normal esophagus images. An additional 257 WLI and 267

NBI images were designated as the test set. The Institutional Review

Board of Kaohsiung Medical University Hospital (KMUH) granted

ethical approval for this research (KMUHIRB-E(II)-20190376).
2.2 Hyperspectral imaging conversion

Visible–HSI (VIS-HSI) technique was applied to transform

esophageal-cancer images into a spectrum of 401 bands ranging

within 380–780 nm. The process of spectrum conversion is depicted

in Figure 1. To align the spectrometer with the endoscope, a set of

standard 24 color blocks was used for calibration reference. The

conversion matrix, bridging the endoscope (OLYMPUS EVIS

LUCERA CV-260 SL) and the spectrometer (Ocean Optics,

QE65000), was derived by capturing images to ascertain

chromaticity values and measuring spectra for spectral values.

The transition from the sRGB to the XYZ color space within the

endoscope’s system was facilitated using Equation 1.

X

Y

Z

2
664

3
775 = ½MA�½T�

f (RsRGB)

f (GsRGB)

f (BsRGB)

2
664

3
775� 100,  0 ≤

RsRGB

GsRGB

BsRGB

  ≤ 1 (1)
FIGURE 1

Flow chart of HSI algorithm.
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To comply with the sRGB color-space standards, the RGB

values of the endoscopic image must be scaled from a 0–255

range to a 0–1 range. The gamma function was then applied to

convert the sRGB values into linear RGB ones. They were further

transformed into XYZ values using a conversion matrix, ensuring

normalization within the color space. However, the chromatic

adaptation transformation matrix was essential during this

process to account for discrepancies between the standard D65

white point (XCW, YCW, ZCW) of the sRGB space and the actual

light source’s white point (XSW, YSW, ZSW). The true XYZ values

(XYZEndoscopy) were obtained with this matrix in the context of the

measured light source. In the spectrometer setup, the spectrum of

the light source, S(l), is combined with the XYZ color-matching

function. Notably, the luminance value (Y) in the XYZ space was

directly correlated with perceived brightness and was capped at 100.

Utilizing the Y value in Equation 2 facilitated the determination of

the light-source spectrum’s maximum brightness and brightness

ratio (k). Equations 3–5 were used to gather reflective spectrum

data.

k = 100=
Z 780nm

380nm
S(l)�y(l)dl (2)

X = k
Z 780nm

380nm
S(l)R(l)�x(l)dl (3)

Y = k
Z 780nm

380nm
S(l)R(l)�y(l)dl (4)

Z = k
Z 780nm

380nm
S(l)R(l)�z(l)dl (5)

Various elements, including nonlinear response, inaccurate

color filter separation, dark current, and color shifts, can lead to

errors. To address this issue, we calculated a correction coefficient

matrix (C) through multiple regression analysis (Equation 6). By

multiplying the variable V matrix with this correction matrix, we

obtained the adjusted X, Y, and Z values (XYZCorrect).

½C� = ½XYZSpectrum� � pinv(½V�) (6)
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The root-mean-square error (RMSE) was calculated for the

XYZCorrect and XYZSpectrum datasets. The WLI and NBI endoscopes

exhibited average errors of 1.40 and 2.39, respectively. We derived

the transformation matrix (M) by correlating the XYZ values of 24

color patches from XYZCorrect with the spectrometer-measured

reflection spectra (RSpectrum). Principal component analysis (PCA)

on the RSpectrum subset identified key components, which were then

used to establish the conversion matrix against the XYZCorrect

values. We evaluated the RMSE and specific color patch

discrepancies by comparing the SSpectrum from the 24-color patch

simulation with the RSpectrum. The average error for the WLI was

found to be 0.057, while it was 0.097 for the NBI. Differences

between the SSpectrum and RSpectrum were highlighted by variations

in color, with average color errors of 2.85 for WLI and 2.60 for NBI,

respectively. The described hyperspectral method for visible light

computed and simulated the reflection spectrum from RGB data

captured by a single-lens camera. This technology enabled the

calculation of RGB values for the full image to produce a

hyperspectral image. We analyzed the spectral variances between

lesions and non-lesions by marking their locations. As depicted in

Figure 2, we selected the 415–540 nm band range for PCA due to

the significant RMSE among the three categories: SCC, dysplasia,

and normal. These categories showed marked differences

in reflectivity.
2.3 Construction of YOLOv5 system

The YOLOv5 deep CNNmodel uses a neural network to conduct

feature mapping of images, segmenting them into S×S grids (22–25).

Herein, it determined the center position offset (tx ,  ty) and the

relative dimensions (tw,  th) for each grid’s prediction and prior

frames. The model generated a confidence score for objects,

predicted category probabilities, and applied Intersection over

Union threshold and non-maximum suppression for final frame

selection (26, 27). The architecture incorporated Focus+Cross Stage

Partial networks to enhance feature extraction and reduce

computational load. Spatial pyramid pooling, feature pyramid

networks, and path aggregation networks bolstered the feature
FIGURE 2

Spectrum distributions of (A) WLIs and (B) NBIs.
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mapping across various object sizes. A key advancement in YOLOv5

was the object center alignment within grid cells, improving match

accuracy (28). Samples with aspect-ratio changes under fourfold were

deemed positive, with two adjacent grids predicting such samples to

boost positive detection rates. This adjustment significantly

accelerated model convergence, thereby enhancing detection speed.

The YOLOv5 loss function encompassed classification loss,

confidence loss, and positioning loss. Classification loss used

cross-entropy to gauge the discrepancy between predicted and

actual category probabilities. Confidence loss compared the actual

and predicted bounding boxes, whereas positioning loss assessed

the difference in Complete Intersection over Union values.

The weights for these losses were fine tuned, as detailed in

Equation 7.

L(x, c, l, g) =  
1
N
½0:5Lcls(pgt, pc) +  aLobj(lgt, l)

+ 0:05Lbox(lgt, l)� (7)

Here, N represents the count of matched positive samples, a is

the scale-dependent loss function gain index, with the small-to-

medium-to-large target gain ratio set at 4:1:0.4, pgt denotes the

probability for each positive sample category, pc for each predicted

frame category, lgt is the real box’s center location, and l denotes the

predicted frame’s center location. Lcls, Lobj, and Lbox signify

classification, confidence, and localization losses, respectively. An

esophageal neoplasm was considered accurately detected if the IOU

was ≥0.5. The algorithm’s full workflow is illustrated in Figure 3.
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In this study, we utilized 524 separate images for the test set,

comprising 257 WLI and 267 NBI images, to assess the YOLO

combined with the HSI system’s diagnostic efficacy. We crafted four

predictive models that integrated RGB and HSI data in the WLI and

NBI modalities to gauge diagnostic precision. For visualization, the

images were overlaid with a blue ground truth box. The YOLO

framework used a green bounding box to denote esophageal

squamous dysplasia and a purple box for ESCC identification.

The YOLOv5 system’s diagnostic outcomes are depicted in Figure 4.
3 Results

3.1 Diagnosis performance of YOLO for
detecting esophageal neoplasms

The system processed each image in 0.05 s. For the RGB-WLI

model, it accurately identified 217 out of 294 esophageal-neoplasm

frames and correctly diagnosed 293 out of 321 normal esophagus

frames. The HSI-WLI model correctly predicted 252 out of 294

neoplasm frames and 292 out of 308 normal frames, noting fewer

frames than RGB-WLI due to unsuccessful transformations. By

testing with the NBI dataset, the RGB-NBI and HSI-NBI models

accurately predicted 335 and 359 neoplasm frames out of 417,

respectively. They also correctly identified 250 out of 299 and 252

out of 269 normal frames, respectively. Diagnostic accuracies for

esophageal-neoplasm detection were 83% (RGB-WLI), 82% (RGB-
FIGURE 3

Complete process of the algorithm designed in this study.
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NBI), 90% (HSI-WLI), and 89% (HSI-NBI). The HSI models

outperformed RGB models in sensitivity, specificity, precision,

and F1-score across the WLI and NBI datasets. Overall, HSI

models improved neoplasm-detection accuracy by 8% compared

with RGB models, as detailed in Table 1. The 8% enhancement in

diagnostic accuracy attained using HSI is noteworthy, particularly

in facilitating the early identification of premalignant lesions,

including esophageal dysplasia. The enhancement in accuracy

may impact patient outcomes by facilitating earlier and more

accurate therapies. Nevertheless, the therapeutic importance of

this enhancement must be meticulously evaluated about the

additional complexity, expense, and duration necessary for HSI

capture and processing. The enhanced detection skills warrant

additional investigation of HSI; however, subsequent research

should focus on optimizing the imaging and processing workflow

to reduce its effect on clinical workflow efficiency. Enhancing these

mechanisms can render HSI more feasible in standard clinical
Frontiers in Oncology 06
practice. Additionally, a comprehensive examination of HSI’s

efficacy in identifying premalignant lesions would yield greater

insights into its genuine therapeutic significance, particularly in

contexts where early diagnosis might result in improved long-

term outcomes.”
3.2 Diagnosis performance of YOLO for
classifying esophageal neoplasms

The WLI dataset included 186 frames of actual esophageal SCC

and 108 frames of dysplasia for neoplasm-classification accuracy

testing. The RGB-WLI and HSI-WLI models used 321 and 308

frames of genuine normal esophagus, respectively, with some data

loss in HSI conversion. In the NBI dataset, 188 frames of SCC and

219 frames of dysplasia were tested for diagnostic accuracy. For

normal esophagus, 299 and 269 frames were used in the RGB-NBI
TABLE 1 Performance of diagnosis using the YOLOv5 system trained by different datasets for diagnosing esophageal neoplasms.

Diagnostic performance

Dataset Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Accuracy (%)

RGB

RGB-WLI 74 91 89 81 83

RGB-NBI 80 84 87 84 82

HIS

HSI-WLI 86 94 94 90 90

HSI-NBI 86 99 95 91 89
RGB, red-green-blue; WLI, white light imaging; NBI, narrow band imaging; HSI, hyperspectral imaging.
FIGURE 4

presents the YOLOv5 diagnostic outcomes for the WLI and NBI images of esophageal neoplasms. Blue boxes signify the ground truth. Green-
bordered boxes highlight areas identified as esophageal dysplasia, whereas purple-bordered boxes indicate SCC regions. The labels’ numbers
indicate the likelihood of an esophageal-neoplasm diagnosis within the box.
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and HSI-NBI models, respectively. The outcomes for the RGB-WLI,

RGB-NBI, HSI-WLI, and HSI-NBI models are detailed in the

confusion matrix (Table 2).

The RGB-WLI and HSI-WLI models achieved diagnostic

accuracies of 83% and 90%, with Kappa values of 0.71 and 0.92,

respectively (Table 3). Similarly, the RGB-NBI and HSI-NBI models

recorded accuracies of 82% and 89%, and Kappa values of 0.72 and

0.83, respectively. The HSI model improved neoplasm classification

accuracy by 8% compared with the RGB model (Table 2). Across

the WLI and NBI datasets, the HSI model demonstrated superior

diagnostic accuracy and Kappa values (Table 3). Our system also

showed enhanced sensitivity, precision, and F1-scores for SCC

compared with esophageal dysplasia in both models. Notably, the

NBI system outperformed the WLI system in diagnosing

esophageal dysplasia and SCC in terms of sensitivity, precision,

and F1-score (Table 3).
4 Discussion

The prompt detection of esophageal cancer is vital for

enhancing patient survival, with endoscopy being the most

precise method (29). However, the accuracy for early-stage and

superficial neoplasms depends heavily on the endoscopist’s skill.

Recent CAD systems leveraging diverse AI algorithms have shown
Frontiers in Oncology 07
promise in boosting early cancer-detection accuracy (7).

Historically, WLI and NBI images have been the primary types

used in model training, with limited use of magnified NBI and blue-

laser imaging. Various CNN architectures like SSD, ResNet, SegNet,

ResNet/U-Net, YOLOv3, and Grad-CAM have been used (30). This

study introduced hyperspectral technology alongside traditional

RGB imaging to explore HSI’s impact on CAD systems. Our

findings indicated that HSI outperformed RGB in the detection

and classification of esophageal neoplasms, enhancing diagnostic

accuracy by 8%. HSI data offered a three-dimensional dataset,

enabling more feature extraction than RGB’s three bands. It

extended beyond the visible spectrum, allowing the analysis of

characteristics typically imperceptible to the human eye. By

capturing the electromagnetic spectrum across numerous narrow

wavelengths, HSI significantly improved resolution. Consequently,

HSI-WLI and HSI-NBI algorithms yielded superior results over

their RGB counterparts (16, 31–33).

Hyperspectral imaging (HSI) technology has found widespread

use in distinguishing lesions from normal tissue across various

medical domains, including cervical cancer, skin cancer, diabetic

foot, and cutaneous wounds (31). However, its application in

gastroenterology remains in its early stages, with most research

focusing on surgical assistance, including tasks such as anatomy

identification, bowel ischemia detection, gastric cancer

identification, and pathological support (32). Notably, the
TABLE 2 Confusion matrix of YOLOv5 system trained by different datasets for the classification of esophageal neoplasms.

YOLO diagnosis

True diagnosis Normal dysplasia SCC Accuracy (%) Kappa

RGB

RGB-WLI

Normal 293 18 10

Dysplasia 32 76 0 83 0.71

SCC 45 0 141

RGB-NBI

Normal 250 38 11

Dysplasia 45 174 0 84 0.72

SCC 37 0 161

HSI

HSI-WLI

Normal 292 7 9

Dysplasia 17 91 0 90 0.84

SCC 25 0 161

HSI-NBI

Normal 252 9 8

Dysplasia 32 185 2 91 0.83

SCC 26 0 172
SCC, squamous cell carcinoma; RGB, red-green-blue; WLI, white light imaging; NBI, narrow band imaging; HSI, hyperspectral imaging.
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utilization of HSI for diagnosing esophageal cancer is still limited.

In a study by Maktabi et al., HSI combined with classification

algorithms is used for the automatic detection of esophageal cancer

(squamous cell carcinoma and adenocarcinoma) in resected tissue

samples from 11 patients. The resulting sensitivity and specificity

for cancerous tissue are 63% and 69%, respectively (34). Maktabi

et al. used HSI technology alongside a machine-learning method

(multi-layer perceptron) to differentiate between esophageal

adenocarcinoma and squamous epithelium in hematoxylin and

eosin-stained specimens. The accuracy rates for esophageal

adenocarcinoma and squamous epithelium are 78% and 80%,

respectively. Notably, HSI demonstrates superior accuracy

compared with the results obtained using RGB data in their study

(35). In the current work, we leveraged HSI techniques in

conjunction with the YOLOv5 algorithm for diagnosing

esophageal neoplasms from endoscopic images. Our findings

reaffirmed the beneficial role of HSI in endoscopic image

recognition for esophageal neoplasms. Specifically, the diagnostic

accuracy of our HSI system improved by 8% compared with the

RGB system. Our group has previously explored HSI technology

alongside the SSD algorithm for diagnosing esophageal neoplasms.

In this case, the HSI-SSD system exhibits a 5% improvement in

diagnostic accuracy compared with the RGB-SSD system (20).

Recognizing that different algorithms may yield varying effects on

the image recognition of HSI data is important. It emphasizes the

need for further studies to validate these observations.

Our study further revealed a correlation between malignancy

severity and AI diagnosis performance. The YOLOv5 system

displayed higher sensitivity for SCC than dysplasia, echoing

findings from a prior SSD system study. In the RGB dataset,

sensitivities for dysplasia and SCC were 70% and 76% in the

RGB-WLI model and 76% and 81% in the RGB-NBI model,

respectively. NBI outperformed WLI in diagnosing both

conditions (Table 3). In the HSI dataset, sensitivities for SCC

remained higher than those for dysplasia, i.e., 84% and 87% in
Frontiers in Oncology 08
the HSI-WLI and HSI-NBI models. However, NBI did not enhance

diagnostic capabilities over WLI in the HSI dataset. This finding

may be due to the selection of the 415–540 nm band for feature

extraction and PCA given the high RMSE among SCC, dysplasia,

and normal tissue (36). The original NBI also used the 415–540 nm

band, providing high-contrast vascular images for neoplasm

detection. Thus, the spectral differences between HSI-WLI and

HSI-NBI were minimal, suggesting limited additional feature-

extraction benefits from NBI in the HSI dataset.

Our system demonstrated high specificity and precision in

identifying esophageal neoplasms; however, sensitivity remained

below the optimal levels. A meta-analysis of 24 AI studies reported

pooled sensitivity and specificity rates of 91.2% and 80% for ESCC

diagnosis (37). The limited sensitivity in our case may stem from a

smaller training image set, insufficient for achieving 90% sensitivity.

Unlike most studies that categorize lesions as cancerous or non-

cancerous, we included a third category, that is, dysplasia, which is

crucial to early intervention and survival improvement. However,

the impact of incorporating dysplasia in training is unclear because

it represents an intermediary stage rather than a distinct entity,

which can affect AI performance. This finding suggested a need for

future research to refine the algorithm. False negatives were often

due to lesions in the esophagus’s shadowed regions, indicating a

need for more diverse training images. Additionally, discrepancies

between AI-selected frames and manual lesion labeling affected

model convergence and diagnostic accuracy. Despite the laborious

and time-intensive nature of developing spectral imaging sensors

and data analysis methodologies, the information acquired through

spectral imaging techniques allows for a clear examination of the

characteristics of various tissues and organs in both healthy and

diseased subjects, which has not been feasible for direct

investigation previously (38). Spectral unmixing and other image

processing techniques utilized on hyperspectral data uncover

nuanced color and texture variations not observable in

conventional microscope images, hence enhancing the pathology
TABLE 3 Diagnosis performance of YOLOv5 system trained by different datasets for classifying esophageal neoplasms.

Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Accuracy (%) Kappa

RGB

WLI

Dysplasia 70 86 81 75 83 0.71

SCC 76 86 93 84

NBI

Dysplasia 79 83 82 81 82 0.72

SCC 81 82 94 87

HSI

WLI

Dysplasia 84 92 93 88 90 0.92

SCC 87 92 95 90

NBI

Dysplasia 84 91 95 90 89 0.83

SCC 87 90 95 91
SCC, squamous cell carcinoma; RGB, red-green-blue; WLI, white light imaging; NBI, narrow band imaging; HSI, hyperspectral imaging.
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of biological specimens, therefore the same method can also be

applied to the pathological slides (39).

Our study has several limitations. First, the sample size of the

images used was small, and the limited number of training images

compared with that in previous studies may have influenced the

diagnosis performance of our system. Second, we exclusively utilized

static images from standard endoscopes (specifically, the GIF-Q260

and EVIS LUCERA CV-260/CLV-260 systems by Olympus Medical

Systems, Co., Ltd., Tokyo, Japan). Consequently, the applicability of

our system remained restricted to these conditions. Whether

incorporating video images or magnified endoscopy can enhance

our system’s diagnosis performance remains uncertain. Lastly,

although our study successfully improved the diagnostic accuracy

of the CAD system by integrating HSI, the time-consuming

conversion process still requires upgrading for practical clinical use.

In future studies, there are plans to explore multi-modal imaging

techniques that combine HSI with other methods, such as optical

coherence tomography (OCT) or ultrasound, to overcome the depth

limitation and provide more comprehensive tissue analysis. Although

HSI offers significant potential for improving esophageal neoplasm

detection, several practical barriers exist, including high hardware

costs, complexity in data interpretation, and the need for clinician

training. Reducing costs through technological innovation,

integrating AI for automated data interpretation, and providing

standardized training programs can help address these challenges.

Furthermore, conducting clinical pilot studies will aid in validating

the system and accelerating regulatory approvals, facilitating

smoother integration of HSI into routine clinical practice.
5 Conclusion

Our study demonstrated that the HSI-CAD system

outperformed the conventional RGB-CAD system in detecting

and classifying esophageal neoplasms. Specifically, our system

achieved an 8% improvement in diagnostic accuracy. To enhance

our system further, additional HSI data should be incorporated.

Future investigations on the potential impact of HSI data on other

CAD systems are also necessary.
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